
MATHEMATICS OF COMPUTATION
Volume 83, Number 289, September 2014, Pages 2263–2291
S 0025-5718(2014)02829-9
Article electronically published on April 1, 2014

AN AUGMENTED LAGRANGIAN BASED PARALLEL

SPLITTING METHOD FOR SEPARABLE CONVEX

MINIMIZATION WITH APPLICATIONS

TO IMAGE PROCESSING

DEREN HAN, XIAOMING YUAN, AND WENXING ZHANG

Abstract. This paper considers the convex minimization problem with lin-
ear constraints and a separable objective function which is the sum of many
individual functions without coupled variables. An algorithm is developed by
splitting the augmented Lagrangian function in a parallel way. The new algo-
rithm differs substantially from existing splitting methods in alternating style
which require solving the decomposed subproblems sequentially, while it re-
mains the main superiority of existing splitting methods in that the resulting
subproblems could be simple enough to have closed-form solutions for such an
application whose functions in the objective are simple. We show applicability
and encouraging efficiency of the new algorithm by some applications in image
processing.

1. Introduction

We consider the convex minimization problem with linear constrains and a sepa-
rable objective function which is the sum of many individual functions but without
coupled variables:

(1.1) min

{
m∑
i=1

θi(xi)
∣∣∣ m∑

i=1

Aixi = b, xi ∈ Xi, i = 1, · · · ,m
}
,

where θi : Rni → R are closed proper convex functions (not necessarily smooth);
Ai ∈ Rl×ni and Xi ⊆ Rni are closed and convex nonempty sets; b ∈ Rl and∑m

i=1 ni = n. Throughout, the solution set of (1.1) is assumed to be nonempty,
and Ai’s are all assumed to be full column-rank. We would emphasize that weaker
convergence results similar to those in [33, 59, 60] can be easily derived for the
method to be proposed without this full column-rank assumption on Ai’s. More-
over, we use the notation X = X1 ×X2 × · · · × Xm and x = (x1, x2, · · · , xm) ∈ Rn,
and denote by x−i the subvector of x excluding only xi, i.e.,

x−i := (x1, x2, · · · , xi−1, xi+1, · · · , xm) ∈ Rn−ni , i = 1, · · · ,m.
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Note that although our discussion focuses on the case of (1.1) with vector variables,
our analysis can be easily extended to the case with matrix variables (see Section
5.1).

In the literature there are many articles discussing the special case of (1.1) with
m = 2. But, we are also interested in the general case of (1.1) with m ≥ 3;
see e.g. [4, 8, 9, 51, 54] for some applications. If we regard (1.1) as a generic convex
minimization problem with linear constraints, we can apply the classical augmented
Lagrangian method (ALM) in [34, 46] and obtain the iterative scheme

(1.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(xk+1
1 , · · · , xk+1

m ) = argmin
x∈X

{ m∑
i=1

θi(xi)− (λk)T
( m∑

i=1

Aixi − b
)

+β
2

∥∥ m∑
i=1

Aixi − b
∥∥2

}
,

λk+1 = λk − β
( m∑

i=1

Aix
k+1
i − b

)
,

where λk ∈ Rl is the Lagrange multiplier and β > 0 is a penalty parameter. The
scheme (1.2), however, treats the well-structured problem (1.1) as a generic pur-
pose and ignores completely the favorable separable structure in (1.1). Thus, this
straightforward application of ALM to (1.1) is not recommended. On the other
hand, (1.2) provides the possibility of developing customized algorithms with con-
sideration of the specific structure of (1.1). Taking a close look at the minimization
problem in (1.2), we find that the minimization tasks over all variables xi are cou-

pled only by the quadratic term β
2 ‖

∑m
i=1 Aixi − b‖2. Therefore, we can split the

minimization subproblem in (1.2) into m easier and smaller subproblems by apply-
ing a Gauss-Seidel or Jacobian decomposition to this quadratic term. Accordingly,
existing augmented Lagrangian based methods for (1.1) can be classified into two
categories: alternating splitting methods which decompose this quadratic term in a
Gauss-Seidel way and thus the decomposed subproblems should be solved sequen-
tially, and parallel splitting methods which decompose this quadratic term in a
Jacobian way and thus the decomposed subproblems can be solved simultaneously.
With either of these decomposition strategies, the purpose is to exploit each of the
θi’s properties individually and thus to generate subproblems that could be easy
enough to have closed-form solutions if the θi’s are simple. Thus, the common idea
of these two kinds of algorithms for solving (1.1) is combining the generic ALM
with customized decompositions in accordance with the special separable structure
in (1.1).

Among alternating splitting augmented Lagrangian based methods for (1.1),
there are a number of celebrated methods such as the Douglas-Rachford alternat-
ing direction method of multipliers (ADM for short) in [23] (see also [22]), split
linearized Bregman schemes in [11, 12, 26, 36, 44, 58] and the split inexact Uzawa
method in [59, 60]. For example, the ADM scheme for (1.1) with m = 2 is

(1.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

x1∈X1

{
θ1(x1)− (λk)T (A1x1 +A2x

k
2 − b)

+ β
2
‖A1x1 +A2x

k
2 − b‖2

}
,

xk+1
2 = arg min

x2∈X2

{
θ2(x2)− (λk)T (A1x

k+1
1 +A2x2 − b)

+ β
2
‖A1x

k+1
1 +A2x2 − b‖2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

Obviously, the scheme (1.3) is capable of exploiting the properties of θ1 and θ2
individually, making the subproblems much easier and sometimes easy enough to
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have closed-form solutions. We refer to [9] and the references therein for applications
of ADM. Naturally, one may be inclined to extend the scheme (1.3) to the general
case of (1.1) with m ≥ 3, obtaining the scheme

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1
i = arg min

xi∈Xi

{
θi(xi)− (λk)T

( i−1∑
j=1

Ajx
k+1
j +Aixi +

m∑
j=i+1

Ajx
k
j − b

)
+ β

2

∥∥ i−1∑
j=1

Ajx
k+1
j +Aixi +

m∑
j=i+1

Ajx
k
j − b

∥∥2
}
, i = 1, · · · ,m;

λk+1 = λk − β
( m∑

i=1

Aix
k+1
i − b

)
.

Without further assumptions, the convergence of this ADM’s direct extension is still
unproved in the literature even for m = 3 (We refer to [45,53] where the numerical
efficiency of (1.4) has been verified empirically; and [27, 35] where the convergence
of (1.4) is established under further assumptions on θi’s and/or β). This lack of
convergence thus has inspired some alternating splitting augmented Lagrangian
based methods in [31,33] in the prediction-correction framework, where the output
of (1.4) (i.e., the predictor) is corrected by certain correction steps. We also refer
to [32] for a relevant splitting method for (1.1) whose subproblems originated from
not ALM, but the proximal-point algorithm in [41].

On the contrary, parallel splitting augmented Lagrangian based methods for
(1.1) decompose the ALM subproblem in (1.2) in a certain parallel way and these
decomposed subproblems can be solved simultaneously. This parallel consideration
makes particular sense in the era where magnitude of data increases explosively
and intensive computing infrastructure treating mass data (such as parallel and
distributed computing facilities) becomes more and more advanced and popular;
see e.g. [6, 9]. For existing methods in this regard, we refer to [17, 39] for the
case m = 2; [29, 31] for the case m = 3; and [30] for the case with general m.
In particular, the parallel splitting augmented Lagrangian method in [29] is for
monotone variational inequalities with two or three separable operators and it does
not apply to the case where m > 3; and the splitting methods proposed in [30]
additionally require using a certain “asymmetric proximal term” to regularize the
decomposed subproblems.

In this paper, we present a parallel splitting augmented Lagrangian based
method for (1.1) with a general m, where the decomposed subproblems are com-
pletely tailored for simultaneous computation. Compared to those of alternating
splitting augmented Lagrangian based methods such as (1.4), the subproblems at
each iteration of the new algorithm are of the same level of difficulty. In addition to
proposing a new parallel splitting augmented Lagrangian based method for (1.1),
another purpose of this paper is to show that the model (1.1) captures some in-
teresting applications in the area of image processing. When the new method is
applied to solve these applications, the resulting subproblems in (3.1) are all easy
enough to have closed-form solutions or can be easily solved up to high precisions.
Thus, the implementation of the new method is very easy for these imaging appli-
cations. We shall compare the new method numerically with some existing splitting
methods, and report the numerical results.

Finally, we mention some interesting methods for solving some other models
relevant to (1.1). For example, the alternating linearization approach for the sum
of two convex functions without constraints in [24] and for the sum of many convex
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functions without constraints in [25]; the projective splitting method in [20] and the
Jacobian-like method in [52] for finding zero points of the sum of many maximal
monotone operators without constraints; and a parallel splitting method in [3] for
coupled monotone inclusions.

The rest of the paper is organized as follows. Some necessary preliminaries are
provided in Section 2. In Section 3, we present the new method for (1.1), and
its convergence is proved in Section 4. Then, we apply the new method to solve
some imaging applications and report the numerical results in Section 5. Some
conclusions are made in Section 6.

2. Preliminaries

In this section, we summarize some basic concepts and their properties that will
be useful later.

2.1. Some definitions. Let ‖ · ‖p denote the standard definition of lp-norm, and
in particular, let ‖ · ‖ := ‖ · ‖2 denote the Euclidean norm. For a positive definite

matrix H, we denote by ‖ · ‖H the H-norm, i.e., ‖x‖H =
√
xTHx.

Let Ω be a nonempty closed convex subset of Rn. The indicator function of Ω is

χΩ(x) :=

{
0, if x ∈ Ω,
+∞, if x 	∈ Ω.

(2.1)

2.2. Variational reformulation. Since our convergence analysis for the new al-
gorithm is essentially based on some variational properties of (1.1), we derive here
a variational reformulation of (1.1).

For a convex function θ : Rn → R, its subdifferential is the set-valued operator
given by

∂θ : Rn → 2R
n

: x 
→
{
ξ ∈ Rn | (y − x)T ξ + θ(x) ≤ θ(y), ∀y ∈ dom θ

}
.

Let U := X ×Rl and u = (x1, x2, · · · , xm, λ). Then, by invoking its first-order op-
timality condition, (1.1) can be characterized by the following variational problem:
Find u∗ ∈ U and Fi(x

∗
i ) ∈ ∂θi(x

∗
i ) (i = 1, 2, · · · ,m) such that the inequalities

(2.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1 − x∗
1)

T {F1(x
∗
1)−AT

1 λ
∗} ≥ 0,

(x2 − x∗
2)

T {F2(x
∗
2)−AT

2 λ
∗} ≥ 0,

· · · · · ·
(xm − x∗

m)T {Fm(x∗
m)−AT

mλ∗} ≥ 0,
(λ− λ∗)T (

∑m
i=1 Aix

∗
i − b) ≥ 0,

∀ u ∈ U ,

are satisfied. Note that ∂θi is maximal monotone (see [49]). We denote by U∗ the
set of such u∗ that satisfies (2.2). Then, according to [21], U∗ is nonempty under
the aforementioned nonempty assumption on the solution set of (1.1).

3. The new method

In this section, we present a new parallel splitting augmented Lagrangian based
method for (1.1) and prove some relevant properties.

Algorithm 3.1 (An augmented Lagrangian based parallel splitting
(ALBPS) method for (1.1)).

Step 0. Given γ ∈ (0, 2), a symmetric positive definite matrix H ∈ Rl×l, ε > 0 and
the initial iterate (x0, λ0) ∈ X ×Rl chosen arbitrarily. Set k := 0.



AN AUGMENTED LAGRANGIAN BASED PARALLEL SPLITTING METHOD 2267

Step 1. The parallel splitting augmented Lagrangian step: solving the following
convex programs for i = 1, · · · ,m (possibly in parallel),

x̃k
i = arg min

xi∈Xi

{
θi(xi)− (λk)T pi(xi, x

k
−i) +

1
2‖pi(xi, x

k
−i)‖2H

}
,(3.1)

where pi : Rni ×R(n−ni) → Rl is defined as

pi(xi, x−i) :=
i−1∑
j=1

Ajxj +Aixi +
m∑

j=i+1

Ajxj − b.(3.2)

Step 2. The Lagrange multiplier update:

λ̃k = λk −H
( m∑

i=1

Aix̃
k
i − b

)
.(3.3)

Step 3. Convex combination step to generate the new iterate

uk+1 = uk − γαk(u
k − ũk),(3.4)

where

αk :=
ϕ(xk, x̃k)

ψ(xk, x̃k)
,(3.5)

ϕ(xk, x̃k) :=
m∑
i=1

‖Aix
k
i −Aix̃

k
i ‖2H +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
,(3.6)

ψ(xk, x̃k) := (m+ 1)
( m∑

i=1

‖Aix
k
i −Aix̃

k
i ‖2H

)
+

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
.(3.7)

Step 4. Termination step: If

max
1≤i≤m

max
{
‖Aix

k
i −Aix̃

k
i ‖, ‖pi(x̃k

i , x̃
k
−i)‖

}
< ε,

then terminate the iteration with ũk = (x̃k, λ̃k), where x̃k is an acceptable approx-
imate solution of (1.1). Otherwise, set k := k + 1 and go to Step 1.

Remark 3.1. Unlike (1.4), the x̃k
j ’s (j = 1, · · · , i − 1) are not required by the

x̃k
i -subproblem in (3.1). Thus, these x̃k

i -subproblems are fully eligible for parallel
computation. This treatment is particularly preferable for the cases where m is
large and advanced parallel computing infrastructure is available.

Remark 3.2. In the convex combination step (3.4), αk can be viewed as the step
size along the direction −(uk − ũk) and the strategy (3.5) for determining αk will
be delineated later. Moreover, the parameter γ in the convex combination step
(3.4) can be regarded as a relaxation factor which is beneficial for accelerating
convergence empirically. The reason for restricting it to (0, 2) will become clear in
Lemma 4.3.

Remark 3.3. According to the optimality condition of the ith subproblem in (3.1),
there exist x̃k

i ∈ Xi and Gi(x̃
k
i ) ∈ ∂θi(x̃

k
i ) such that

(3.8) (x′
i − x̃k

i )
T
{
Gi(x̃

k
i )−AT

i [λ
k −Hpi(x̃

k
i , x

k
−i)]

}
≥ 0, ∀x′

i ∈ Xi.

The following lemma verifies that the stopping criterion used in Algorithm 3.1
is reasonable.

Lemma 3.1. If pi(x̃
k
i , x̃

k
−i) = 0 and Aix

k
i = Aix̃

k
i (i = 1, · · · ,m), then (x̃k, λ̃k) is

a solution of (2.2).
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Proof. From the definition of pi(xi, x−i) in (3.2), the assumption p(x̃k
i , x̃

k
−i) = 0

means that

(3.9)
m∑
i=1

Aix̃
k
i = b.

Thus, (3.2) and (3.8) together imply that for any i = 1, · · · ,m, there existsGi(x̃
k
i ) ∈

∂θi(x̃
k
i ) such that

(3.10) (x′
i − x̃k

i )
T
{
Gi(x̃

k
i )− AT

i λ̃
k +

∑
j �=i

AT
i HAj(x

k
j − x̃k

j )
}
≥ 0, ∀x′

i ∈ Xi.

When Aix
k
i = Aix̃

k
i , i = 1, · · · ,m, we have

(3.11) (x′
i − x̃k

i )
T {Gi(x̃

k
i )−AT

i λ̃
k} ≥ 0, ∀x′

i ∈ Xi, i = 1, · · · ,m.

Recall the variational characterization (2.2). Then, (3.9) and (3.11) imply that

(x̃k, λ̃k) is a solution of (2.2). �

From the above lemma, it is easy to see that both ϕ(xk, x̃k) defined in (3.6)
and ψ(xk, x̃k) defined in (3.7) are positive whenever the current iterate is not a
solution of (2.2). Consequently, the step size αk defined in (3.5) is also positive for
all iterations generated by Algorithm 3.1. In the following lemma, we show that the
sequence {αk} is uniformly bounded away from zero, i.e., there exists a constant
αmin > 0, such that αk ≥ αmin for all k ≥ 0.

Lemma 3.2. Let {αk} be the sequence generated by Algorithm 3.1. Then, there
exists a positive constant αmin > 0, such that αk ≥ αmin for all k ≥ 0.

Proof. First, for arbitrary vectors u and v in Rn, it holds that

‖u+ v‖2H ≤ 2(‖u‖2H + ‖v‖2H).

Second, for given vectors ai ∈ Rl (i = 1, · · · ,m), let a ∈ Rml be the stacking
vector (aT1 , a

T
2 , · · · , aTm)T and M := [Il, Il, · · · , Il] ∈ Rl×ml where Il ∈ Rl×l denote

the identity matrix. Then, we have∥∥∥∥∥
m∑
i=1

ai

∥∥∥∥∥
2

= ‖Ma‖2 = aTMTMa ≤ λmax(M
TM)

(
m∑
i=1

‖ai‖2
)

(3.12)

≤ m

(
m∑
i=1

‖ai‖2
)
.

Then, setting u :=
∑m

i=1 Aix
k
i − b and v := −

∑m
i=1(Aix

k
i −Aix̃

k
i ), we derive that

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
=

∥∥∥( m∑
i=1

Aix
k
i − b

)
−

m∑
i=1

(Aix
k
i −Aix̃

k
i )

∥∥∥2

H

≤ 2
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
+ 2

∥∥∥ m∑
i=1

(Aix
k
i −Aix̃

k
i )

∥∥∥2

H

≤ 2
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
+ 2m

m∑
i=1

‖Aix
k
i −Aix̃

k
i ‖2H .
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It then follows that

ψ(xk, x̃k) = (m+ 1)
( m∑

i=1

‖Aix
k
i −Aix̃

k
i ‖2H

)
+

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H

≤ (3m+ 1)
( m∑

i=1

‖Aix
k
i −Aix̃

k
i ‖2H

)
+ 2

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H

≤ (3m+ 1)
[ m∑

i=1

‖Aix
k
i −Aix̃

k
i ‖2H +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H

]
≡ (3m+ 1)ϕ(xk, x̃k).

Consequently,

αk =
ϕ(xk, x̃k)

ψ(xk, x̃k)
≥ 1

3m+ 1
=: αmin,

which completes the proof. �

4. Convergence analysis

In this section, we prove the global convergence for the proposed algorithm.
Note that the sequences generated by the splitting type methods in [29, 31, 32] are
contractive with respect to their corresponding solution sets. Thus, the convergence
of these methods can be easily established by following the analytic framework of
contractive type methods (see [7] for details). For the sequence {uk} generated
by Algorithm 3.1, it is not necessarily contractive with respect to U∗. Hence,
standard techniques of contractive type methods are not applicable for establishing
the convergence of the sequence {uk}. Our proof framework is as follows:

1) Find a lower bound of the progress made by the new iterate on the proximity
to the solution set of (2.2); this is achieved by Lemma 4.2.

2) Prove the monotonicity and boundedness of the sequence
{
‖uk − u∗‖2M +

‖
∑m

i=1 Aix
k
i − b‖2H

}
, where M is a positive definite matrix to be defined

later (see (4.5)), and this is completed by Lemma 4.3.
3) Establish the convergence in Theorem 4.1.

We first prove an important inequality which is used in our analysis.

Lemma 4.1. Let (x∗, λ∗) be an arbitrary solution of (2.2). For the iterates gen-
erated by Algorithm 3.1, we have

(λk − λ∗)T
( m∑

i=1

Aix̃
k
i − b

)
≥

( m∑
i=1

(Aix
k
i −Aix̃

k
i )

)T

H
( m∑

i=1

Aix̃
k
i − b

)

+
∥∥∥ m∑

i=1

Aix̃
k
i − b

∥∥∥2

H
+

m∑
i=1

(Aix̃
k
i − Aix

∗
i )

TH(Aix̃
k
i −Aix

k
i ).(4.1)

Proof. Since (x∗, λ∗) is a solution of (2.2) and x̃k ∈ X , there exists Fi(x
∗
i ) ∈ ∂θi(x

∗
i )

such that

(x̃k
i − x∗

i )
T (Fi(x

∗
i )−AT

i λ
∗) ≥ 0, i = 1, · · · ,m.

On the other hand, since x̃k
i is a solution of (3.8) and x∗

i ∈ Xi, there exists Gi(x̃
k
i ) ∈

∂θi(x̃
k
i ) such that

(x∗
i − x̃k

i )
T
{
Gi(x̃

k
i )−AT

i [λ
k −Hp(x̃k

i , x
k
−i)]

}
≥ 0, i = 1, · · · ,m.
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Adding the above two inequalities, we obtain that for any i = 1, · · · ,m,

(x̃k
i − x∗

i )
T
{
Fi(x

∗
i )−Gi(x̃

k
i )−AT

i (λ
∗ − λk)−AT

i Hp(x̃k
i , x

k
−i)

}
≥ 0.(4.2)

Recall that the subdifferential mapping ∂θi is maximal monotone. Since Fi(x
∗
i ) ∈

∂θi(x
∗
i ) and Gi(x̃

k
i ) ∈ ∂θi(x̃

k
i ), we have

(x̃k
i − x∗

i )
T (Gi(x̃

k
i )− Fi(x

∗
i )) ≥ 0.

By rearranging the terms of (4.2) and using (3.2), we derive that

(λk − λ∗)TAi(x̃
k
i − x∗

i ) ≥ (x̃k
i − x∗

i )
TAT

i Hpi(x̃
k
i , x

k
−i)

= (Aix̃
k
i −Aix

∗
i )

TH
[ m∑
j=1

(
Ajx

k
j −Ajx

∗
j

)
+Ai

(
x̃k
i − xk

i

) ]

= (Aix̃
k
i −Aix

∗
i )

TH
[( m∑

j=1

Ajx
k
j − b

)
+Ai

(
x̃k
i − xk

i

) ]
,(4.3)

where the first equality follows from the identity

pi(x̃
k
i , x

k
−i) =

m∑
j=1

Ajx
k
j + Ai

(
x̃k
i − xk

i

)
− b,

and the last one is due to
m∑
j=1

Ajx
∗
j = b.(4.4)

Summing both sides of (4.3) for all i and using (4.4), we get that

(λk − λ∗)T
( m∑

i=1

Aix̃
k
i − b

)
≥

( m∑
i=1

Aix̃
k
i − b

)T

H
( m∑

i=1

Aix
k
i − b

)

+

m∑
i=1

(Aix̃
k
i −Aix

∗
i )

TH(Aix̃
k
i −Aix

k
i ).

This completes the proof. �

Hereafter, we define an auxiliary block-diagonal matrix M

M =

⎛
⎜⎜⎜⎝

AT
1 HA1 · · · 0 0
...

. . .
...

...
0 · · · AT

mHAm 0
0 · · · 0 H−1

⎞
⎟⎟⎟⎠ .(4.5)

Under the assumption that all Ai’s are full column-rank, the matrix M defined in
(4.5) is positive definite, and thus we have

‖u‖2M := uTMu = ‖A1x1‖2H + ‖A2x2‖2H + · · ·+ ‖Amxm‖2H + ‖λ‖2H−1 .

Our next step towards the convergence is to find a lower bound of the quantity
‖uk −u∗‖2M −‖uk+1−u∗‖2M , which measures the progress made by the new iterate
uk+1 on the proximity to the solution set of (2.2). With the result of Lemma 4.1,
we achieve this goal in the following lemma.
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Lemma 4.2. Let (x∗, λ∗) be an arbitrary solution of (2.2). For the iterates gen-
erated by Algorithm 3.1, we have

‖uk − u∗‖2M − ‖uk+1 − u∗‖2M(4.6)

≥ 2γαk

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H − γ2α2
k

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H

+ 2γαk

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H

− γ2α2
k

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
− 2γαk

( m∑
i=1

Ai(x
k
i − x̃k

i )
)T

H
( m∑

i=1

Aix
k
i − b

)
.

Proof. It follows from (3.4) and (4.1) that
(4.7)

‖λk+1 − λ∗‖2H−1 = ‖λk − λ∗ − γαk(λ
k − λ̃k)‖2H−1

= ‖λk − λ∗‖2H−1 − 2γαk(λ
k − λ∗)TH−1(λk − λ̃k) + γ2α2

k‖λk − λ̃k‖2H−1

= ‖λk − λ∗‖2H−1 − 2γαk(λ
k − λ∗)T

( m∑
i=1

Aix̃
k
i − b

)
+ γ2α2

k‖λk − λ̃k‖2H−1

≤ ‖λk − λ∗‖2H−1 − 2γαk

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H

− 2γαk

( m∑
i=1

(Aix
k
i −Aix̃

k
i )

)T

H
( m∑

i=1

Aix̃
k
i − b

)

− 2γαk

m∑
i=1

(Aix̃
k
i −Aix

∗
i )

TH(Aix̃
k
i −Aix

k
i ) + γ2α2

k

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
.

On the other hand, for any i, it follows from (3.4) that

‖Ai(x
k+1
i − x∗

i )‖2H = ‖Ai[x
k
i − x∗

i − γαk(x
k
i − x̃k

i )]‖2H
= ‖Ai(x

k
i − x∗

i )‖2H − 2γαk(Aix
k
i −Aix

∗
i )

TH(Aix
k
i −Aix̃

k
i )

+ γ2α2
k‖Ai(x

k
i − x̃k

i )‖2H .

Summing up for all i, we obtain
m∑
i=1

‖Ai(x
k+1
i − x∗

i )‖2H

=
m∑
i=1

‖Ai(x
k
i − x∗

i )‖2H − 2γαk

m∑
i=1

(Aix
k
i −Aix

∗
i )

TH(Aix
k
i −Aix̃

k
i )

+ γ2α2
k

m∑
i=1

‖Ai(x
k
i − x̃k

i )‖2H

=
m∑
i=1

‖Ai(x
k
i − x∗

i )‖2H − 2γαk

m∑
i=1

(Aix̃
k
i −Aix

∗
i )

TH(Aix
k
i −Aix̃

k
i )(4.8)

− 2γαk

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H + γ2α2
k

m∑
i=1

‖Ai(x
k
i − x̃k

i )‖2H .
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Combining (4.7) and (4.8), we have

‖λk+1 − λ∗‖2H−1 +
m∑
i=1

‖Ai(x
k+1
i − x∗

i )‖2H(4.9)

≤ ‖λk − λ∗‖2H−1 +
m∑
i=1

‖Ai(x
k
i − x∗

i )‖2H − 2γαk

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H

+ γ2α2
k

m∑
i=1

‖Ai(x
k
i − x̃k

i )‖2H − 2γαk

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H

+ γ2α2
k

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
− 2γαk

( m∑
i=1

(Aix
k
i −Aix̃

k
i )

)T

H
( m∑

i=1

Aix̃
k
i − b

)
.

Inserting the equality∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H
+

( m∑
i=1

(Aix
k
j −Aix̃

k
i )

)T

H
( m∑

i=1

Aix̃
k
i − b

)

=
( m∑

i=1

Aix
k
i − b

)T

H
( m∑

i=1

Aix̃
k
i − b

)

=
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
+

( m∑
i=1

Aix
k
i − b

)T

H
( m∑

i=1

(Aix̃
k
i −Aix

k
i

)
,

into (4.9), we obtain (4.6) immediately. This completes the proof. �

Then, with Lemma 4.2, we can prove that the monotonicity and boundedness
of the sequence

{
‖uk − u∗‖2M + ‖

∑m
i=1 Aix

k
i − b‖2H

}
, from which we can easily

establish the convergence of the proposed Algorithm 3.1.

Lemma 4.3. Let (x∗, λ∗) be an arbitrary solution of (2.2). For the iterates gen-
erated by Algorithm 3.1, we have

‖uk+1 − u∗‖2M +
∥∥∥ m∑

i=1

Aix
k+1
i − b

∥∥∥2

H
≤ ‖uk − u∗‖2M +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
(4.10)

− γ(2− γ)αkϕ(x
k, x̃k).

Proof. It follows from (3.4) that∥∥∥ m∑
i=1

Aix
k+1
i − b

∥∥∥2

H
=

∥∥∥( m∑
i=1

Aix
k
i − b

)
− γαk

m∑
i=1

(
Aix

k
i − Aix̃

k
i

)∥∥∥2

H

=
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
+ γ2α2

k

∥∥∥ m∑
i=1

(Aix
k
i −Aix̃

k
i )

∥∥∥2

H

− 2γαk

( m∑
i=1

Aix
k
i − b

)T

H
( m∑

i=1

(Aix
k
i −Aix̃

k
i )

)
.

Then, adding the above inequality and (4.6) and using (3.12), we have∥∥∥ m∑
i=1

(Aix
k
i −Aix̃

k
i )

∥∥∥2

H
≤ m

( m∑
i=1

‖Aix
k
i −Aix̃

k
i ‖2H

)
,
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and therefore that

‖uk+1 − u∗‖2M +
∥∥∥ m∑

i=1

Aix
k+1
i − b

∥∥∥2

H

≤ ‖uk − u∗‖2M +
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
− 2γαk

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H

+ γ2α2
k

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H − 2γαk

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
+ γ2α2

k

∥∥∥ m∑
i=1

Aix̃
k
i − b

∥∥∥2

H

+mγ2α2
k

m∑
i=1

‖Ai(x̃
k
i − xk

i )‖2H .

Invoking the definition of αk in (3.5), we prove the assertion immediately. �

With Lemmas 4.1–4.3, we are now ready to establish the convergence for the
proposed Algorithm 3.1, as shown in the next theorem.

Theorem 4.1. The sequence {uk} generated by Algorithm 3.1 converges to a so-
lution of (2.2).

Proof. It follows from Lemma 3.2 and (4.10) that

‖uk+1 − u∗‖2M +
∥∥∥ m∑

i=1

Aix
k+1
i − b

∥∥∥2

H
≤ ‖uk − u∗‖2M +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
(4.11)

− γ(2− γ)αminϕ(x
k, x̃k).

Since ϕ(xk, x̃k) ≥ 0, γ ∈ (0, 2) and αmin > 0, we have

‖uk+1 − u∗‖2M +
∥∥∥ m∑

i=1

Aix
k+1
i − b

∥∥∥2

H
≤ ‖uk − u∗‖2M +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
(4.12)

≤ · · ·

≤ ‖u0 − u∗‖2M +
∥∥∥ m∑

i=1

Aix
0
i − b

∥∥∥2

H
,

which implies the boundedness of the sequence {‖uk+1 − u∗‖2M}. Recall the as-
sumption that Ai’s are all full column-rank and the definition of M in (4.5). Thus,
{uk} is also bounded.

Furthermore, it follows from (4.11) that

γ(2− γ)αmin

∞∑
k=0

ϕ(xk, x̃k)

≤
∞∑
k=0

(
‖uk − u∗‖2M +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
− ‖uk+1 − u∗‖2M −

∥∥∥ m∑
i=1

Aix
k+1
i − b

∥∥∥2

H

)
< +∞,

which means that lim
k→∞

ϕ(xk, x̃k) = 0, or equivalently,

lim
k→∞

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥
H

= 0 and lim
k→∞

‖Aix
k
i −Aix̃

k
i ‖H = 0, i = 1, · · · ,m.(4.13)
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Since {uk} is bounded, it has at least one cluster point. Let ū be a cluster point
of {uk} and let {ukj} be the corresponding subsequence converging to ū. Note that
(3.3) can be written as

λ̃k = λk −Hpi(x̃
k
i , x̃

k
−i).(4.14)

Then, by taking the limit along this subsequence in (3.10) and (4.14), and using
(4.13), it is easy to derive that there exists Gi(x̄

k
i ) ∈ ∂θi(x̄

k
i ) such that

(x′
i − x̄i)

T
{
Gi(x̄

k
i )−AT

i λ̄
k
}
≥ 0, ∀x′

i ∈ Ui and
m∑
i=1

Aix̄
k
i − b = 0.

Hence, ū is a solution of (2.2).
Since (4.12) holds for any solution of (2.2), we can set u∗ = ū in (4.12) and

obtain

‖uk+1 − ū‖2M +
∥∥∥ m∑

i=1

Aix
k+1
i − b

∥∥∥2

H
≤ ‖uk − ū‖2M +

∥∥∥ m∑
i=1

Aix
k
i − b

∥∥∥2

H
∀ k.

Therefore, we have

‖uk+1 − ū‖2M ≤ ‖uk − ū‖2M +
∥∥∥ m∑

i=1

Aix
k
i − b

∥∥∥2

H
∀ k.

Recall (4.13). Thus, when k is sufficiently large, we have

‖uk+1 − ū‖2M ≤ ‖uk − ū‖2M ,

which means that {uk} has a unique cluster point. Hence, the sequence {uk}
converges to ū, a solution of (2.2). �

5. Application to image processing

In this section, we show that the abstract model (1.1) captures some important
concrete applications in image processing; and applying the proposed method to
these applications is efficient because the resulting subproblems are all easy enough
to have closed-form solutions or can be easily solved up to high precisions. Numer-
ical comparisons with some other splitting methods and some benchmark methods
in the literature are reported.

Throughout we choose the matrix H required by the proposed method as a
diagonal matrix where the penalty parameter with respect to the variable xi is βi.
That is,

(5.1) H =

⎛
⎜⎜⎜⎝

β1In1×n1
0 . . . 0

0 β2In2×n2
. . . 0

...
...

. . .
...

0 0 . . . βmInm×nm

⎞
⎟⎟⎟⎠ ,

where βi > 0 and Ini×ni
is the identity matrix in Rni×ni for i = 1, · · · ,m.

Since our numerical experiments are conducted in an ordinary personal computer
without parallel processors, the resulting subproblems (3.1) can only be solved in the
sequential order. For this reason, as in [25], we count only the most time-demanding
subproblem among all the subproblems in (3.1) when we count the computing time
for the proposed method. All the codes for implementing the proposed method
were written by Matlab 7.1 and all the numerical experiments were performed
on a personal Lenovo laptop computer with Intel(R) Core (TM) 2.30GHZ and 8G
memory.
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5.1. Background extraction from surveillance video with missing and
noisy data. We first test the problem of extracting background from surveillance
video with missing and noisy data, whose mathematical model turns out to be an
application of the model (1.1) but with matrix variables. More specifically, this
application can be captured by the model of robust principle component analysis
(RPCA) with incomplete and noisy observations proposed in [53]:

min {‖X‖∗ + τ‖Y ‖1 | ‖PΩ(D −X − Y )‖F ≤ σ} ,(5.2)

where D ∈ Rl×n is a given matrix (data); ‖ ·‖∗ is the nuclear norm which is defined
as the sum of all singular values and it is used to induce the low-rank component
X of D; ‖ · ‖1 denotes the sum of absolute values of all entries (an extension of
the l1-norm for vectors) and it is used to induce the sparse component Y of D;
τ > 0 is a constant balancing of the low-rank and sparsity; Ω is a subset of the
index set of entries {1, 2, · · · , l}×{1, 2, · · · , n} which denotes the observable entries
{Dij , (i, j) ∈ Ω}; the operator PΩ : Rl×n → Rl×n summarizes the incomplete
observation information and it is the orthogonal projection onto the span of matrices
vanishing outside of Ω so that the ijth entry of PΩ(X) is Xij if (i, j) ∈ Ω and zero
otherwise, i.e.,

[PΩ(X)]ij =

{
Xij , if (i, j) ∈ Ω,
0, if (i, j) 	∈ Ω,

1 ≤ i ≤ l, 1 ≤ j ≤ n;

σ > 0 is the magnitude of Gaussian noise corrupting the observed data (thus the
observed data may be corrupted by Gaussian noise); and ‖ · ‖F is the standard
Frobenius norm. We refer to [53] for more details of the model (5.2), and [13, 16]
for the original RPCA model where σ = 0 and Ω = {1, 2, · · · , l} × {1, 2, · · · , n}.

Let M := PΩ(D). Then (5.2) can be equivalently expressed as

min {‖X‖∗ + τ‖Y ‖1 | ‖PΩ(M −X − Y )‖F ≤ σ} ,(5.3)

or its unconstrained version

min ‖X‖∗ + τ‖Y ‖1 + 1
2μ ‖PΩ(M −X − Y )‖2F ,(5.4)

where μ > 0 is a penalty parameter. The equivalence between (5.3) and (5.4) can
be found in [49]. Further, introducing an auxiliary variable Z ∈ Rl×n, we see that
(5.4) can be reformulated as

min {‖X‖∗ + τ‖Y ‖1 + 1
2μ‖PΩ(Z)‖2F | X + Y + Z = M}.(5.5)

Therefore, (5.5) is a special case of (1.1) with matrix variables and the following
specifications:

x = (x1, x2, x3) := (X,Y, Z), Ai := I (i = 1, 2, 3), b = M

and

θ1(X) := ‖X‖∗, θ2(Y ) := τ‖Y ‖1, θ3(Z) := 1
2μ‖PΩ(Z)‖2F .

To see how the model (5.2) captures the application of extracting background
from surveillance video with missing and noisy data, we refer to [13]. Here we
provide some preliminary background for completeness. More specifically, the video
consists of a sequence of frames, and mathematically it is a natural candidate
for low-rank modeling due to the low correlation between frames. Each frame
consists of foreground and background. Since the background of the video needs
to be flexible enough to accommodate changes in the scene, it is natural to model
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it as approximately low rank. Foreground objects, such as cars or pedestrians,
occupy a relatively small fraction of the image pixels and hence can be treated
as sparse errors. One basic imaging task in video surveillance is to separate the
background from the foreground. However, in real application, the video may
include missing and noisy pixels. Thus only a fraction of noise entries can be
obtained. A natural question is: can we extract the background, i.e., the low-rank
part, from the foreground even with missing and noisy observations? To relate this
application to (5.2), D is the matrix representation of a sequence of video frames
where each column represents a frame; the index set Ω (assumed known) indicates
the locations of observed pixels, i.e., pixels outside Ω are missing; X represents
the background while Y denotes the foreground; and σ denotes the magnitude of
Gaussian noise of corrupted pixels. We assume that a video consists of n frames
and each frame is expressed by an l1 × l2 matrix. Stacking each frame as an l-
dimensional vector (where l = l1 · l2), we realign a sequence of frames as a matrix
in Rl×n.

Now, we analyze the resulting subproblems (3.1) when the proposed method
is applied to solve (5.5). Analogous to the analysis in [53], all the resulting sub-
problems in (3.1) are actually simple enough to have closed-form solutions. Let us
review two operators for the purpose of presenting their closed-form solutions. Let
c > 0 be a constant and T ∈ Rl×n a matrix. Then, the operator S : Rl×n → Rl×n

defined by

(Sc(T ))ij := sign(Tij) ·max {|Tij | − c, 0} , 1 ≤ i ≤ l, 1 ≤ j ≤ n, ∀ T ∈ Rl×n,

is called the shrinkage operator (see [10]); and the operator D : Rl×n → Rl×n is
defined by

Dc(T ) := Udiag (Sc(Σ))V
T , ∀ T ∈ Rl×n,

where UΣV T is the singular value decomposition (SVD) of T . Now, it is easy to
verify that the resulting subproblems in (3.1) for the particular application (5.5)

have the following solutions. (X̃k, Ỹ k, Z̃k) are given by

X̃k = D 1
β

(
Λk/β +M − Zk − Y k

)
,

Ỹ k = S τ
β

(
Λk/β +M − X̃k − Zk

)
,

Z̃k
ij =

{
Nk

ij , if (i, j) 	∈ Ω,
μβNk

ij/(1 + μβ), if (i, j) ∈ Ω,

where Λk is the Lagrange multiplier at the kth iteration and Nk = Λk/β + M −
X̃k − Ỹ k.

We compare the proposed method (denoted by ALBPS) with: 1) the straightfor-
ward extension of ADM (1.4) without proved convergence (EADM for short); 2) the
ADM-based prediction-correction method in [31] (ADBC) with proved convergence;
3) the parallel splitting augmented Lagrangian method in [29] (PSALM).

We test a video taken in the hall of an airport1, which consists of 200 grayscale
frames in the size of 144 × 176. Hence, the video can be realigned as a matrix
D ∈ R25,344×200 and each column of D represents a frame of the video. The index
set Ω representing the missing information in D is determined randomly with a

certain sample ratio which is measured by sr= 100|Ω|
ln % (|Ω| is the cardinality of Ω).

1Available at http://perception.i2r.a-star.edu.sg/bk model/bk index.html.
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Table 5.1. Numerical results for background extraction on
surveillance video.

Iter CPU rank(X̂) ‖Ŷ ‖0
EADM 14 21.53 8 268321
PSALM 36 40.86 11 405537
ADBC 33 98.86 10 346701
ALBPS 24 20.03 9 271264

Here, we choose sr=80%. That is, there is 20% missing information in the tested
video. We add additive Gaussian noise with a 10−3 variance and zero-mean value
to each frame of the video. In Figure 5.1, we display some original and corrupted
frames of this video.

Recall that theoretically the rank of the low-rank component in (5.2) should
be 1. Hence, we apply certain strategies of partial SVD for the X-subproblem with
the purpose of avoiding the full SVD which is computationally very demanding. In
our experiments, we apply the PROPACK in [40] to implement partial SVD. As in
[10, 24, 53], the strategy for determining the number of singular values to compute
is as follows: setting sv0 = 100 and update svk via

svk+1 =

{
svpk + 1, if svpk < svk,
min{svpk + round(0.04d), d}, if svpk = svk,

(5.6)

where d = min{l, n} and svpk is the number of singular values that are larger than
the given threshold 1/β.

The parameters in model (5.5) are fixed as τ = 1/
√
l and μ = 10−2. For the

parameters of the methods to be compared, we take β = 0.1|Ω|/‖M‖1 for ADBC;
β = 0.005|Ω|/‖M‖1 for EADM, PSALM and ALBPS. The relaxed factor γ = 0.75
for ADBC and γ = 1.0 for PSALM and ALBPS. All these values are tuned via some
numerical experiments and it seems that these values are good enough to lead to
their own best numerical performance for the methods to be compared. All the
methods start their iterations with zero, and all take the stopping criterion as

max
{

‖Xk−X̃k‖F

1+‖Xk‖F
, ‖Y k−Ỹ k‖F

1+‖Y k‖F

}
< 3× 10−2.

In Table 5.1, we report the iterations (‘Iter’), computing time in seconds (‘CPU’),

rank of recovered low-rank component (‘rank(X̂)’), sparsity of the sparse compo-

nent (‘‖Ŷ ‖0’) for the tested methods. Data in this table shows that the proposed
ALBPS with proved convergence performs very competitively with the extended
ADM scheme (1.4) whose convergence is still unclear, and they both outperform
significantly ADBC and PSALM.

5.2. Image restoration for mixed noise removal. In this subsection, we show
that the model (1.1) also captures the application of restoring an image corrupted
by mixed noise.

Let w ∈ Rn denote a two-dimensional image and let n = n1 · n2 be the total
number of pixels, where n1 and n2 denote the numbers of pixels in the horizontal
and vertical directions, respectively. Let ∂1 : Rn → Rn and ∂2 : Rn → Rn be
the finite-difference operators in the horizontal and vertical directions, respectively,
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Figure 5.1. The 10th, 100th and 200th frames of the original
video (top row) and the corrupted video (bottom row).

and let ∇ := (∂1, ∂2) denote the gradient operator.

‖|y|‖p := ‖(|y|)‖p, ∀y = (y1, y2) ∈ Rn ×Rn,

where |y| :=
√
y21 + y22 ∈ Rn is understood in the componentwise sense: (|y|)i :=√

(y1)2i + (y2)2i ; see e.g., [47, Chapter 1].
To remove the mixture of impulsive and Gaussian noise, some two-phase methods

were proposed in the literature, e.g., [10,37]. We concentrate on the model in [37]:

min
w,y

τ‖|∇w|‖1 + ρ
2‖w − y‖2 + ‖PA(Gy − w0)‖pp, p = 1, 2,(5.7)

where τ and ρ are positive parameters; A represents the set of pixels which are
corrupted by the impulsive noise (all the pixels outside A are corrupted by the
Gaussian noise); PA is the characteristic function of the set A, i.e., PA(w) has the
value 1 for any pixel within A and 0 for any pixel outside A; G is a linear transform
(e.g., a convolution by a blurring kernel); w0 is the corrupted image by the mixed
noise. As proposed in [37], by implementing the adaptive median filter (AMF), the
set A can be identified and most of the impulsive noise within A can be removed.
The variable y in (5.7) thus can be understood as the restored image without the
impulsive noise after the implementation of AMF.

We show that the model (5.7) can be reformulated as a special case of (1.1) with
m = 3. For succinctness, we focus only on the case of p = 1. By introducing the
auxiliary variables u, v and z, we can reformulate (5.7) as

(5.8) min
{
τ‖|u|‖1 + ρ

2‖v‖2 + ‖PA(z)‖1 | u = ∇w, v = w − y, z = Gy − w0
}
.

Therefore, the model (5.8) is a special case of (1.1) where x = (x1, x2, x3) :=
(w, y, (u, v, z)),

A1 :=

⎛
⎝ ∇

I
0

⎞
⎠ , A2 :=

⎛
⎝ 0

−I
G

⎞
⎠ , A3 :=

⎛
⎝ −I 0 0

0 −I 0
0 0 −I

⎞
⎠ , b :=

⎛
⎝ 0

0
w0

⎞
⎠

and

θ1(w) := 0, θ2(y) := 0, θ3(u, v, z) := τ‖|u|‖1 + ρ
2‖v‖2 + ‖PA(z)‖1.
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Recall that we take H as (5.1). Below we show that all the resulting subproblems
have closed-form solutions when the proposed method is applied to solve (5.8).

• The first subproblem in (3.1), i.e., the w-subproblem for (5.8), can be for-
mulated as

w̃k = argmin
w

{∥∥∇w − uk − λk
1

β1

∥∥2
+

∥∥w − yk − vk − λk
2

β2

∥∥2
}

⇔ (β1∇T∇+ β2I)w̃
k = λk

2 + β2(y
k + vk) +∇T (λk

1 + β1u
k).

In particular, the operator ∇ can be diagonalized by the Fast Fourier
transform (FFT) when the periodic boundary condition is used, i.e., ∇ =
F−1DF , where D is diagonal matrix with positive diagonal entries and F
is the FFT operator [28]. Thus, the above system of equations reduces to

(β1D
TD + β2I) ˆ̃w

k = λ̂k
2 + β2(ŷ

k + v̂k) +DT (λ̂k
1 + β1û

k),

where ûk := Fuk for any vector u. Thus, we can get ˆ̃wk easily by a FFT
and then obtain w̃k by an inverse FFT.

• The second subproblem in (3.1), i.e., the y-subproblem for (5.8), can be
written as

ỹk = argmin
y

{∥∥wk − y − vk − λk
2

β2

∥∥2
+

∥∥Gy − zk − w0 − λk
3

β3

∥∥2
}

⇔ (β2I + β3G
TG)ỹk = GT [λk

3 + β3(z
k + w0)]− λk

2 + β2(w
k − vk).

When G is a spatially-invariant convolution operator and the periodic
boundary conditions are used, it can also be diagonalized by the FFT,
i.e., G = F−1DGF , where DG is diagonal matrix with positive diagonal
entries. Thus, its solution can also be obtained easily by utilizing FFT.

• The third subproblem in (3.1), i.e., the (u, v, z)-subproblem for (5.8), is

(ũk, ṽk, z̃k) = arg min
u,v,z

{
τ‖|u|‖1 +

ρ

2
‖v‖2 + ‖PA(z)‖1 +

β1

2

∥∥∇wk − u− λk
1

β1

∥∥2

+
β2

2

∥∥wk − yk − v − λk
2

β2

∥∥2
+

β3

2

∥∥Gyk − z − w0 − λk
3

β3

∥∥2
}
,

which is a separable problem. Thus, the solution (ũk, ṽk, z̃k) can be solved
separably as follows:

– ũk=shrink τ
β1

(
∇wk−λk

1/β1

)
, where shrinkc(v) denotes the well known

shrinkage operator (see [18, 56]). Specifically,

(5.9) shrinkc(v) := v −min{c, |v|} v

|v| , ∀c > 0, v ∈ Rn ×Rn,

and ( v
|v| )i should be taken as 0 if |v|i = 0.

– ṽk =
[
β2(w

k − yk)− λk
2

]
/(ρ+ β2).

– z̃k is given by

z̃k = argmin
z

{
‖PA(z)‖1 +

β3

2

∥∥Gyk − z − w0 − λk
3

β3

∥∥2
}
,

which implies that

(z̃k)i =

{ [
shrink 1

β3

(
Gyk − w0 − λk

3/β3

)]
i
, if i ∈ A,[

Gyk − w0 − λk
3/β3

]
i
, if i 	∈ A.
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Figure 5.2. Original and degraded images for mixed noise re-
moval. From left to right: original Cameraman (256 × 256), de-
graded Cameraman, original House (256 × 256) and degraded
House.

For this application, we test the images Cameraman.png (256 × 256) and
House.png (256 × 256). Both of these images are corrupted by out-of-focus blur
with radius 3. The blurred images are further corrupted by both impulsive noise
with intensity 0.7 and zero-mean Gaussian noise with variance 0.01. The original
and degraded images are shown in Figure 5.2. As mentioned, we first apply AMF
[38] to identify the set A and remove the impulsive noise within that set. The
window size for AMF is taken as 19, as suggested in [10, 37].

For numerical comparison, besides ADBC and PSALM, we also compare ALBPS
with the method in [37] (denoted by AMA). For our numerical experiments, we take
τ = 0.02 and ρ = 1 in (5.7). For the involved parameters, β1 = β2 = 0.1, β3 = 1 for
ADBC, PSALM and ALBPS; γ = 0.6 for ADBC, γ = 1.6 for PSALM and ALBPS.
Recall that AMA applies the method in [14] to solve the w-subproblem and the
preconditioned conjugate gradient method (PCG) for the y-subproblem. We use a
maximum of 20 iterations for the w-subproblem and a tolerance of 10−7 for the y-
subproblem. All the tested methods start their iterations from the degraded images.
In the literature, the signal-to-noise ratio (SNR) in the unit of dB is usually used
to measure the quality of restored images, and is defined by

SNR = 10 log10
‖w‖2

‖w̄ − w‖2 ,

where w̄ is the restored image and w is the original one (see e.g. [47, Appendix 3]).
Thus, the initial SNR value is 0.99dB for the Cameraman image and 2.13dB for
the House image.

For the tested methods, in Figure 5.3 we plot the evolutions of SNR value with
respect to the computing time in seconds for the tested images. According to these
curves, ALBPS is capable of restoring images with stable SNR values different than
those restored by AMA within a shorter time. Moreover, since we have observed
through our experiments that all of the tested methods turn out to be static in
improving SNR values further after at most 80 iterations, we show the filtered
image by AMF and the restored images by ALBPS after 100 iterations in Figure
5.4.

5.3. TV-lp image restoration problem. In this subsection, we concentrate on
the TV-lp image restoration problem and we discuss the cases of p = 1, 2,∞.

Our purpose is to show that even for a particular problem which can be refor-
mulated as (1.1) with either m ≥ 3 or m = 2, applying the proposed method to the
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Figure 5.3. Evolutions of SNR w.r.t. computing time for mixed
noise removal. Left: Cameraman; Right: House.

Figure 5.4. Filtered images by AMF and restored images via
mixed noise removal by ALBPS.

reformulation with m ≥ 3 is still very competitive with, or even more efficient than,
the application of ADM (1.3) to the reformulation with m = 2. Therefore, together
with the tested experiments for irreducible cases of (1.1) with m ≥ 3 (where the
ADM (1.3) is not applicable), efficiency of the proposed method is further illus-
trated.

We briefly review the background of the digital image restoration problem, and
we refer to [28, 47] for more details. The digital image restoration problem plays
a fundamental role in areas as varied as medical and astronomical imaging, film
restoration, image and video coding. The image restoration problem is used to
restore the original image w ∈ Rn from its degraded image, denoted by w0 ∈ Rn

and the mathematical model is

w0 = Gw + n,(5.10)

where n ∈ Rn is an additive noise corrupting the original image w and G is a
convolution by a blurring kernel. Since the model (5.10) is usually ill-posed, certain
regularization techniques are required. One of the most popular techniques is total
variation (TV) regularization proposed in the seminal work [50], mainly because
of its capability of preserving the edges of images. The TV-lp image restoration
problem is

min
{
‖|∇w|‖1 | ‖Gw − w0‖p ≤ σ

}
,(5.11)

where σ > 0 is a constant measuring the noise level. Typically, the scalar σ is
chosen as σ = ‖n‖p. Different values of p reflect different types of distributions of
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the noise: impulsive or Laplacian noise when p = 1 (e.g., [15, 43]), Gaussian noise
when p = 2 (e.g., [2, 5, 48, 55]) and uniform noise when p = ∞ (e.g., [57]).

Now, we show that (5.11) is in the form of (1.1) with m = 3. As [56], by
introducing the auxiliary variables y and z, the model (5.11) can be reformulated
as

(5.12) min {‖|y|‖1 | y = ∇w, Gw = z, z ∈ Z} ,
where Z :=

{
z ∈ Rn | ‖z − w0‖p ≤ σ

}
. Obviously, (5.12) is a special case of (1.1)

with x = (x1, x2, x3) := (w, y, z), θ1(w) := 0, θ2(y) := ‖|y|‖1, θ3(z) := χZ(z) (i.e.,
the indicator function of the set Z), b := 0, and the Ai (i = 1, 2, 3) are given by

A1 :=

(
∇
G

)
, A2 :=

(
−I
0

)
, A3 :=

(
0
−I

)
.

Taking H as (5.1), we now illustrate how to solve the resulting subproblems
when the proposed method is applied to solve (5.12).

• The first subproblem in (3.1), i.e., the w-subproblem for (5.12), is

w̃k = argmin
w

{
β1

∥∥∇w − yk +
λk
1

β1

∥∥2
+ β2

∥∥Gw − zk +
λk
2

β2

∥∥2
}

⇔ (β1∇T∇+ β2G
TG)w̃k = ∇T (β1y

k − λk
1) +GT (β2z

k − λk
2).

As elucidated in [56], the solution of the above system of equations can be
easily obtained since both ∇ and G can be diagonalized by FFT.

• The second subproblem in (3.1), i.e., the y-subproblem for (5.12), amounts
to

ỹk = argmin
y

{
‖|y|‖1 +

β1

2

∥∥y −∇wk − λk
1

β1

∥∥2
}
= shrink 1

β1

(
∇wk +

λk
1

β1

)
.

where the shrinkage operator is given in (5.9).
• The third subproblem in (3.1), i.e., the z-subproblem for (5.12), is equiva-
lent to the problem

z̃k = argmin
z

{
χZ(z) +

β2

2

∥∥z −Gwk − λk
2

β2

∥∥2
}
= PZ

[
Gwk +

λk
2

β2

]
.

Here, the projection onto Z can be computed as follows:
– If p = ∞, we have

(PZ [z])i = w0
i +min

{
1,

σ

|zi − w0
i |

}
(zi − w0

i ), i = 1, 2, · · · , n.

– If p = 2, we have

(5.13) PZ [z] = w0 +min
{
1,

σ

‖z − w0‖
}
(z − w0).

– If p = 1, PZ(z) can be efficiently solved by many existing subroutines,
e.g., [19, 55].

Therefore, applying the proposed method to the reformulation (5.12), all the re-
sulting subproblems are easy enough to have closed-form solutions or can be easily
solved up to high precisions. Moreover, different values of p only result in a slight
difference in computing the projection onto the set Z. For the purpose of succinct-
ness, below we only report the numerical results for the model (5.11) with p = 2
and ignore the cases p = 1,∞.
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Now, we show that the TV-l2 model (i.e., (5.11) with p = 2) can be also treated
by (1.1) but with m = 2 via different treatments. The first one is the approach in
[42] (see Section 4.1 therein), which reformulates the TV-l2 model as

min
{
‖|y|‖1 | y = ∇w, ‖Gw − w0‖ ≤ σ

}
,(5.14)

where y is an auxiliary variable. For notational convenience, we denote by K the
set {w ∈ Rn | ‖Gw − w0‖ ≤ σ} in (5.14). By setting x = (x1, x2) := (y, w),
θ1(y) := ‖|y|‖1, θ2(w) := χK(w) (the indictor function defined in (2.1)), A1 := −I,
A2 := ∇ and b := 0, then (5.14) is a special case of (1.1) with m = 2 and thus the
ADM scheme (1.3) is applicable. In fact, the resulting subproblems by applying
the ADM scheme (1.3) to (5.14) can be elucidated as follows:

• The y-subproblem is

yk+1 = argmin
y

{
‖|y|‖1 − (λk)T (y −∇wk) +

β

2
‖y −∇wk‖2

}

= shrink 1
β

(
∇wk +

λk

β

)
,

where the shrinkage operator is given in (5.9).
• The w-subproblem is

wk+1 = argmin
w

{
χK(w)− (λk)T (yk+1 −∇w) +

β

2
‖yk+1 −∇w‖2

}
,

which amounts to finding the projection of a vector onto the ellipse K (see
[42, Appendix 7.1]).

We denote by C-ADMM the application of ADM (1.3) to the reformulation (5.14)
in [42].

The second one is the approach proposed in [2], which reformulates the TV-l2

model as

min {‖|∇y|‖1 | w = y,Gw = z, z ∈ Z} ,(5.15)

where Z :=
{
z ∈ Rn | ‖z − w0‖ ≤ σ

}
. Then, (5.15) is a special case of (1.1) with

m = 2, where x = (x1, x2) := (w, (y, z)), θ1(w) := 0, θ2(y, z) := ‖|∇y|‖1 + χZ(z),
b := 0 and

A1 :=

(
I
G

)
, A2 =

(
−I 0
0 −I

)
.(5.16)

Thus, the ADM scheme (1.3) is applicable to the reformulation (5.15). Accordingly,
the resulting subproblems can be solved as follows:

• The w-subproblem is

wk+1 = argmin
w

{∥∥w − yk − λk
1

β

∥∥2
+

∥∥Gw − zk − λk
2

β

∥∥2
}

⇔ (GTG+ I)w = yk +
λk
1

β
+GT

(
zk +

λk
2

β

)
,

to which fast solvers such as FFT could be applicable.
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• The (y, z)-subproblem is

(yk+1, zk+1) = argmin
y,z

{
‖|∇y|‖1 + χK(z) +

β

2

∥∥wk+1 − y − λk
1

β

∥∥2

+
β

2

∥∥Gwk+1 − z − λk
2

β

∥∥2
}
,

which actually can be decomposed into two independent problems regarding
yk+1 and zk+1, respectively. More concretely, the y-subproblem is

yk+1 = argmin
y

{
‖|∇y|‖1 +

β

2

∥∥wk+1 − y − λk
1

β

∥∥2
}
,

to which faster solvers in the literature such as [14] are available. The
z-subproblem is

zk+1 = argmin
z

{
χK(z) +

β

2

∥∥Gwk+1 − z − λk
2

β

∥∥2
}
= PZ

[
Gwk+1 − λk

2

β

]
,

where PZ is defined in (5.13).

We denote by C-SALSA the application of ADM (1.3) to the reformulation (5.15)
in [2].

Moreover, there are two more influential methods in the literature for the TV-
l2 problem, i.e., the FTVd in [56] and SALSA in [1], both of which solve the
unconstrained alternative of the TV-l2 model:

min
w

τ‖|∇w|‖1 +
1

2
‖Gw − w0‖2,(5.17)

where τ > 0 is a constant balancing the data-fitting and regularization. More
specifically, by introducing the auxiliary variable y, FTVd reformulates (5.17) as

min
{
τ‖|y|‖1 + 1

2‖Gw − w0‖2 | y = ∇w
}
.

By setting x = (x1, x2) := (w, y), θ1(w) :=
1
2‖Gw−w0‖2, θ2(y) := τ‖|y|‖1, A1 := ∇,

A2 := −I and b := 0, the ADM scheme (1.3) is thus applicable to (5.17), and the
resulting subproblems can be solved as follows:

• The w-subproblem is calculated via

wk+1 = argmin
w

{
‖Gw − w0‖2 + β

∥∥∇w − yk − λk

β

∥∥2
}

⇔ (β∇T∇+GTG)w = ∇T (βyk + λk) +GTw0,

to which faster solvers such as FFT could be applicable (see again [56]).
• The y-subproblem is updated by

yk+1 = argmin
y

{
τ‖|y|‖1 +

β

2

∥∥∇wk+1 − y − λk

β

∥∥2
}

= shrink τ
β

(
∇wk+1 − λk

β

)
,

where the shrinkage operator is given in (5.9).

On the other hand, SALSA treats the reformulation of (5.17) as

min
{
τ‖|∇y|‖1 + 1

2‖Gw − w0‖2 | w = y
}
.(5.18)
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Figure 5.5. Original and degraded images for TV-l2. From left
to right: original Cameraman (256×256), blurred and noised Cam-
eraman, original Lena (512× 512), blurred and noised Lena.

By setting x = (x1, x2) := (w, y), θ1(w) := 1
2‖Gw − w0‖2, θ2(y) := τ‖|∇y|‖1,

A1 := I, A2 := −I and b := 0, the ADM scheme (1.3) is also applicable to (5.18)
and the resulting subproblems can be solved as follows:

• The w-subproblem is

wk+1 =argmin
w

{
‖Gw − w0‖2 + β

∥∥w − yk − λk

β

∥∥2
}

⇔(βI +GTG)w = βyk + λk +GTw0,

which could be solved by faster solvers such as FFT.
• The y-subproblem is

yk+1 = argmin
y

{
τ‖|∇y|‖1 +

β

2

∥∥y − wk+1 +
λk

β

∥∥2
}
,

whose closed-form solution is not available. Efficient algorithms in the liter-
ature such as that in [14] can be applied to solve this subproblem iteratively.

As we have shown, we can reformulate the TV-lp model (5.11) in a special case
of (1.1) with either m = 2 or m = 3. The goodness of considering a reformulation
with a smaller m (i.e., m = 2) is that the benchmark ADM scheme (1.3) becomes
applicable. The curse of this approach, however, is that usually there is at least
one resulting subproblem that is too hard to have a closed-form solution and thus
it requires internal iterations to pursue an approximated solution (except for FTVd
for TV-l2). Recall the analysis of the resulting subproblems for the methods of
C-ADMM, C-SALSA and SALSA. Meanwhile, the advantage of considering a re-
formulation with a larger m (i.e., m = 3) is that the resulting subproblems can be
much alleviated such that they are all simple enough to have closed-form solutions.

The tested images are Camerman.png (256 × 256) and Lena.jpg (512 × 512).
We degrade the Cameraman image by blurring it with the 10× 10 uniform kernel
and adding zero-mean white Gaussian noise with the standard deviation 0.003; we
degrade the Lena image by blurring it with the 13× 13 uniform kernel and adding
zero-mean white Gaussian noise with the standard deviation 0.0025. See Figure 5.5
for the original images and degraded images.

Recall that there are some subproblems without closed-form solutions for C-
ADMM, C-SALSA and SALSA, and we need to apply certain iterative schemes
to solve these subproblems. For C-ADMM, the authors recommend applying a
Newton method in [55] to compute the involved projection onto an ellipse, and for
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Figure 5.6. Evolutions of SNR w.r.t iterations and computing
time for TV-l2. Upper row: Cameraman. Lower row: Lena.

SALSA and C-SALSA, the authors suggest applying the projection method in [14].
We use the same methods for these subproblems, and as suggested by [55], SALSA,
C-SALSA and C-ADMM all perform 5 iterations for their internal iterations.

Finally, each of the mentioned methods has some parameters involved and the
numerical efficiency of these methods depends on the choices of their respective
parameters. In the following, for each method, we label its involved parameters by
the same letters as its original paper where the method is proposed. For example,
for FTVd there are one penalty parameter β and one trade-off parameter τ ; for
SALSA there are one penalty parameter μ and one trade-off parameter τ ; for C-
SALSA there are two penalty parameters μ1 and μ2; for C-ADMM there is a penalty
β; for ALBPS, there are penalty parameters β1 and β2 (recall (5.1)) and a relaxation
parameter γ at the correction. So, we have to specify the choices of their respective
parameters in order to compare them numerically. In fact, for all the mentioned
methods except for FTVd, we test the Cameraman image with various values of
the involved parameters and we empirically determine appropriate values for these
parameters. Our tuned results are: τ = 5×10−4 and μ = 10−3 for SALSA; μ1 = 103

and μ2 = 102 for C-SALSA; β = 10 for C-ADMM; β1 = 10, β2 = 104 and γ = 1.6
for ALBPS. For FTVd, we run the original code with tuned parameters which
was downloaded from the authors’ webpage. Hence, the parameters are chosen as
originally: τ = 5 × 104 and β = 10. For our numerical experiments, we start the
iterations with the degraded images. Therefore, the initial value of SNR is 14.78dB
for the Cameraman image and 15.9dB for the Lena image.

In Figure 5.6, we plot the evolutions of SNR values with respect to iterations
(within 50 iterations) and computing time in seconds for these methods. The curves
in Figure 5.6 show that for each tested method, its restored SNR value turns to be
stable after about 30 iterations, and the improvement over this stable value is very
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Table 5.2. Numerical results for TV-l2 image restoration.

Cameraman Lena
Iter CPU SNR Iter CPU SNR

C-SALSA 53 4.33 21.67 49 18.09 22.13
C-ADMM 35 4.86 20.54 26 17.93 21.92
SALSA 22 1.39 20.31 22 6.70 20.94
FTVd 21 0.83 20.47 21 3.87 21.72
ALBPS 13 0.63 22.16 13 1.69 22.74

little even if the iteration keeps running. Thus, we can regard the restored stable
SNR value as the asymptotically optimal value, or equivalently, the effectiveness,
of a method. Recall that the capability of achieving a higher SNR value reflects
a better quality of the restored image for one method. Therefore, the higher the
asymptotically optimal SNR value is, the better the method is. In practice, as
popularly used in the literature of image processing, we can adopt the stopping
criterion

Tol :=
‖wk+1 − wk‖2

‖wk‖2 < 10−7,(5.19)

which measures the relative change of restored images. Empirically, it is reliable to
regard that the asymptotically optimal SNR value of a method is approached when
(5.19) is satisfied. In Table 5.2, for each tested method, we report the number of
iterations (‘Iter’) and the computing time in seconds (‘CPU’) when the criterion
(5.19) and the required SNR value are satisfied. In other words, the ‘Iter’ and
‘CPU’ in Table 5.2 reflect how fast a method can achieve its own asymptotically
optimal SNR value when the stopping criterion (5.19) is used.

According to Figure 5.6 and Table 5.2, we find that ALBPS is attractive and
promising in the sense that it is able to achieve the asymptotically optimal SNR
value with the fastest speed. In terms of the restored SNR value, C-SALSA is
almost as effective as ALBPS, while it requires much more time to achieve its
asymptotically optimal SNR values.

We have also implemented these methods to solve the cases of (5.11) with p = 1
and p = ∞, and obtained numerical conclusions similar as those of the case p = 2.
Thus, for succinctness, we do not report the numerical results for TV-l1 and TV-l∞.

6. Conclusions

We propose a splitting method for the convex minimization problem with linear
constraints and a separable objective function which is the sum of many individual
functions without coupled variables. Our idea is to decompose the subproblems
generated by the classical augmented Lagrangian method into some smaller and
easier subproblems. With this decomposition, the resulting subproblems can exploit
individually properties of the functions in the objective, and they could be easy
enough to have a closed-from solutions for many applications. In addition, all the
decomposed subproblems can be solved simultaneously. We apply the proposed
method to solve some applications arising in the area of image processing and
compare it numerically with some existing methods. The numerical results verify
the efficiency and easy implementation of the proposed method.
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