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A RELATION BETWEEN EMBEDDING DEGREES AND CLASS

NUMBERS OF BINARY QUADRATIC FORMS

SAN LING, ENVER OZDEMIR, AND CHAOPING XING

Abstract. In this paper, we describe a relation between the embedding degree
of an elliptic curve over a prime field Fp and the inertial degree of the primes
above p in a certain ring class field. From this relation, we conclude that the
embedding degree divides the class number of a group of binary quadratic
forms of a fixed discriminant.

1. Introduction

Determining the embedding degrees of elliptic curves over a finite field has at-
tracted attention due to cryptographic applications ([2]). In this paper, we show
that the nth embedding degree of an ordinary elliptic curve E defined over a prime
field Fp is equal to the inertial degree of the primes above p in the ring class field
arising from an order of discriminant n2D in an imaginary quadratic field, where
D is the discriminant of the endomorphism ring of E. This implies that the nth

embedding degree divides the cardinality of the class group of the binary quadratic
forms with discriminant n2D.

The paper is organized as the follows. In Section 2, we introduce elliptic curves
and embedding degrees. In Section 3, we prove our main result, Theorem 3.3, after
the discussion of quadratic forms, endomorphism ring of elliptic curves and ring
class fields.

2. Embedding degrees of elliptic curves

Let p be a prime integer and let Fp be the field with p elements. We denote by

Fp the algebraic closure of Fp. The field Fpk is a subfield of Fp with pk elements for
an integer k ≥ 1. An elliptic curve E over Fp is a smooth algebraic curve defined
by an equation of the form

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Fp. If x, y ∈ Fp satisfy (2.1), we say that the point (x, y) ∈ Fp × Fp is
on the curve E. The set of all points on the curve with a point P∞ (identity) at
infinity forms an abelian group and the group is denoted by E(Fp). The subgroup

E(Fpk) of E(Fp) consisting of points (x, y) ∈ Fpk ×Fpk with P∞ is of finite order for
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any positive integer k. The details for the group operation in E(Fp) and computing
the order of E(Fpk) can be found in [4, Chapter 4] or [8].

Throughout this paper, we make two assumptions: (i) n is a positive integer
coprime to p; (ii) E is an ordinary elliptic curve over Fp.

Definition 2.1. A point P in E(Fp) is called an n-torsion point if nP = P∞.

The set E[n] of all n-torsion points of E is a subgroup of E(Fp) and it is iso-
morphic to Zn ⊕ Zn where Zn is the quotient group Z/nZ (see [8, Section 3.1]).
An integer k such that E[n] lies in E(Fpk) is called an nth embedding degree of the

curve E and the minimum of such an integer k is called the nth embedding degree
of E.

The following result provides a necessary condition for which k is an nth embed-
ding degree of the curve E.

Proposition 2.2. Let p, E, n, k be the same as above. If we have E[n] ⊆ E(Fpk),

then pk ≡ 1modn.

Proof. See the proof of Corollary 3.11 in [8]. �
We will see in a moment that under certain conditions the converse of the above

statement is also correct.

3. Class numbers and embedding degrees

We first give a brief summary of binary quadratic forms, endomorphism rings of
elliptic curves and ring class fields.

We consider here binary quadratic forms in two variables f = ax2 + bxy+ cy2 =
(a, b, c) of discriminant D = b2 − 4ac. We assume D < 0 < a and gcd(a, b, c) = 1.
A form of this kind is called a positive definite form. From now on, we assume all
forms are positive definite. Let

g(x′, y′) = a′x′2 + b′x′y′ + c′y′2 and f(x, y) = ax2 + bxy + cy2

be two forms of the same discriminant. They are called equivalent if there exist
integers

α, β, γ, δ with αδ − βγ = 1

such that

x1 = αx′ + βy′ , y1 = γx′ + δy′ and f(x1, y1) = g(x′, y′).

This equivalence relation makes the set of binary quadratic forms of the same
discriminant an abelian group which we will denote by C(D). The group C(D)
is isomorphic to the ideal class group of an order OD of discriminant D in an
imaginary quadratic field. Let p be a prime integer such that D is a square mod p.
Then we have a form fp = (p, b, c) for some b, c ∈ Z which is called a prime form,
and prime forms generate the group C(D) [7]. See [3] for justification of the above
statements.

Let E be an ordinary elliptic curve over a finite field Fp. The endomorphism ring
of the elliptic curve E is isomorphic to an order OD with a discriminant D in an
imaginary quadratic field K. The ideal class group C(OD) of OD is isomorphic to
the group C(D) of the binary quadratic forms of discriminant D. Hence any ideal
class I of C(OD) is represented by a triple [A,B,C] such that B2 − 4AC = D and

the number τ = −B+
√
D

2A is in the standard fundamental domain. The corresponding
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j value for the ideal I is j
(

−B+
√
D

2A

)
, where j(τ ) is Klein’s j-function, and each j

value is the j-invariant of an elliptic curve over C with the endomorphism ring OD.
This implies that there are hD isomorphism classes of elliptic curves over C with
endomorphism ring OD, where hD is the class number of C(D). The extension
field KD of K generated by these j values is called the ring class field for OD. The
extension is finite abelian and has degree hD. The common minimal polynomial
PD(x) for the j values is called the Hilbert class polynomial for OD.

Let p be a prime integer such that p splits completely in K and let ℘ be a prime
ideal above p in K. The inertial degree of the primes above ℘ in KD is the degree of
the irreducible factors of PD(x) mod p as [OK/℘ : Z/(p)] = 1 where OK is the ring
of integers of K. By Deuring’s lifting theorem [5], the inertial degree of the primes
above ℘ in KD is the smallest k such that Fpk is the definition field of elliptic curves

over Fp with the endomorphism ring OD as the j-invariants of such elliptic curves
E are the roots of PD(x).

Let Fpt be the (pt)th-power Frobenious endomorphism of E, i.e., Fpt(x, y) =

(xpt

, yp
t

) for (x, y) ∈ E(Fp). Since the endomorphism ring of E is isomorphic to
the order OD, each endomorphism of E corresponds to a number in OD. The
following propositions give relations between an nth embedding degree k and n.

Proposition 3.1. Let E, E[n], k, p be as above such that #E(Fp) is divisible by
n and n � p(p− 1). E[n] ⊆ E(Fpk) if and only if pk ≡ 1modn.

Proof. See the proof of Proposition 5.9 in [8] or [1]. �
Proposition 3.2. Let the notations be the same as above. If E[n] ⊆ E(Fpk), then
Fpk ≡ 1modnOD, where OD is the the endomorphism ring of E.

Proof. Fpk ≡ 1modnO(D) means the pk
th

power Frobenious Fpk acts as the iden-

tity on the subgroup of n-torsions, that is, Fpk(x, y) = (xpk

, yp
k

) = (x, y) for
(x, y) ∈ E[n]. For more details see [6, Proposition 3.7] or [8, Section 10.4]. �

The following theorem shows that the embedding degree divides the class number
C(n2D), where D is the discriminant of the endomorphism ring of the elliptic curve.

Theorem 3.3. Let E, E[n], k, p be as above such that n � p(p− 1), n is squarefree
and #E(Fp) = in for some integer i < n. Then the nth embedding degree of E(Fp)
is equal to the inertial degree of the primes above p in the ring class field Kn2D of
K. Consequently, the nth embedding degree k of E divides the order of C(n2D).

Proof. Let b be pk + 1−#E(Fpk). We first show that the equations

(3.1) 4pk = b2 − v2(n2D) for some integer v

and

(3.2) pk ≡ 1 mod n,

are equivalent.
Assume that (3.1) holds. Then we have

4pk ≡ (−#E(Fpk) + pk + 1)2 ≡ (pk + 1)2 mod n.

This is equivalent to (3.2) as n is squarefree. Now assume that equation (3.2) holds.
By Proposition 3.1, k is an nth embedding degree of E. By Proposition 3.2, the
element (Fpk − 1)/n belongs to OD. Thus, Z[(Fpk − 1)/n] is a subring of OD. This
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implies that the discriminant of Z[(Fpk − 1)/n] is equal to v2D for some integer
v. A simple computation shows that the the discriminant of Z[(Fpk − 1)/n] is

(b2 − 4pk)/n2, where b is equal to #E(Fpk)− (pk + 1). Thus, equation (3.1) holds.
By Proposition 3.1, the smallest positive integer k satisfying equation (3.1) is

the nth embedding degree of E. Similarly, we know that the smallest k satisfying
equation (3.1) gives the definition field Fpk of an elliptic curve with the endomor-
phism ring On2D. Hence, the inertial degree of the primes above p in the ring class
field Kn2D is the smallest k satisfying equation (3.1). This implies that the nth

embedding degree of E(Fp) is equal to the inertial degree of the primes above p in
the ring class field Kn2D.

Since the inertial degree divides the extension degree hn2D = [Kn2D : K], the
second result follows. �
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