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A PERTURBATION APPROACH FOR AN INVERSE

QUADRATIC PROGRAMMING PROBLEM

OVER SECOND-ORDER CONES

YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

Abstract. This paper is devoted to studying a type of inverse second-order
cone quadratic programming problems, in which the parameters in both the

objective function and the constraint set of a given second-order cone quadratic
programming problem need to be adjusted as little as possible so that a known
feasible solution becomes optimal. This inverse problem can be written as
a minimization problem with second-order cone complementarity constraints
and a positive semidefinite cone constraint. Applying the duality theory, we
reformulate this problem as a linear second-order cone complementarity con-
strained optimization problem with a semismoothly differentiable objective
function, which has fewer variables than the original one. A perturbed problem
is proposed with the help of the projection operator over second-order cones,
whose feasible set and optimal solution set are demonstrated to be continuous
and outer semicontinuous, respectively, as the parameter decreases to zero. A
smoothing Newton method is constructed to solve the perturbed problem and
its global convergence and local quadratic convergence rate are shown. Finally,
the numerical results are reported to show the effectiveness for the smoothing
Newton method to solve the inverse second-order cone quadratic programming
problem.

1. Introduction

In an optimization problem, all parameters of the model are given, and we need to
find from among all feasible solutions an optimal solution for a specified objective
function. However, in an inverse optimization problem, the situation is reversed
and we try to find values of parameters in an optimization model which make a
given feasible solution optimal and which differ from the given estimates as little
as possible.

Burton and Toint [3] first investigated an inverse shortest path problem moti-
vated by two interesting examples in traffic flow and seismic tomography. Since
then, a variety of inverse combinatorial optimization problems have been studied;
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see for instance, [1,4,31]. Recently, several special inverse continuous optimization
problems have been investigated. Zhang and Liu [29, 30] first studied the inverse
linear programming, and Iyengar and Kang [12] discussed inverse conic program-
ming models and their applications in portfolio optimization. After that, Zhang
and Zhang [32], Zhang, Zhang and Xiao [33] and Xiao and Zhang [26] studied nu-
merical methods for two different types of inverse quadratic programming problems.
In [26] and [32], parameters in the objective function of a quadratic programming
problem need to be estimated and in [33] parameters in both the objective function
and the constraint set are required to be adjusted. Numerical algorithms were de-
veloped for a type of inverse semidefinite quadratic programming problems in [27]
and [28], in which only parameters in the objective function were required to be
estimated. In this paper, we focus on an inverse optimization problem with second-
order cone constraints in which parameters in both the objective function and the
constraint set are required to be adjusted. Just like the inverse quadratic program-
ming problem addressed in [33], the problem considered in this paper is essentially
a mathematical program with second-order cone complementarity constraints, and
we propose a perturbation approach for finding an approximation solution.

1.1. Motivation. We take an interesting facility location problem, which is an
extension of Weber problem in [8,14], to show that the study of inverse programming
over second-order cones is significant in practice.

A manager wants to find the best location for the warehouse of a company, in
such a way that the total transportation cost to serve the customers is minimum.
Suppose that there are m customers needing to be served and different customers
may have different demands, to be translated as weight wi for customer i, i =
1, 2, · · · ,m. Let the location of customer i be a′i. Denote the desired location of
the warehouse to be x′ and the additional transportation cost to be a quadratic
term with respect to x′, say 1

2x
′TG′x′, here G′ is a symmetric matrix. Then, the

optimization problem is

min
x′∈R2

1

2
x′TG′x′ +

m∑
i=1

wi‖x′ − a′i‖(1.1)

with ‖ · ‖ being the Euclidean norm. In particular, if G′ = O2, problem (1.1) is
reduced to

min
x′∈R2

m∑
i=1

wi‖x′ − a′i‖,

which is the famous Weber problem introduced by German economist Alfred Weber
in 1909.

It follows from [2, Section 2.2] that (1.1) can be formulated as a second-order
cone programming of the form

min
1

2
x′TG′x′ +

m∑
i=1

witi

s. t.

(
ti

x′ − a′i

)
∈ Q3, i = 1, 2, · · · ,m,

(1.2)
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where Q3 := {(s1; s2) ∈ R × R
2|‖s2‖ ≤ s1} is a 3-dimensional second-order cone.

We rewrite problem (1.2) as

min
1

2
xTGx+ wTx

s. t. Aix− ai ∈ Q3, i = 1, 2, · · · ,m,
(1.3)

where x = (t1; · · · ; tm;x′) ∈ R
m+2, w = (w1; · · · ;wm; 02) ∈ R

m+2, ai = (0; a′i) ∈
R

3,

G =

(
Om

G′

)
∈ R

(m+2)×(m+2), Ai =

(
eTi

I2

)
∈ R

3×(m+2),

Om is the zero matrix in R
m×m, I2 is the identity matrix in R

2×2 and ei is the i-th
unit element in R

m, i = 1, 2, · · · ,m.
Let (Ĝ, ŵ, â1, · · · , âm) be a current estimate of (G,w, a1, · · · , am) and x̂ an op-

timal solution of problem (1.3) with (G,w, a1, · · · , am) = (Ĝ, ŵ, â1, · · · , âm). As
information (e.g. the price of petrol, the capacity and living level of the consumers,
target customer segments) changes dynamically, the manager has to judge the ef-
ficiency of location x̂ after a period of time. Suppose that the additional trans-
portation cost, the customer locations and the customer demands are changed, and
(Ḡ, w̄, ā1, · · · , ām) is an estimate of (G,w, a1, · · · , am), which is obtained by obser-
vations, investigations or experience. The manager faces the question of whether
the current location of the warehouse x̂ is required to be modified. Moving from x̂
to a new efficient location x̃ would result in a loss. On the other hand, a new effi-
cient location x̃ is likely to have a high return. Thus the manager needs to balance
these two factors.

Let Φ(x̂) denote the set of all (G,w, a1, · · · , am) which make x̂ optimal to problem
(1.3), i.e.,

Φ(x̂) = {(G,w, a1, · · · , am)| x̂ is optimal to problem (1.3)}.

We consider the following inverse optimization problem:

min σ(G,w, a1, · · · , am) = ‖(G,w, a1, · · · , am)− (Ḡ, w̄, ā1, · · · , ām)‖2

s. t. (G,w, a1, · · · , am) ∈ Φ(x̂),(1.4)

where ‖ · ‖ is defined by

‖(G,w, a1, · · · , am)‖ =
√
Tr(GTG) + wTw + aT1 a1 + · · ·+ aTmam.

Let σ∗ denote the optimal value of (1.4). It is clear that if (Ḡ, w̄, ā1, · · · , ām) ∈ Φ(x̂),
then σ∗=0, and x̂ is still an optimal location to the new estimate (Ḡ, w̄, ā1, · · · , ām),
and changes will not be made on x̂. If (Ḡ, w̄, ā1, · · · , ām) /∈ Φ(x̂), then σ∗ > 0 and
the strategy to manage the trade-off between the moving costs and higher return
depends on the closeness of the new estimate (Ḡ, w̄, ā1, · · · , ām) to the set Φ(x̂),
that is, adjustments will be made on the warehouse location x̂ if σ∗ > α, where
the value of α is determined by the manager’s threshold. In any case, we need to
solve problem (1.4), which is a typical inverse quadratic programming problem over
second-order cones.
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1.2. The problem description and paper organization. We consider a qua-
dratic programming problem over second-order cones of the form

(QSOCP)
min
x∈Rn

f(x) =
1

2
xTGx+ cTx

s. t. gj(x) = Ajx− bj ∈ Qmj+1, j = 1, 2, · · · , J,
(1.5)

where G ∈ R
n×n is a symmetric matrix, c ∈ R

n, Aj ∈ R
(mj+1)×n, bj ∈ R

mj+1 and
Qmj+1 is a mj + 1-dimensional second-order cone defined by

Qmj+1 := {s = (s1; s2) ∈ R× R
mj | ‖s2‖ ≤ s1},

with ‖ · ‖ being the Euclidean norm. Let Sn denote the space of n× n symmetric
matrices, and let SOL(P) be the set of optimal solutions to a problem (P).

Let Aj be given for j = 1, 2, · · · , J . Given a feasible point x0 to (1.5), which
is required to be an optimal solution and a set (G0, c0, b0m1+1, · · · , b0mJ+1) ∈ Sn ×
R

n × R
m1+1 × · · · × R

mJ+1 which is an estimate to (G, c, bm1+1, · · · , bmJ+1). The
inverse problem considered in this paper is to find (G, c, bm1+1, · · · , bmJ+1) ∈ Sn

+ ×
R

n × R
m1+1 × · · · × R

mJ+1 to solve the problem:

min
1

2
‖(G, c, bm1+1, · · · , bmJ+1)− (G0, c0, b0m1+1, · · · , b0mJ+1)‖2

s. t. x0 ∈ SOL(QSOCP),
(G, c, bm1+1, · · · , bmJ+1) ∈ Sn

+ × R
n × R

m1+1 × · · · × R
mJ+1,

(1.6)

where Sn
+ is the cone of positive semidefinite symmetric matrices in Sn and ‖ · ‖ is

defined by

‖(G′, c′, b′m1+1, · · · , b′mJ+1)‖ :=
√

Tr(G′TG′) + c′T c′ + b′Tm1+1b
′
m1+1 + · · ·+ b′TmJ+1b

′
mJ+1

for (G′, c′, b′m1+1, · · · , b′mJ+1) ∈ Sn × R
n × R

m1+1 × · · · × R
mJ+1.

Problem (1.6) is a cone-constrained optimization problem with a quadratic ob-
jective function, whose scale will be quite large when n is large as the number of

decision variables is n+n(n+1)/2+
∑J

j=1(mj+1). With the help of duality theory,

we formulate (1.6) as a linear second-order cone complementarity constrained opti-
mization problem (3.10) (see Section 3) with semismoothly differentiable objective
function which is essentially a mathematical program with second-order cone com-
plementarity constraints and has fewer decision variables than the original inverse
problem.

The mathematical program with second-order cone complementarity constraints
includes the mathematical program with (vector) complementarity constraints (de-
noted as MPCC for short) as a special case. For MPCCs, there have been proposed
many algorithms such as the sequential quadratic programming approach, the im-
plicit programming approach, the penalty function approach, the reformulation
approach, and so on; see [6,9,13,15,20,21] for references. However, there are only a
few studies on the mathematical program with second-order cone complementarity
constraints. Zhang, Zhang and Wu [34] approximated the second-order cone com-
plementarity constraints by the smoothing projection operator over second-order
cones and introduced a smoothing approach. Wu, Zhang and Zhang [25] employed
a smoothing Newton method for the mathematical programs governed by second-
order cone constrained parameterized generalized equations. However, the analysis
in these two papers requires twice differentiability of the objective function. In this
paper we will propose a perturbation approach to solve the mathematical program
with second-order cone complementarity constraints under a weaker condition, the
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objective function is not twice differentiable, but semismoothly differentiable. Fur-
thermore, a smoothing Newton method is employed to solve the perturbed problems
and numerical results reported show that the approach we adopted is quite effective.

The organization of this paper is as follows. Section 2 reviews several basic
results in nonsmooth analysis and some properties of a second-order cone. Sec-
tion 3 is devoted to reformulating the inverse quadratic programming problem over
second-order cones as a linear second-order cone complementarity constrained opti-
mization problem with a semismoothly differentiable objective function. In Section
4, we use a smoothing function to approximate the complementarity relation and
demonstrate the convergence behavior of the perturbed problem. In Section 5, a
smoothing Newton method is constructed to solve the perturbed problem and its
global convergence and local quadratic convergence rate is shown. Finally, we report
the numerical results of the smoothing Newton method for solving the perturbed
problem in Section 6.

The following notations are used throughout the paper. For any vectors x, y ∈
R

n and matrices A, B ∈ R
n×n, the inner product 〈x, y〉 := xT y, 〈A,B〉 = Tr(ATB)

and the norm ‖x‖ :=
√
xTx, ‖A‖F :=

√
Tr(ATA). We denote In and On as the

identity matrix and zero matrix in R
n×n. We use “;” for adjoining vectors in a

column, for example, vector d = (d1; d2) = (dT1 dT2 )
T ∈ R

m1+m2 , with d1 ∈ R
m1

and d2 ∈ R
m2 . diag (B1, B2) is denoted as the block diagonal matrix whose block

diagonal entries are symmetric matrices B1 and B2. For two matrices A and B,
we write A � B(A 	 B) to mean that A − B is positive semidefinite (positive
definite). For a differentiable mapping F : Rn → R

m and a vector z ∈ R
n, we

denote by JF (z) the Jacobian matrix of F at z and ∇F (z) := JF (z)T .

2. Preliminaries

2.1. Background in nonsmooth analysis and variational analysis. Now we
give some basic concepts on nonsmooth analysis. The first one is the general Jaco-
bian of a Lipschitz continuous function.

Definition 2.1. Let X and Y be two finite dimensional real vector spaces. Let O
be an open set in X and Φ : O ⊆ X → Y be a locally Lipschitz continuous function
on the open set O. By Rademacher’s theorem, Φ is almost everywhere Fréchet-
differentiable in O. We denote by DΦ the set of Fréchet-differentiable points of Φ
in O. Then, the Bouligand-subdifferential of Φ at x ∈ O, denoted as ∂BΦ(x), is

∂BΦ(x) :=

{
lim
k→∞

JΦ(xk)|xk ∈ DΦ, x
k → x

}
,

where JΦ(xk) is the Jacobian of Φ at xk. The generalized Jacobian in the sense of
Clarke is the convex hull of ∂BΦ(x), i.e.,

∂Φ(x) = conv{∂BΦ(x)}.

The following concept of semismoothness was extended by Qi and Sun [17] from
real valued functions to vector valued functions.

Definition 2.2. Let X and Y be two finite dimensional real vector spaces. Let
Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set O. We
say that Φ is semismooth at a point x ∈ O if:
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(i) Φ is directionally differentiable at x; and
(ii) for any Δx ∈ X and V ∈ ∂Φ(x+Δx) with Δx → 0,

Φ(x+Δx)− Φ(x)− V (Δx) = o(‖Δx‖).
Furthermore, Φ is said to be strongly semismooth at x ∈ O if Φ is semismooth at
x and for any Δx ∈ X and V ∈ ∂Φ(x+Δx) with Δx → 0,

Φ(x+Δx)− Φ(x)− V (Δx) = O(‖Δx‖2).

The definition of SC1 function in the sense of [10] is given below, which will be
used in Section 3.

Definition 2.3. A function τ : Rn → R is said to be a SC1 (semismoothly differ-
entiable) function on an open set O ⊆ R

n if τ is continuously differentiable on O
and ∇τ is semismooth on O. The generalized Hessian of τ at x is defined to be the
set ∂2τ (x) of n× n matrices by

∂2τ (x) = conv{∂B [∇τ ](x)},

where ∂B[∇τ ](x) is the B-differential of ∇τ at x, which can be expressed as

∂B[∇τ ](x) = {H ∈ R
n×n | ∃ xk → x with ∇τ differentiable at xk

and ∇2τ (xk) → H}.

For a SC1 function τ on an open set O ⊆ R
n, we have the following second-order

Taylor-like formula and mean value formula; see [7]. For a segment [y, y′] ⊂ O, there
is a matrix H ∈ ∂2τ (w) at some w ∈ (y, y′) such that

τ (y′) = τ (y) +∇τ (y)T (y′ − y) +
1

2
(y′ − y)TH(y′ − y)

and there exist l(l ≥ n) points w1, . . . , wl ∈ (y, y′) and Hi ∈ ∂2τ (wi) for i = 1, . . . , l
such that

∇τ (y′) = ∇τ (y) +
l∑

i=1

tiH
i(y′ − y),(2.1)

where ti ≥ 0, i = 1, . . . , l, and t1 + · · ·+ tl = 1.
Let Y be a finite dimensional real vector space and K a closed convex set in

Y . For instance, the convex set K will be chosen as the convex cone Sn
+, Qm+1

or R
n
+ in the following sections. It is well known that the metric projector ΠK(·)

is Lipschitz continuous with the Lipschitz constant 1 and semismooth everywhere.
Then for any y ∈ Y , ∂ΠK(y) is well defined. Below is a lemma on some general
properties of ∂ΠK(·).

Lemma 2.1 ([16, Proposition 1]). Let K ⊆ Y be a closed convex set. Then, for
any y ∈ Y and V ∈ ∂ΠK(y), it holds that:
(i) V is self-adjoint,
(ii) 〈d, V d〉 ≥ 0, ∀d ∈ Y ,
(iii) 〈V d, d− V d〉 ≥ 0, ∀d ∈ Y .

The concepts of the semicontinuity and continuity of a set-valued mapping in
[19, Definition 5.4] and the epi-continuity properties of a function-valued mapping
in [19, Definition 7.1] are given below.
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Definition 2.4. A set-valued mapping S : Rn ⇒ R
m is outer semicontinuous at x̄

if lim sup
x→x̄

S(x) ⊂ S(x̄), but inner semicontinuous at x̄ if lim inf
x→x̄

S(x) ⊃ S(x̄), where

lim sup
x→x̄

S(x) : = {u| ∃xk → x, ∃uk → u with uk ∈ S(xk)},

lim inf
x→x̄

S(x) : = {u| ∀xk → x, ∃uk → u with uk ∈ S(xk)}.

It is called continuous at x̄ if both conditions hold, i.e., if lim
x→x̄

S(x) = S(x̄).

Definition 2.5. For a function f : Rn × R → R, the function-valued mapping
ε → f(·, ε) is said to be epi-continuous at ε̄, denoted as e− limε→ε̄ f(·, ε) = f(·, ε̄),
if

lim
ε→ε̄

epif(·, ε) = epif(·, ε̄).

where epif(·, ε) := {(x, α) ∈ R
n × R| f(x, ε) ≤ α}.

2.2. Basic results for a second-order cone. In this subsection, we review some
basic results for a second-order cone.

Let Qm+1 be a second-order cone of dimension m + 1. The topological interior
part and the boundary of Qm+1 denoted by intQm+1 and bdQm+1, respectively,
are given by

intQm+1 :={s = (s1; s2) ∈ R× R
m | ‖s2‖ < s1},

bdQm+1 :={s = (s1; s2) ∈ R× R
m | ‖s2‖ = s1}.

For any x = (x1;x2) ∈ R×R
m and y = (y1; y2) ∈ R×R

m, we define their Jordan
product as

x ◦ y = (xT y; y1x2 + x1y2).

The identity element under this product is e := (1; 0; · · · ; 0) ∈ R
m+1. We write x2

to mean x◦x and write x+y to mean the usual componentwise addition of vectors.
It is known that x2 ∈ Qm+1 for all x ∈ R

m+1. Moreover, if x ∈ Qm+1 , there exists
a unique vector in Qm+1 denoted by

√
x, such that (

√
x)2 =

√
x ◦

√
x = x. For

x ∈ R
m+1, we define its determinant as det(x) = x2

1 − ‖x2‖2.
We introduce the spectral factorization of vectors in R

m+1 associated with Qm+1.
Let x = (x1;x2) ∈ Qm+1, then x can be decomposed as

x = λ1c1 + λ2c2,

where λ1, λ2 and c1, c2 are the spectral values and the associated spectral vectors
of x given by

λi = x1 + (−1)i‖x2‖,

ci =

⎧⎪⎨
⎪⎩

1

2

(
1, (−1)i

x2

‖x2‖

)
, if x2 �= 0,

1

2

(
1, (−1)iw

)
, if x2 = 0,

for i = 1, 2, with w being any vector in R
m satisfying ‖w‖ = 1. By [11], we also

know that
√
x =

√
λ1c1 +

√
λ2c2.
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For any x = (x1;x2) ∈ R × R
m, we define the linear mapping Lx from R

m+1 to
R

m+1 as

Lxy :=

[
x1 xT

2

x2 x1Im

]
y.

It can be easily verified that x ◦ y = Lxy, ∀y ∈ R
m+1, and Lx is positive definite

(and hence invertible) if and only if x ∈ intQm+1. Also, we have

L−1
x =

1

det(x)

[
x1 −xT

2

−x2
det(x)

x1
Im +

x2x
T
2

x1

]
.

More interesting properties about the spectral factorization of x, as well as x2,
√
x

and the matrix Lx, can be found in [11].
The following consequence from [2, Lemma 15] will be used in Section 4.

Lemma 2.2. Let x = (x1;x2) ∈ Qm+1, y = (y1; y2) ∈ Qm+1 and x ◦ y = 0. Then
we have either x = 0 or y = 0, or there exists σ > 0 such that x = σ(y1;−y2).

3. Problem reformulation

If G ∈ Sn
+, then x0 ∈ SOL(QSOCP) if and only if there exist uj ∈ Qmj+1 such

that

c+Gx0 −
∑J

j=1 Aj
Tuj = 0,

uj ◦ (Ajx0 − bj) = 0, j = 1, 2, · · · , J.(3.1)

Let Q be the Cartesian product of second-order cones, that is, Q := Qm1+1 ×
Qm2+1 × · · · ×QmJ+1 and q =

∑J
j=1(mj + 1). Denote

A := (A1;A2; · · · ;AJ) ∈ R
q×n,

v := (v1; v2; · · · ; vJ ) ∈ Q, vj := Ajx
0 − bj ∈ Qmj+1,

v0 := (v01 ; v
0
2 ; · · · ; v0J ) ∈ Q, v0j := Ajx

0 − b0j ∈ Qmj+1,

u := (u1;u2; · · · ;uJ ) ∈ Q,

u ◦ v = ((u1 ◦ v1); (u2 ◦ v2); · · · ; (uJ ◦ vJ )).

Then combining with (3.1), we have an equivalent formulation of (1.6) as follows:

min
1

2
‖(G−G0, c− c0, v − v0)‖2

s. t. c+Gx0 −ATu = 0,(3.2)

u ◦ v = 0,

(G, c, u, v) ∈ Sn
+ × R

n ×Q×Q.

First, we consider a subproblem of (3.2) below:

min
1

2
‖(G−G0, c− c0)‖2

s. t. c+Gx0 −ATu = 0,(3.3)

(G, c) ∈ Sn
+ × R

n,
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which is a convex programming parameterized by u ∈ Q. Let its optimal value be
f0(u), i.e.,

f0(u) :=
1

2
inf
{
‖G−G0‖2F + ‖c− c0‖2| c+Gx0 −ATu = 0, (G, c) ∈ Sn

+ × R
n
}
.

(3.4)

Define

f(u, v) :=
1

2
‖v − v0‖2 + f0(u).

For any u ∈ Q, it is obvious that the generalized Slater constraint qualification
holds for problem (3.3). Therefore, by the classical duality theory for convex
programming, there is no duality gap between problem (3.3) and its dual. Let
L : Sn

+ × R
n × R

n → R be the Lagrange function of (3.3), defined by

L(G, c, x) :=
1

2
‖G−G0‖2F +

1

2
‖c− c0‖2 + 〈x, c+Gx0 −ATu〉.

The Lagrange dual problem of (3.3) is

max
x∈Rn

ν(x) := inf
(G,c)∈Sn

+×Rn
L(G, c, x).(3.5)

Let B : Rn → Sn defined by

Bx :=
xxT

0 + xT
0 x

2
,

the adjoint of B is denoted by B∗. Define

Ḡ(x) := G0 − Bx,

Ψ(x) := ‖ΠSn
+
(Ḡ(x))‖2F = Tr

(
ΠSn

+
(Ḡ(x))TΠSn

+
(Ḡ(x))

)
.

The Moreau envelop function and proximal mapping of Ψ are defined by Morea-
Yosida regularization (see [19, Definition 1.22]), i.e.,

eλΨ(x) := inf
ω

{
Ψ(ω) +

1

2λ
‖ω − x‖2

}
and

PλΨ(x) := Argminω

{
Ψ(ω) +

1

2λ
‖ω − x‖2

}
,

respectively. If Ψ is lower semicontinuous, proper and convex, by [19, Theorem
2.26], we get that eλΨ is convex, and continuously differentiable with

∇eλΨ(x) =
1

λ
[x− PλΨ(x)].(3.6)

Furthermore, ∇eλΨ is Lipschitz continuous.

Lemma 3.1. The function ν(x) defined in (3.5) and the function f0(u) defined in
(3.4) can be expressed by

ν(x) = −1

2
‖x‖2 + 〈c0 −ATu, x〉 − 1

2
‖ΠSn

+
(Ḡ(x))‖2F +

1

2
‖G0‖2F(3.7)

and

f0(u) =
1

2
‖G0‖2F +

1

2
‖c0 −ATu‖2 − 1

2
e1/2Ψ(c0 −ATu),

respectively.



218 YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

Proof. From the definition of ν , we have

ν(x) = inf
(G,c)∈Sn

+×Rn

{
1

2
‖c− c0‖2 + 〈c, x〉+ 1

2
‖G−G0‖2F + 〈Gx0, x〉 − 〈ATu, x〉

}

=− 〈ATu, x〉+ inf
c∈Rn

{
1

2
‖c− c0‖2+〈c, x〉

}
+ inf

G∈Sn
+

{
1

2
‖G−G0‖2F+〈Gx0, x〉

}
.

As the unconstrained quadratic programming problem

min
c∈Rn

1

2
‖c− c0‖2 + 〈c, x〉

takes its minimum at

c∗(x) = c0 − x,(3.8)

we have that

inf
c∈Rn

{
1

2
‖c− c0‖2 + 〈c, x〉

}
= −1

2
‖x‖2 + c0Tx.

From the expression

inf
G∈Sn

+

{
1

2
‖G−G0‖2F + 〈Gx0, x〉

}

= inf
G∈Sn

+

{
1

2
[‖G− Ḡ(x)‖2F + 2〈G0,Bx〉 − ‖Bx‖2F ]

}
,

we know that the minimum value is reached at

G∗(x) = ΠSn
+
(Ḡ(x)),(3.9)

and thus

inf
G∈Sn

+

{
1

2
‖G−G0‖2F + 〈Gx0, x〉

}

=
1

2

[
‖Ḡ(x)−ΠSn

+

(
Ḡ(x)

)
‖2F − ‖Ḡ(x)‖2F + ‖G0‖2F

]
,

=− 1

2
‖ΠSn

+

(
Ḡ(x)

)
‖2F +

1

2
‖G0‖2F .

Therefore, the function ν(x) has the expression (3.7).
It follows from the zero duality gap property between (3.4) and (3.5) that

f0(u) =max
x

ν(x)

=max
x

{
−1

2
‖x‖2 + 〈c0 −ATu, x〉 − 1

2
‖ΠSn

+

(
Ḡ(x)

)
‖2F +

1

2
‖G0‖2F

}

=
1

2
‖G0‖2F +

1

2
‖c0 −ATu‖2 − 1

2
min
x

{
‖ΠSn

+

(
Ḡ(x)

)
‖2F + ‖x− (c0 −ATu)‖2

}
=
1

2
‖G0‖2F +

1

2
‖c0 −ATu‖2 − 1

2
min
x

{
Ψ(x) + ‖x− (c0 −ATu)‖2

}
=
1

2
‖G0‖2F +

1

2
‖c0 −ATu‖2 − 1

2
e1/2Ψ(c0 −ATu).

The proof is completed. �
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In view of the above lemma, (3.2) can be equivalently expressed as

min f(u, v) =
1

2
‖v − v0‖2 + 1

2
‖G0‖2F +

1

2
‖c0 − ATu‖2 − 1

2
e1/2Ψ(c0 − ATu)

s. t. u ◦ v = 0,
u ∈ Q, v ∈ Q,

(3.10)

which is a mathematical program with linear second-order cone complementarity
constraints.

Note that the dimension of the above problem is O(q), much smaller than that
of problem (3.2) when n is large, which is O(n2). Now we focus on discussing how
to solve problem (3.10).

Let

x(u) :=P1/2Ψ(c0 −ATu)

=Argminx

{
‖ΠSn

+

(
Ḡ(x)

)
‖2F + ‖x− (c0 −ATu)‖2

}
,

so that

e1/2Ψ(c0 −ATu) = ‖ΠSn
+

(
Ḡ(x(u))

)
‖2F + ‖x(u)− (c0 −ATu)‖2.

If (3.10) has an optimal solution (u∗, v∗), then we know from (3.8) and (3.9) that

(G∗, c∗, b∗) =
(
ΠSn

+
(Ḡ(x(u∗))), c0 − x(u∗), Ax0 − v∗

)
is an optimal solution to the original problem (1.6).

Lemma 3.2. The function Ψ(x) is convex and the mapping x(u) is strongly semis-
mooth. Furthermore,

∂Bx(u)Δu ⊂
{
− [B∗WB + In]

−1
ATΔu| W ∈ ∂BΠSn

+

(
Ḡ (x(u))

)}
, ∀ Δu ∈ R

q,

where B∗is the adjoint operator of B.
Proof. Let g(x) = ΠSn

+

(
Ḡ(x)

)
, then Ψ(x) = ‖g(x)‖2F . Function Ψ is a SC1 function

with
∇Ψ(x) = 2J Ḡ(x)∗g(x) = −2B∗g(x).

It follows from [24, Lemma 3] that

∂2Ψ(x) = −2B∗∂g(x).

From [23, Lemma 2.1], we have

∂g(x) ⊂ ∂ΠSn
+

(
Ḡ(x)

)
J Ḡ(x) = −∂ΠSn

+

(
Ḡ(x)

)
B,

and therefore

∂2Ψ(x) ⊂ 2B∗∂ΠSn
+

(
Ḡ(x)

)
B, ∀x ∈ R

n.

For any x, x′ ∈ R
n, it follows from (2.1) that there exist l ≥ n points w1, · · · , wl ∈

(x, x′) and Hi ∈ ∂2Ψ(wi) for i = 1, · · · , l such that

∇Ψ(x′)−∇Ψ(x) =

l∑
i=1

tiH
i(x′ − x),(3.11)

where ti ≥ 0, i = 1, · · · , l and t1 + · · ·+ tl = 1. In view of (ii) of Definition 2.2, we
know from (3.11) that each Hi is positively semidefinite, which implies that

〈∇Ψ(x′)−∇Ψ(x), x′ − x〉 ≥ 0, ∀x′, x ∈ R
n,
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namely the gradient mapping ∇Ψ is a monotone operator. Thus from [19, Theorem
12.17], we obtain that Ψ is a convex function.

From the definition of x(u), we know that x(u) is the unique solution of the
following strongly semismooth system

−2B∗ΠSn
+

(
Ḡ(x)

)
+ 2[x− (c0 −ATu)] = 0.(3.12)

Since the generalized Jacobian of the left-hand side with respect to x is contained
in 2(I + B∗∂ΠSn

+

(
Ḡ(x)

)
B), and its every element is nonsingular, by [24, Lemma

1], we know that x(u) is strongly semismooth and

−B∗ΠSn
+

(
Ḡ (x(u))

)
+ x(u)− (c0 −ATu) = 0.(3.13)

Let Dx denote the set of u′ ∈ R
q such that J x(u′) exists. Let Z ∈ ∂Bx(u). Then

there is a sequence uk ⊂ Dx with uk → u, such that J x(uk) → Z. For any Δu ∈ R
q

and each k, we have from (3.13) that

−B∗Π′
Sn
+

(
Ḡ(x(uk),−BJ x(uk)Δu

)
+ J x(uk)Δu+ATΔu = 0.

As ΠSn
+
(·) is strongly semismooth, we know that there is W k

Δu ∈ ∂BΠSn
+
(Ḡ(x(uk)))

such that Π′
Sn
+

(
Ḡ(x(uk),−BJ x(uk)Δu

)
= W k

Δu [−BJ x(uk)Δu]. Therefore,

J x(uk)Δu = −
[
B∗W k

ΔuB + In
]−1

ATΔu,

which leads to

J x(uk)Δu ∈
{
−
[
B∗W k

ΔuB + In
]−1

ATΔu|W k
Δu ∈ ∂BΠSn

+

(
Ḡ (x(uk))

)}
.

As ∂BΠSn
+
(·) is outer semicontinuous, taking k → ∞, we obtain

ZΔu ∈
{
− [B∗WB + In]

−1 ATΔu|W ∈ ∂BΠSn
+

(
Ḡ (x(u))

)}
,

which yields the inclusion. �

Lemma 3.3. The function f is convex with

∇f(u, v) =

[
−Ax(u)
v − v0

]
(3.14)

and

∂B[∇f ](u, v) (Δu; Δv) ⊂
{[

A[B∗WB + In]
−1ATΔu

Δv

]
|W ∈ ∂BΠSn

+

(
Ḡ(x(u))

)}
,

(3.15)

∂[∇f ](u, v) (Δu; Δv) ⊂
{[

A[B∗WB + In]
−1ATΔu

Δv

]
|W ∈ ∂ΠSn

+

(
Ḡ(x(u))

)}
.

(3.16)

Furthermore, if A has full rank, then f is strongly convex on any compact set
Γ ⊂ R

q × R
q. Namely, there is some constant σ > 0 such that

f [(1− t)(u′, v′)+ t(u, v)] ≤ (1− t)f(u′, v′)+ tf(u, v)− 1

2
σt(1− t)‖(u′−u, v′ − v)‖2,

when t ∈ (0, 1) and (u′, v′), (u, v) ∈ Γ.
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Proof. It follows from (3.6) that

∇ue1/2Ψ(c0 −ATu) = −2A[c0 −ATu− x(u)].

Hence we obtain the expression (3.14) for ∇f(u, v) from (3.10). By (3.14) and
Lemma 3.2, we obtain

∂B [∇f ] (u, v)(Δu; Δv) =

{[
−AZΔu

Δv

]
|Z ∈ ∂Bx(u)

}

⊂
{[

A[B∗WB + In]
−1ATΔu

Δv

]
|W ∈ ∂BΠSn

+

(
Ḡ(x(u))

)}
.

The inclusion (3.16) comes from (3.15).
Similar to the proof for the function Ψ in Lemma 3.2, we can use (2.1), (3.16)

and (ii) of Definition 2.2 to prove that ∇f is a monotone operator, and hence f is
a convex function.

For a compact set Γ ⊂ R
q × R

q, define

γ0 := sup
u∈Πu(Γ)

{
‖B∗WB‖|W ∈ ∂ΠSn

+

(
Ḡ(x(u))

)}
,

where Πu(Γ) is the projection of Γ onto u-space, then γ0 is well defined and finite.
Let γ := min{1, (γ0 + 1)−1λmin(AAT )}. Then we have, from the assumption that
A is of full row rank and by the mean value formula, that γ > 0 and

〈∇f(u′, v′)−∇f(u, v), (u′ − u, v′ − v)〉 ≥ γ‖(u′ − u, v′ − v)‖2.

Namely ∇f is strongly monotone and hence f is strongly convex with constant
γ. �

4. Perturbation approach and convergence behavior

Now, we discuss how to solve (3.10). Due to the second-order cone complemen-
tarity constraints in (3.10), Robinson’s constraint qualifications do not hold at any
feasible point (see [35]), then the KKT conditions may fail at any local minimizer.
To overcome this difficulty, we choose a smoothing function ϕμ(u, v) = 0 to ap-
proximate the second-order cone complementarity relation u ◦ v = 0, u ∈ Qm+1,
v ∈ Qm+1, where ϕμ(u, v) = 0 is defined by

ϕμ(u, v) = u+ v −
√
(v − u)2 + 4μ2e

with e the identity element in R
m+1 and μ > 0 a parameter. It is easily verified

that limμ↘0 ϕμ(u, v) = ϕ0(u, v) and ϕ0(u, v) = 0 if and only if u◦v = 0, u ∈ Qm+1,
v ∈ Qm+1.

Define function Φμ : Rq × R
q → R

q as:

Φμ(u, v) =

⎛
⎜⎜⎜⎝

ϕ1μ(u1, v1)
ϕ2μ(u2, v2)

...
ϕJμ(uJ , vJ )

⎞
⎟⎟⎟⎠ ,
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where ϕjμ(uj , vj) = uj + vj −
√
(vj − uj)2 + 4μ2ej and ej = (1, 0, · · · , 0) ∈ R

mj+1,
j = 1, 2, · · · , J . Then, we construct a perturbation problem of (3.10) with param-
eter μ > 0 as follows:

(Pμ)
min f(u, v)
s. t. Φμ(u, v) = 0.

Obviously, function Φμ(u, v) is continuously differentiable with respect to u and v
when μ > 0.

Now we consider how close is the optimal solution set of (Pμ) from the optimal
solution set of (3.10) as μ ↘ 0. Let us introduce some notations:

Ω0
j := {(uj , vj) ∈ Qmj+1 ×Qmj+1| uj ◦ vj = 0}, j = 1, 2, · · · , J,

Ω0 := {(u, v) ∈ Q×Q| u ◦ v = 0} = Ω0
1 × Ω0

2 × · · · × Ω0
J ,

Ωj(μ) := {(uj , vj) ∈ Qmj+1 ×Qmj+1| ϕjμ(uj , vj) = 0}, j = 1, 2, · · · , J,
Ω(μ) := {(u, v) ∈ Q×Q| Φμ(u, v) = 0} = Ω1(μ)× Ω2(μ)× · · · × ΩJ (μ),

f̄(u, v, μ) :=

{
f(u, v), (u, v) ∈ Ω(μ),
∞, otherwise,

κ(μ) := inf{f(u, v)| (u, v) ∈ Ω(μ)},
S(μ) := argmin{f(u, v)| (u, v) ∈ Ω(μ)}.

We will give a conclusion about the convergence of the set-value mapping Ω(μ)
at μ = 0 with respect to R+ in the following proposition.

Proposition 4.1. Let Ω(μ) and Ω0 be defined as above. Then we have

lim
μ↘0

Ω(μ) = Ω0.

Proof. Noting that both Ω(μ) and Ω0 are the Cartesian product of finite sets,
without loss of generality, we only consider the case J = 1.

From the definition of Ω0 and Ω(μ), by Definition 2.1, one has

Ω0 =
{
[(u1;u2), (v1; v2)] ∈ Qm+1 ×Qm+1 | u1v1 + uT

2 v2 = 0, u1v2 + v1u2 = 0
}

= Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5 ∪ Ω6

with

Ω1 := {(u, v)|u = 0, v = 0} ,
Ω2 := {(u, v)|u = 0, v ∈ bdQ \ {0}} ,
Ω3 := {(u, v)|u ∈ bdQ \ {0}, v = 0} ,
Ω4 := {(u, v)|u = 0, v ∈ intQ} ,
Ω5 := {(u, v)|u ∈ intQ, v = 0} ,

Ω6 :=

{
(u, v)|u = (u1;−

u1

‖v2‖
v2) ∈ bdQ \ {0}, v = (‖v2‖; v2) ∈ bdQ \ {0}

}
,

and

Ω(μ) = {[(uμ
1 ;u

μ
2 ), (v

μ
1 ; v

μ
2 )] ∈ Qm+1 ×Qm+1|uμ

1v
μ
1 + uμT

2 vμ2

= μ2, uμ
1v

μ
2 + vμ1 u

μ
2 = 0}.

(4.1)
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It follows from Chapter 4 of [19] that lim supμ↘0 Ω(μ) ⊂ Ω0, then we only need
to establish the inclusion

Ω0 ⊂ lim inf
μ↘0

Ω(μ),(4.2)

namely, for all (u, v) ∈ Ω0, we can find (uμ, vμ) ∈ Ω(μ) with (uμ, vμ) → (u, v) when
μ ↘ 0. We consider the following six cases:
Case 1: (u, v) = (0, 0) ∈ Ω1.

Taking (uμ, vμ) = ((μ; 0), (μ; 0)), obviously, (uμ, vμ) ∈ Ω(μ) and (uμ, vμ) →
(u, v) = (0, 0) when μ ↘ 0.
Case 2: (u, v) = (0, (‖v2‖; v2)) ∈ Ω2.

Taking

uμ =

(
μ;− 2μv2

μ+
√
μ2 + 4‖v2‖2

)
, vμ =

(
μ+

√
μ2 + 4‖v2‖2
2

; v2

)
,

we have that (uμ, vμ) ∈ Ω(μ) with (uμ, vμ) → (u, v) = (0, (‖v2‖; v2)) when μ ↘ 0.
Case 3: (u, v) = ((‖u2‖;u2), 0) ∈ Ω3.

Similar to Case 2, we omit the detail.
Case 4: (u, v) = (0, (v1; v2)) ∈ Ω4.

Let

uμ
1 =

μ2v1
v21 − ‖v2‖2

, uμ
2 = − μ2v2

v21 − ‖v2‖2
, vμ1 = v1, v

μ
2 = v2,

then we see that uμ = (uμ
1 ;u

μ
2 ), v

μ = (vμ1 ; v
μ
2 ) satisfies the equation in (4.1), hence

(uμ, vμ) ∈ Ω(μ). When μ ↘ 0, we have that (uμ, vμ) → (u, v) = (0, (v1; v2)).
Case 5: (u, v) = ((u1;u2), 0) ∈ Ω5.

Similar to Case 4, we omit the details, too.

Case 6: (u, v) =

(
(u1;−

u1

‖v2‖
v2), (‖v2‖; v2)

)
∈ Ω6.

Let

uμ =

(
u1;−

2u2
1v2

μ2 +
√
μ4 + 4u2

1‖v2‖2

)
, vμ =

(
μ2 +

√
μ4 + 4u2

1‖v2‖2
2u1

; v2

)
,

then (uμ,vμ) satisfies the equation in (4.1) and (uμ, vμ) ∈ Ω(μ). Since

2u2
1v2

μ2 +
√
μ4 + 4u2

1‖v2‖2
→ u1

‖v2‖2
v2,

μ2 +
√
μ4 + 4u2

1‖v2‖2
2u1

→ ‖v2‖2 as μ ↘ 0,

we have that (uμ, vμ) → (u, v) =

(
(u1;−

u1

‖v2‖
v2), (‖v2‖; v2)

)
when μ ↘ 0.

As in each of the six cases, (uμ, vμ) can be constructed to satisfy (uμ, vμ) ∈ Ω(μ)
and (uμ, vμ) → (u, v). Therefore, (4.2) holds and the proof is completed. �

The following lemma shows the relationship between the convergence of a set-
valued mapping and the epi-convergence of the indicator function of the set-valued
mapping.

Lemma 4.1. For a set-valued mapping T : [0,∞) → R
2q, the following equivalence

holds:

lim
μ↘0

T (μ) = T (0) ⇐⇒ e− lim
μ↘0

δT (μ)(·) = δT (0)(·).



224 YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

Proof. Noting that

epi[δT (μ)(·)] = {(z, α) | z ∈ T (μ), α ≥ 0} = T (μ)× R+

and
lim
μ↘0

T (μ)× R+ = T (0)× R+ = epi[δT (0)(·)],

we obtain the equivalence. �
The following lemma discusses the epi-convergence of the sum of a function-

valued mapping and a continuous function.

Lemma 4.2. Let ψ(·) satisfy
e- lim

μ↘0
ψ(μ)(·) = ψ(0)(·)

and ψ1 be a continuous function, then

e- lim
μ↘0

[ψ(μ)(·) + ψ1(·)] = ψ(0)(·) + ψ1(·).

Proof. The conclusion is obvious by the definition of epi-convergence. �
Then the convergence behavior of the feasible set and optimal solution set of

(Pμ) is obtained in the following two theorems, which are the main results in this
paper.

Theorem 4.1. The function-valued mapping μ → f̄(·, ·, μ) is epi-continuous at
μ = 0 with respect to R+.

Proof. Since f(u, v) is continuous and from Proposition 4.1 that Ω(μ) is continuous
at μ = 0 with respect to R+, the result comes from Lemmas 4.1 and Lemma 4.2. �
Theorem 4.2. Assume A is of full row rank. Then the function κ(μ) is continuous
at μ = 0 with respect to R+ and the set-valued mapping S(μ) is outer semicontin-
uous at μ = 0 with respect to R+.

Proof. As A is of full row rank, we have from Lemma 3.3 that f is strongly convex.
Then for a given ᾱ such that lev≤ᾱf �= ∅, we have that lev≤ᾱf is a nonempty com-
pact set. Hence there is anM > 0 such that the level set lev≤ᾱf ⊂ [−M�2q,M�2q],
where �2q is a vector in R

2q with all entries being ones. Let μ̄ > 0 be a given num-
ber, and define E = [0, μ̄). As for any α ≤ ᾱ, lev≤αf̄(·, ·, μ) = lev≤αf

⋂
Ω(μ) ⊂

[−M�2q,M�2q], the level set is uniformly bounded for all μ ∈ E , i.e., f̄ is level-
bounded in (u, v) uniformly for all μ ∈ E . Hence we have, from [19, Theorem 7.41],
that κ(μ) is continuous at μ = 0 and S(μ) is outer semi-continuous at μ = 0 with
respect to R+. �

5. Smoothing Newton method for solving Pμ

We obtain that the optimal solution set of (Pμ) is outer semicontinuous at μ = 0
if we set (P0) as problem (3.10) by Theorem 4.2. Therefore, we focus on the issue
of solving (Pμ) with a sufficiently small μ > 0.

Let wj :=
√
(vj − uj)2 + 4μ2ej , w := (w1; · · · ;wJ ) ∈ R

q, Lu := diag (Lu1
, · · · ,

LuJ
), Lv := diag (Lv1 , · · · , LvJ ) and Lw := diag (Lw1

, · · · , LwJ
). The following

lemma implies the linear independent constraint qualification (LICQ) holds for
(Pμ) automatically, then we can get its KKT conditions at local optimal solutions.

Lemma 5.1. J(u,v)Φμ(u, v) is of full row rank.
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Proof. For any uj ∈ Qmj+1, vj ∈ Qmj+1, we have w2
j = (vj − uj)

2 + 4μ2ej ∈
intQmj+1, hence wj ∈ intQmj+1 by [11, Prosition 3.4]. Applying [11, Lemma 5], it
holds that

Lwj
− Lvj−uj

	 0, Lwj
+ Lvj−uj

	 0, Lwj
	 0.

Similar to the proof in [11, Corollary 5.4], for any j,

J(uj ,vj)ϕjμ(uj , vj) =
[
Imj+1 + L−1

wj
Lvj−uj

Imj+1 − L−1
wj

Lvj−uj

]
.

Suppose J(uj ,vj)ϕjμ(uj , vj)
Tdj = 0 with dj ∈ R

mj+1, namely,[
Imj+1 + Lvj−uj

L−1
wj

Imj+1 − Lvj−uj
L−1
wj

]
dj = 0

or, equivalently,

(Lwj
+ Lvj−uj

)L−1
wj

dj = 0 and (Lwj
− Lvj−uj

)L−1
wj

dj = 0.

As the matrices Lwj
+ Lvj−uj

, Lwj
− Lvj−uj

and Lwj
are invertible, we get dj = 0

for j = 1, 2, · · · , J . Similarly, suppose

J(u,v)Φμ(u, v)
Td = 0,

with d = (d1; d2; · · · ; dJ ), dj ∈ R
mj+1, j = 1, 2, · · · , J . We have

J(u,v)Φμ(u, v)
Td =

[
Iq + Lv−uL

−1
w

Iq − Lv−uL
−1
w

]
d = 0,

which implies d = 0. Then J(u,v)Φμ(u, v) is of full row rank. The proof is completed.
�

Let L : Rq × R
q × R

q → R be the Lagrange function for (Pμ):

L(u, v, λ) = f(u, v) + λTΦμ(u, v) = f(u, v) +
J∑

j=1

λT
j ϕjμ(uj , vj),

where λ = (λ1;λ2; · · · ;λJ ) ∈ R
q, λj ∈ R

mj+1, j = 1, 2, · · · , J . Define F :
R

q × R
q × R

q → R
3q:

F (u, v, λ) :=

⎡
⎣ ∇uL(u, v, λ)

∇vL(u, v, λ)
Φμ(u, v)

⎤
⎦ .

As the LICQ holds at any local minimizer (ū, v̄) of (Pμ), there is a unique
Lagrange multiplier λ̄ ∈ R

q such that the KKT conditions are satisfied at (ū, v̄, λ̄),
hence F (ū, v̄, λ̄) = 03q. Now we consider the second-order sufficient conditions of
(Pμ) at (ū, v̄, λ̄).

Lemma 5.2. Denote sj := L−1
wj

λj ∈ R
mj+1, then for any M ∈ ∂2

(u,v)L(u, v, λ)
there exists Z ∈ ∂x(u) such that

M =

[
−AZ − Ls + Lv−uL

−1
w LsL

−1
w Lv−u Ls − Lv−uL

−1
w LsL

−1
w Lv−u

Ls − Lv−uL
−1
w LsL

−1
w Lv−u Iq − Ls + Lv−uL

−1
w LsL

−1
w Lv−u

]
,

(5.1)

where Ls = diag (Ls1 , Ls2 , · · · , LsJ ).
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Proof. It follows from the proof in Lemma 5.1, we have

∇uΦμ(u, v) = Iq + Lv−uL
−1
w ,

∇vΦμ(u, v) = Iq − Lv−uL
−1
w ,

together with (3.14), it holds that

∇uL(u, v, λ) = −Ax(u) + (Iq + Lv−uL
−1
w )λ,(5.2)

∇vL(u, v, λ) = v − v0 + (Iq − Lv−uL
−1
w )λ.(5.3)

Since sj = L−1
wj

λj ∈ R
mj+1, we have Lwj

sj = λj , then

wj ◦ sj = λj .(5.4)

From [5, Lemma 3.1], taking the Jacobian matrix of both sides in equation (5.4)
with respect to (uj , vj) yields

LsjJuj
wj + Lwj

Juj
sj = 0,(5.5)

LsjJvjwj + Lwj
Jvjsj = 0.(5.6)

As Juj
wj = −L−1

wj
Lvj−uj

and Jvjwj = L−1
wj

Lvj−uj
, combining with (5.5) and (5.6),

we have that

Juj
sj = −L−1

wj
LsjJuj

wj = L−1
wj

LsjL
−1
wj

Lvj−uj
,

Jvjsj = −L−1
wj

LsjJvjwj = −L−1
wj

LsjL
−1
wj

Lvj−uj
.

Therefore,

Juj
[(Imj+1 + Lvj−uj

L−1
wj

)λj ] =Juj
(Lvj−uj

L−1
wj

λj)

=Juj
(Lvj−uj

sj)

=− Lsj + Lvj−uj
Juj

sj

=− Lsj + Lvj−uj
L−1
wj

LsjL
−1
wj

Lvj−uj
,

Jvj [(Imj+1 + Lvj−uj
L−1
wj

)λj ] =Jvj (Lvj−uj
L−1
wj

λj)

=Jvj (Lvj−uj
sj)

=Lsj + Lvj−uj
Jvjsj

=Lsj − Lvj−uj
L−1
wj

LsjL
−1
wj

Lvj−uj
;

similarly,

Juj
[(Imj+1 − Lvj−uj

L−1
wj

)λj ] =Lsj − Lvj−uj
L−1
wj

LsjL
−1
wj

Lvj−uj
,

Jvj [(Imj+1 − Lvj−uj
L−1
wj

)λj ] =− Lsj + Lvj−uj
L−1
wj

LsjL
−1
wj

Lvj−uj
.

In a compact form, one has

Ju[(Iq + Lv−uL
−1
w )λ] = −Ls + Lv−uL

−1
w LsL

−1
w Lv−u,

Jv[(Iq + Lv−uL
−1
w )λ] = Ls − Lv−uL

−1
w LsL

−1
w Lv−u,

Ju[(Iq − Lv−uL
−1
w )λ] = Ls − Lv−uL

−1
w LsL

−1
w Lv−u,

Jv[(Iq − Lv−uL
−1
w )λ] = −Ls + Lv−uL

−1
w LsL

−1
w Lv−u.

Then, for any M ∈ ∂2
(u,v)L(u, v, λ), there exists Z ∈ ∂x(u) such that

M =

[
−AZ − Ls + Lv−uL

−1
w LsL

−1
w Lv−u Ls − Lv−uL

−1
w LsL

−1
w Lv−u

Ls − Lv−uL
−1
w LsL

−1
w Lv−u Iq − Ls + Lv−uL

−1
w LsL

−1
w Lv−u

]
.

The proof is completed. �
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Assumption 5.1. Let
(
ū, v̄, λ̄

)
be a KKT point of (Pμ). Matrices Lū,Lv̄,Lw̄ and

Ls̄ satisfy

(Lw̄ + Lv̄−ū) (Lv̄−ū − Lw̄)
−1 Ls̄ + Ls̄ (Lv̄−ū − Lw̄)

−1 (Lw̄ + Lv̄−ū) � 0.

Lemma 5.3. If Assumption 5.1 holds, then the second-order sufficient condition
of (Pμ) holds at

(
ū, v̄, λ̄

)
, namely, for any M̄ ∈ ∂2

(u,v)L(ū, v̄, λ̄),

dT M̄d > 0, ∀d ∈ kerJ(u,v)Φμ(ū, v̄) \ {0},

where kerC denotes the kernel of operator C.

Proof. For any vector d = (d1; d2) ∈ kerJΦμ(ū, v̄) \ {0} with di ∈ R
q, i = 1, 2, we

have

JΦμ(ū, v̄)d = 0,

namely, (
Iq + L−1

w̄ Lv̄−ū

)
d1 +

(
Iq − L−1

w̄ Lv̄−ū

)
d2 = 0,

hence

L−1
w̄ Lv̄−ū(d2 − d1) = d1 + d2.(5.7)

As
(
Iq − L−1

w̄ Lv̄−ū

)
is invertible, we have

d2 =−
(
Iq − L−1

w̄ Lv̄−ū

)−1 (
Iq + L−1

w̄ Lv̄−ū

)
d1

= (Lv̄−ū − Lw̄)
−1

(Lw̄ + Lv̄−ū) d1.(5.8)

Therefore, under Assumption 5.1 and together with (5.7) and (5.8), it holds that

(
d1
d2

)T [−Ls̄ + Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū Ls̄ − Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

Ls̄ − Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū −Ls̄ + Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

](
d1
d2

)
(5.9)

=

(
d1
d2

)T {[
Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū −Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

−Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

]

+

[
−Ls̄ Ls̄

Ls̄ −Ls̄

]}(
d1
d2

)

=

(
d1
d2

)T [
Lv̄−ūL

−1
w̄

−Lv̄−ūL
−1
w̄

]
Ls̄

[
L−1
w̄ Lv̄−ū −L−1

w̄ Lv̄−ū

](d1
d2

)

+

(
d1
d2

)T [−Ls̄ Ls̄

Ls̄ −Ls̄

](
d1
d2

)
=(d1 − d2)

T Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū (d1 − d2)− dT1 Ls̄d1 − dT2 Ls̄d2 + 2dT1 Ls̄d2

=
(
dT1 + dT2

)
Ls̄ (d1 + d2)− dT1 Ls̄d1 − dT2 Ls̄d2 + 2dT1 Ls̄d2

= 4dT1 Ls̄ (Lv̄−ū − Lw̄)
−1 (Lw̄ + Lv̄−ū) d1

≥0.
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From Lemma 5.2, we obtain that for any M̄ ∈ ∂2
(u,v)L(ū, v̄, λ̄), there exists

Z̄ ∈ ∂x(ū) , such that

M̄ =

[
−AZ̄ − Ls̄ + Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū Ls̄ − Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

Ls̄ − Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū Iq − Ls̄ + Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

]
.

(5.10)

It follows from Lemma 3.2 that −AZ̄ is positive definite for any Z̄ ∈ ∂x(ū), then
together with (5.9) and (5.10), we have

dT M̄d

=

(
d1
d2

)T [−AZ̄ 0
0 Iq

](
d1
d2

)

+

(
d1
d2

)T [−Ls̄ + Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū Ls̄ − Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

Ls̄ − Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū −Ls̄ + Lv̄−ūL

−1
w̄ Ls̄L

−1
w̄ Lv̄−ū

](
d1
d2

)
>0

for any d = (d1; d2) ∈ kerJΦμ(u, v) \ {0}, namely the second-order sufficient con-
dition of (Pμ) holds at

(
ū, v̄, λ̄

)
. �

If the second-order sufficient condition holds at
(
ū, v̄, λ̄

)
, then

(
ū, v̄, λ̄

)
is a local

minimizer of (Pμ). Therefore we turn to solve the equation F (u, v, λ) = 0. Define

F̂ : Rn × R
q × R

q × R
q → R

3q+n:

F̂ (x, u, v, λ) :=

⎡
⎢⎢⎣

−Ax+ (Iq + Lv−uL
−1
w )λ

v − v0 + (Iq − Lv−uL
−1
w )λ

Φμ(u, v)
x− (c0 −ATu)− B∗ΠSn

+
(Ḡ(x))

⎤
⎥⎥⎦ .

Noting that ‖ΠSn
+
(Ḡ(x))‖2 + ‖x− (c0 −ATu)‖2 is strongly convex with respect to

x and x(u) is the unique solution of (3.12), then together with (5.2) and (5.3), we

have that solving F (u, v, λ) = 0 is equivalent to solving F̂ (x, u, v, λ) = 0.
Now we are in a position to state a smoothing Newton method for solving

F̂ (x, u, v, λ) = 0. Considering a square smoothing function ψ : R × Sn → Sn;
see [22], defined by

ψ(ε,X) :=
√
X2 + ε2In, ∀ (ε,X) ∈ R× Sn.

Then, ψ is continuously differentiable at (ε,X) unless ε = 0. For X ∈ Sn, we also
have the Lyapunov operator LX :

LX(Y ) := XY + Y X, ∀ Y ∈ Sn,

with L
−1
X being its inverse (if it exists at all), i.e., for any Y ∈ Sn, L−1

X (Y ) is the
unique Z ∈ Sn satisfying XZ + ZX = Y .

Let T : R×R
n×R

q×R
q×R

q → R
q×R

q×R
q×R

n be a smoothing approximation
mapping defined by

T (ε, x, u, v, λ) :=

⎡
⎢⎢⎢⎢⎣

−Ax+
(
Iq + Lv−uL

−1
w

)
λ

v − v0 +
(
Iq − Lv−uL

−1
w

)
λ

Φμ(u, v)

ATu− c0 + x− 1

2
B∗
(
Ḡ(x) +

√
Ḡ(x)2 + ε2In

)
⎤
⎥⎥⎥⎥⎦ .
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Obviously, limε→0 T (ε, x, u, v, λ) = F̂ (x, u, v, λ). The smoothing Newton method is
based on solving

E(ε, x, u, v, λ) :=

[
ε

T (ε, x, u, v, λ)

]
= 0(5.11)

and uses the merit function φ(z) := ‖E(ε, x, u, v, λ)‖2 for the line search, where
z := (ε, x, u, v, λ). Let ε̂ > 0 and η ∈ (0, 1) be such that ηε̂ < 1. Define an auxiliary
point ẑ by ẑ := (ε̂, 0, 0, 0, 0) ∈ R×R

n×R
q×R

q×R
q and θ : R×R

n×R
q×R

q×R
q →

R+ by θ(z) := ηmin{1, φ(z)}. The smoothing Newton method, proposed by [18]
can be described as follows:
Algorithm 5.1 (Smoothing Newton method)

step 1: Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̂, (x0, u0, v0,
λ0) ∈ R

n × R
q × R

q × R
q be an arbitrary point. Then let the initial point

z0 = (ε0, x0, u0, v0, λ0) and k = 0.
step 2: If E(zk) = 0, then stop; otherwise, let θk := θ(zk).
step 3: Compute Δzk := (Δεk,Δxk,Δuk,Δvk,Δλk) ∈ R×R

n×R
q×R

q×R
q

by

E(zk) + JE(zk)(Δzk) = θkẑ.(5.12)

step 4: Let lk be the smallest nonnegative integer l satisfying

φ(zk + δlΔzk) ≤ (1− 2σ(1− ηε̂)δl)φ(zk).

Define zk+1 = zk + δlkΔzk.
step 5: k := k + 1, go to Step 2.

From [18, Theorem 8], the key conditions for quadratic convergence of Algorithm
5.1 are: (a) the strong semismoothness of the smoothing function E and (b) the
nonsingularity of all matrices H ∈ ∂BE(z̄)(z̄ =

(
0, x̄, ū, v̄, λ̄

)
is a solution of E(z) =

0). Here (a) is naturally implied by the strong semismoothness of ψ, then we focus
on proving the nonsingularity of the elements in ∂BE(z̄).

Lemma 5.4. Let z̄ =
(
0, x̄, ū, v̄, λ̄

)
∈ R × R

n × R
q × R

q × R
q be a solution of

E(z) = 0. If A is of full row rank and Assumption 5.1 holds at (ū, v̄, λ̄), then for
any H ∈ ∂BE(z̄), we have H is nonsingular.

Proof. Suppose that there exists (Δε,Δx,Δu,Δv,Δλ) ∈ R × R
n × R

q × R
q × R

q

such that H(Δε,Δx,Δu,Δv,Δλ) = 0, namely,

Δε = 0,(5.13)

−AΔx+ N̄Δu− N̄Δv +
(
Iq + Lv̄−ūL

−1
w̄

)
Δλ = 0,(5.14)

−N̄Δu+Δv + N̄Δv +
(
Iq − Lv̄−ūL

−1
w̄

)
Δλ = 0,(5.15) (

Iq + L−1
w̄ Lv̄−ū

)
Δu+

(
Iq − L−1

w̄ Lv̄−ū

)
Δv = 0,(5.16)

Δx+
1

2
B∗BΔx+

1

2
B∗V (Δε,BΔx) +ATΔu = 0,(5.17)

with N̄ = −Ls̄+Lv̄−ūL
−1
w̄ Ls̄L

−1
w̄ Lv̄−ū and V ∈ ∂Bψ(0, Ḡ(x̄)). Together with (5.13),

(5.17) implies that

Δx+
1

2
B∗BΔx+

1

2
B∗V (0,BΔx) +ATΔu = 0.(5.18)
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To prove that JE(z) is nonsingular we only need to show Δz = 0. By pre-
multiplying ΔuT to both sides of (5.14) and ΔvT to both sides of (5.15), together
with the equality (5.16), we obtain that

ΔvTΔv −ΔuTAΔx+ΔuT N̄Δu+ΔvT N̄Δv − 2ΔuT N̄Δv = 0.(5.19)

By (5.18), submitting ATΔu = −
(
Δx+

1

2
B∗BΔx+

1

2
B∗V (0,BΔx)

)
to (5.19),

then

ΔuT N̄Δu+ΔvT N̄Δv − 2ΔuT N̄Δv

= −ΔxTΔx− 1

2
ΔxT (B∗BΔx+ B∗V (0,BΔx))−ΔvTΔv.(5.20)

Suppose that Ḡ(x̄) has the spectral decomposition Ḡ(x̄) = P̄ Σ̄P̄T , where Σ̄ is
the diagonal matrix of eigenvalues of Ḡ(x̄) and P̄ is a corresponding orthogonal
matrix of the orthogonal eigenvectors. Then from [22, Proposition 3.1 ], we have
that

V (0,BΔx) = P̄
[
Ω •
(
P̄T (BΔx)P̄

)]
P̄T ,

where Ω ∈ Sn
+ with all entries belonging to [−1, 1], • denotes the Hadamard product

of two matrices and

ΔxT (B∗BΔx+ B∗V (0,BΔx))

=〈BΔx,BΔx+ P̄
[
Ω •
(
P̄T (BΔx)P̄

)]
P̄T 〉

=〈P̄T (BΔx)P̄ , P̄T (BΔx)P̄ +Ω •
(
P̄T (BΔx)P̄

)
〉

≥0.

Hence the right-hand side of equation (5.20) is less than zero. On the other hand,
from (5.16), we see that (Δu; Δv) ∈ kerJ(u,v)Φμ(ū, v̄). As Assumption 5.1 holds,

by (5.9), we have ΔuT N̄Δu+ΔvT N̄Δv−2ΔuT N̄Δv ≥ 0. Then it is not difficult to
deduce from (5.20) that Δx = 0, Δv = 0. By (5.18), since A is of full row rank, we
have Δu = 0, which in turn implies Δλ = 0. Consequently, H is nonsingular. �

We now state the convergence behavior and quadratic convergence rate of Al-
gorithm 5.1 in the following theorem, which is directly from [18, Theorem 4 and
Theorem 8].

Theorem 5.1. Let a sequence {zk} be generated by Algorithm 5.1 and let z̄ :=
(ε̄, x̄, ū, v̄, λ̄) be an accumulation point {zk}. Suppose that for every k, JE(zk)
is nonsingular, matrix A is of full row rank and Assumption 5.1 holds at (ū, v̄, λ̄).
Then z̄ is a solution of E(z) = 0 and the sequence {zk} converges to z̄ quadratically.

6. Numerical results

In this section, we report the numerical experiments conducted for testing the
efficiency of Algorithm 5.1. The main task of Algorithm 5.1 for solving (Pμ), at
the k-th iterate, is to compute the direction Δzk at a given zk from the linear
system (5.12). For writing convenience, we omit the iterate index k in the following
discussion.
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It follows from [22, Lemma 2.3] that JE(z)(Δz) in linear system (5.12) has the
expression

JE(z)(Δz)(6.1)

=

⎡
⎢⎢⎢⎢⎢⎣

Δε
−AΔx+NΔu−NΔv +

(
Iq + Lv−uL

−1
w

)
Δλ

−NΔu+NΔv +Δv +
(
Iq − Lv−uL

−1
w

)
Δλ(

Iq + L−1
w Lv−u

)
Δu+

(
Iq − L−1

w Lv−u

)
Δv

Δx+ ATΔu+
1

2
B∗BΔx− 1

2
B∗

L
−1√

Ḡ(x)2+ε2In

[
LḠ(x)(−BΔx) + 2εΔεIn

]

⎤
⎥⎥⎥⎥⎥⎦
,

where N = −Ls + Lv−uL
−1
w LsL

−1
w Lv−u.

Next, we compute the term B∗
L
−1√

Ḡ(x)2+ε2In
LḠ(x)(−BΔx) in (6.1). Since Ḡ(x) ∈

Sn, suppose that Ḡ(x) has the spectral decomposition Ḡ(x) = PΣPT , where
Σ = diag(σ1, · · · , σn) is the diagonal matrix of eigenvalues of Ḡ(x) and P is a corre-

sponding orthogonal matrix of the orthogonal eigenvectors, then
√
Ḡ(x)2 + ε2In =

P
√
Σ2 + ε2InP

T .
Denote X := BΔx ∈ Sn

+, Y := L
−1√

Ḡ(x)2+ε2In
LḠ(x)(BΔx) ∈ Sn

+, we have

√
Ḡ(x)2 + ε2InY + Y

√
Ḡ(x)2 + ε2In = Ḡ(x)X +XḠ(x).(6.2)

Then (6.2) can be written as√
Σ2 + ε2InP

TY P +
√
Σ2 + ε2InP

TY P = ΣPTXP + PTXPΣ,

hence

(√
σ2
i + ε2 +

√
σ2
j + ε2

)
[PTY P ]ij = (σi + σj) [P

TXP ]ij , i, j = 1, 2, · · · , n.

(6.3)

Then

L
−1√

Ḡ(x)2+ε2In
LḠ(x)(−BΔx) = −P (Ξ • (PTBΔxP ))PT ,

where “•′′ denotes the Hadamard product and Ξ ∈ Sn
+ is defined by

[Ξ]ij =
σi + σj√

σ2
i + ε2 +

√
σ2
j + ε2

,

hence

B∗
L
−1√

Ḡ(x)2+ε2I
LḠ(x)(−BΔx) = −P (Ξ • (PTBΔxP ))PTx0.

Since JE(z) in (5.12) is a linear operator on R×R
n×R

q×R
q×R

q, it is difficult
to express it explicitly without any vector. This implies that it is impractical to
use direct methods to solve linear system (5.12). Given the fact that the operator
JE(z) is nonsymmetric, it is natural to choose the BiCGStab method as our iter-
ative solver for solving the linear system (5.12), as JE(z)(Δz) has the expression
(6.1).



232 YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

We report the numerical results of Algorithm 5.1 for solving (Pμ) with a suffi-
ciently small perturbed parameter μ in MATLAB 7.8 running on a PC Intel Core 2
of 2.40 GHz CPU and 4GB of RAM. The stopping criterion chosen for Algorithm
5.1 is

resk := ‖E(εk, xk, uk, vk, λk)‖ ≤ 10−5.

The maximum number of BiCGStab step at each iteration is set as 300. The other
parameters used in Algorithm 5.1 are set as ε̂ = 3.0, η = 0.02, δ = 0.5, σ = 0.3.
The testing examples for the inverse problem (3.2) we considered are randomly
generated, which are described below.

Example 6.1. The matrix A = (A1; · · · ;AJ) is a randomly generated q × n full
row rank matrix with entries in [-1,1] by MATLAB code:

A = 2.0 ∗ rand(q, n)− ones(q, n).

The parameter set (x0, G
0, c0, b0m1+1, · · · , b0mJ+1) required in (1.6) is generated as

follows: Let x ∈ SOL(QSOCP) with G ∈ Sn
+, c ∈ R

n, b = (bm1+1; · · · ; bmJ+1) ∈ R
q

be randomly generated. Then (x0, G
0, c0, b0m1+1, · · · , b0mJ+1) is obtained by per-

turbing (x,G, c, bm1+1, · · · , bmJ+1). We consider the inverse problem (3.2) with a
single second-order cone complementarity constraint, that is, J = 1, and solve the
corresponding perturbed problem (Pμ) with μ = 1.0e − 5, 1.0e − 6, 1.0e − 7, and
1.0e− 8, respectively.

We take the initial u0, v0 and λ0 being the random q × 1 vectors and the initial
point x0 being zero in R

n in Algorithm 5.1. The random problems of each size are
generated 50 times. The obtained results are shown in Table 1 and Table 2, and
each column represents the following:

• iter.: the average number of iterations among the test problems with the
same dimension.

• infea.: the average infeasibility among the test problems with the same
dimension. The infeasibility of inverse problem (3.2) denotes the absolute
value |〈u∗, v∗〉| at the final iteration of Algorithm 5.1, where (u∗, v∗) is the
finally iterative value when Algorithm 5.1 terminates.

• res.: the average residual norm of E(·) at the final iteration among the test
problems with the same dimension.

• time: the average cpu time among the test problems with the same dimen-
sion.

From Table 1 and Table 2, we can see that Algorithm 5.1 is able to achieve high
accuracy as the infeasibility is less than 5 × 10−8 for all the cases. The number
of iteration and the accuracy for the random problems with the same dimension
does not change so much when the parameter μ changes from 1.0e− 5 to 1.0e− 8.
However, for a group of problems with the same dimension, Algorithm 5.1 takes a
little longer cpu time to solve problem (Pμ) with μ = 1.0e− 5 than with the other
three parameters. When μ ≤ 1.0e − 8, by our numerical observation, the matrix
Lwk generated in some iterations may be close to be singular for n more than 200.

Therefore, the performance of Algorithm 5.1 for solving Pμ with μ = 1.0e − 6
and μ = 1.0e− 7 is better than that with μ = 1.0e− 5 and μ = 1.0e− 8.
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Example 6.2. All the data are the same as in Example 6.1. We consider the
inverse problem (3.2) with multiple second-order cone complementarity constraints,
and solve the corresponding perturbed problem (Pμ) with μ ≡ 1.0e− 6.

The random problems of each size for Example 6.2 are generated 10 times, and
the initial u0, v0, λ0 ∈ R

q are randomly generated and the initial point x0 is chosen
to be zero in R

n. The obtained results are listed in Table 3 with “Q” being the
structure of second-order cones and “iter.”, “infea.”, “res.” representing the same as
which in Table 1 and Table 2. From the numerical results reported in Table 3, we can
see that the cpu time is relevant to not only the variable dimensionsm, q but also the
number of second-order cone complementarity constraints in the inverse problem
(3.2). For cases with the same dimensions m and q, Algorithm 5.1 for solving the
corresponding perturbed problem (Pμ) with less second-order cone blocks in the
constraints converges faster than that with more second-order cone blocks. The
largest numerical example we tested in this paper is n = 1000, q = 400. In this
case, there are roughly 1,000,000 unknowns in the primal problem. Regarding the
scales of problems solved, cpu time spent and the accuracy achieved in Table 3, the
smoothing Newton method we adopted to solve (Pμ) is quite effective.

Table 1. Numerical results for Example 6.1 with μ = 1.0e − 5
and μ = 1.0e− 6

μ = 1.0e− 5 μ = 1.0e− 6
n q

iter. infea. res. time iter. infea. res. time

50 20 26.7 2.3e-10 6.66e-06 1.6s 26.0 1.9e-09 7.51e-06 1.3s

100 40 26.5 2.2e-09 6.27e-06 4.9s 25.5 6.9e-09 7.96e-06 3.5s

200 80 29.0 1.1e-08 6.35e-06 25.2s 26.7 9.6e-10 7.14e-06 19.9s

300 120 32.0 3.9e-08 5.98e-06 2m49.7s 28.3 6.7e-09 7.32e-06 1m43.5s

500 200 29.0 1.9e-08 7.15e-06 10m49.3s 28.7 2.4e-09 5.91e-06 8m12.9s

800 320 32.1 4.1e-08 7.66e-06 49m54.1s 29.9 3.0e-09 7.30e-06 38m1.0s

Table 2. Numerical results for Example 6.1 with μ = 1.0e − 7
and μ = 1.0e− 8

μ = 1.0e− 7 μ = 1.0e− 8
n q

iter. infea. res. time iter. infea. res. time

50 20 25.7 5.4e-09 6.78e-06 1.4s 26.5 2.0e-09 7.00e-06 1.5s

100 40 26.1 1.2e-08 6.80e-06 3.8s 27.1 5.9e-10 7.71e-06 3.8s

200 80 27.7 2.5e-09 6.64e-06 21.8s 27.3 1.6e-08 6.95e-06 22.9s

300 120 26.8 2.3e-08 7.35e-06 1m44.3s 28.0 1.1e-08 6.77e-06 1m58.8s

500 200 28.5 4.6e-09 7.45e-06 8m21.8s 27.7 1.3e-10 5.60e-06 8m31.0s

800 320 29.0 1.6e-08 5.07e-06 38m41.3s 27.1 1.0e-08 6.40e-06 40m12.7s



234 YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

Table 3. Numerical results for Example 6.2

n q Q iter. infea. res. time

50 20 Q10 ×Q10 33.3 9.2e-10 6.66e-06 3.2s

50 20 Q5 ×Q5 ×Q5 ×Q5 36.5 5.8e-09 6.14e-06 4.9s

100 40 Q20 ×Q20 33.8 4.2e-09 7.24e-06 7.6s

100 40 Q10 ×Q10 ×Q10 ×Q10 35.9 1.8e-08 8.13e-06 11.7s

100 40 Q5 ×Q5 ×Q5 ×Q5 ×Q5 ×Q5 ×Q5 ×Q5 48.7 7.9e-09 1.92e-06 33.4s

200 80 Q40 ×Q40 34.1 7.3e-08 4.16e-06 34.6s

200 80 Q20 ×Q20 ×Q20 ×Q20 37.5 6.5e-09 7.72e-06 59.4s

200 80 Q16 ×Q16 ×Q16 ×Q16 ×Q16 35.8 1.5e-09 8.43e-06 1m7.8s

200 80 Q10 ×Q10 ×Q10 ×Q10 ×Q10 ×Q10 ×Q10 ×Q10 45.4 9.8e-09 6.61e-06 1m26.3s

300 120 Q60 ×Q60 32.7 1.2e-08 7.11e-06 1m57.8s

300 120 Q40 ×Q40 ×Q40 32.3 1.0e-08 8.37e-06 2m10.3s

300 120 Q30 ×Q30 ×Q30 ×Q30 38.8 1.6e-09 9.31e-06 3m16.9s

300 120 Q20 ×Q20 ×Q20 ×Q20 ×Q20 ×Q20 39.5 2.7e-10 7.21e-06 3m45.7s

400 160 Q80 ×Q80 29.7 4.7e-08 8.64e-06 4m42.2s

400 160 Q40 ×Q40 ×Q40 ×Q40 37.6 1.8e-08 7.82e-06 5m45.8s

400 160 Q20 ×Q20 ×Q20 ×Q20 ×Q20 ×Q20 ×Q20 ×Q20 38.0 2.5e-09 7.07e-06 9m15.3s

500 200 Q100 ×Q100 28.0 3.9e-09 7.83e-06 8m15.5s

500 200 Q50 ×Q50 ×Q50 ×Q50 37.1 2.8e-08 7.72e-06 11m34.7s

500 200 Q25 ×Q25 ×Q25 ×Q25 ×Q25 ×Q25 ×Q25 ×Q25 40.2 9.5e-10 8.55e-06 15m47.5s

600 240 Q120 ×Q120 36.0 2.6e-08 7.07e-06 17m28.3s

600 240 Q60 ×Q60 ×Q60 ×Q60 38.5 6.4e-09 8.04e-06 22m15.7s

600 240 Q40 ×Q40 ×Q40 ×Q40 ×Q40 ×Q40 35.2 8.9e-09 8.03e-06 24m52.5s

600 240 Q30 ×Q30 ×Q30 ×Q30 ×Q30 ×Q30 ×Q30 ×Q30 47.4 5.8e-10 5.65e-06 46m3.9s

800 320 Q160 ×Q160 32.3 1.3e-08 6.06e-06 41m40.6s

800 320 Q80 ×Q80 ×Q80 ×Q80 34.4 1.4e-09 8.25e-06 49m1.1s

800 320 Q40 ×Q40 ×Q40 ×Q40 ×Q40 ×Q40 ×Q40 ×Q40 35.7 2.2e-09 8.28e-06 1h7m7.9s

1000 400 Q200 ×Q200 33.4 8.3e-10 8.21e-06 1h2m10.0s

1000 400 Q100 ×Q100 ×Q100 ×Q100 34.0 1.1e-08 1.44e-06 1h14m9.3s

1000 400 Q50 ×Q50 ×Q50 ×Q50 ×Q50 ×Q50 ×Q50 ×Q50 39.2 2.4e-09 8.56e-06 1h38m21.4s

7. Conclusion

In this paper, we study an inverse second-order cone quadratic programming
problem in which the parameters in both the objective function and the constraint
set need to be adjusted. By the duality theory, we formulate the inverse problem as
a linear second-order cone complementarity constrained optimization problem with
semismoothly differentiable objective function involving a mapping x(u) which is
defined by a Yosida-regularization. We use a smoothing function to approximate the
complementarity relation and demonstrate the outer semicontinuous of the optimal
solution set of the perturbed problem (Pμ). The smoothing Newton method with
Armijo line search is employed to solve (Pμ) and the numerical results reported
show that our algorithm is quite effective.

The methodology in this paper can be extended to solve other inverse conic
optimization problems in which both the objective function and the constraint set
need to be adjusted.
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[20] Stefan Scholtes and Michael Stöhr, Exact penalization of mathematical programs with equi-
librium constraints, SIAM J. Control Optim. 37 (1999), no. 2, 617–652 (electronic), DOI
10.1137/S0363012996306121. MR1670641 (99k:90179)

[21] Stefan Scholtes, Convergence properties of a regularization scheme for mathematical pro-
grams with complementarity constraints, SIAM J. Optim. 11 (2001), no. 4, 918–936 (elec-
tronic), DOI 10.1137/S1052623499361233. MR1855214 (2002g:90138)

http://www.ams.org/mathscinet-getitem?mr=1860425
http://www.ams.org/mathscinet-getitem?mr=1860425
http://www.ams.org/mathscinet-getitem?mr=1971381
http://www.ams.org/mathscinet-getitem?mr=1971381
http://www.ams.org/mathscinet-getitem?mr=1151764
http://www.ams.org/mathscinet-getitem?mr=1151764
http://www.ams.org/mathscinet-getitem?mr=1714066
http://www.ams.org/mathscinet-getitem?mr=1714066
http://www.ams.org/mathscinet-getitem?mr=2424468
http://www.ams.org/mathscinet-getitem?mr=2424468
http://www.ams.org/mathscinet-getitem?mr=2035714
http://www.ams.org/mathscinet-getitem?mr=2035714
http://www.ams.org/mathscinet-getitem?mr=709590
http://www.ams.org/mathscinet-getitem?mr=709590
http://www.ams.org/mathscinet-getitem?mr=1933965
http://www.ams.org/mathscinet-getitem?mr=1933965
http://www.ams.org/mathscinet-getitem?mr=1689366
http://www.ams.org/mathscinet-getitem?mr=1689366
http://www.ams.org/mathscinet-getitem?mr=1955648
http://www.ams.org/mathscinet-getitem?mr=1955648
http://www.ams.org/mathscinet-getitem?mr=1885570
http://www.ams.org/mathscinet-getitem?mr=1885570
http://www.ams.org/mathscinet-getitem?mr=2108284
http://www.ams.org/mathscinet-getitem?mr=2108284
http://www.ams.org/mathscinet-getitem?mr=1774773
http://www.ams.org/mathscinet-getitem?mr=1774773
http://www.ams.org/mathscinet-getitem?mr=2891938
http://www.ams.org/mathscinet-getitem?mr=1419501
http://www.ams.org/mathscinet-getitem?mr=1419501
http://www.ams.org/mathscinet-getitem?mr=2179251
http://www.ams.org/mathscinet-getitem?mr=2179251
http://www.ams.org/mathscinet-getitem?mr=1216791
http://www.ams.org/mathscinet-getitem?mr=1216791
http://www.ams.org/mathscinet-getitem?mr=1734657
http://www.ams.org/mathscinet-getitem?mr=1734657
http://www.ams.org/mathscinet-getitem?mr=1491362
http://www.ams.org/mathscinet-getitem?mr=1491362
http://www.ams.org/mathscinet-getitem?mr=1670641
http://www.ams.org/mathscinet-getitem?mr=1670641
http://www.ams.org/mathscinet-getitem?mr=1855214
http://www.ams.org/mathscinet-getitem?mr=1855214


236 YI ZHANG, LIWEI ZHANG, JIA WU, AND JIANZHONG ZHANG

[22] Jie Sun, Defeng Sun, and Liqun Qi, A squared smoothing Newton method for nonsmooth
matrix equations and its applications in semidefinite optimization problems, SIAM J. Optim.
14 (2003), no. 3, 783–806, DOI 10.1137/S1052623400379620. MR2085943 (2005g:90098)

[23] Defeng Sun, The strong second-order sufficient condition and constraint nondegeneracy in
nonlinear semidefinite programming and their implications, Math. Oper. Res. 31 (2006),
no. 4, 761–776, DOI 10.1287/moor.1060.0195. MR2281228 (2007m:90060)

[24] Defeng Sun, Jie Sun, and Liwei Zhang, The rate of convergence of the augmented Lagrangian

method for nonlinear semidefinite programming, Math. Program. 114 (2008), no. 2, Ser. A,
349–391, DOI 10.1007/s10107-007-0105-9. MR2393047 (2009c:90077)

[25] Jia Wu, Liwei Zhang, and Yi Zhang, A smoothing Newton method for mathematical programs
governed by second-order cone constrained generalized equations, J. Global Optim. 55 (2013),
no. 2, 359–385, DOI 10.1007/s10898-012-9880-9. MR3015981

[26] Xiantao Xiao and Liwei Zhang, Solving a class of inverse QP problems by a smoothing
Newton method, J. Comput. Math. 27 (2009), no. 6, 787–801, DOI 10.4208/jcm.2009.09-
m2674. MR2583394 (2011a:90079)

[27] Xiantao Xiao, Liwei Zhang, and Jianzhong Zhang, A smoothing Newton method for a type of
inverse semi-definite quadratic programming problem, J. Comput. Appl. Math. 223 (2009),
no. 1, 485–498, DOI 10.1016/j.cam.2008.01.028. MR2463131 (2010a:90067)

[28] X. Xiao, L.Zhang and J. Zhang, On convergence of augmented Lagrange method for in-
verse semidefinite quadratic programming problems, Journal of Industrial and Management
Optimization 52(2009), 319-339.

[29] Jianzhong Zhang and Zhenhong Liu, Calculating some inverse linear programming prob-
lems, J. Comput. Appl. Math. 72 (1996), no. 2, 261–273, DOI 10.1016/0377-0427(95)00277-4.
MR1406213 (97d:90056)

[30] Jianzhong Zhang and Zhenhong Liu, A further study on inverse linear programming problems,
J. Comput. Appl. Math. 106 (1999), no. 2, 345–359, DOI 10.1016/S0377-0427(99)00080-1.
MR1696416 (2000c:90047)

[31] Jianzhong Zhang, Zhenhong Liu, and Zhongfan Ma, Some reverse location problems, Eu-
ropean J. Oper. Res. 124 (2000), no. 1, 77–88, DOI 10.1016/S0377-2217(99)00122-8.
MR1778308 (2001j:90039)

[32] Jianzhong Zhang and Liwei Zhang, An augmented Lagrangian method for a class of in-
verse quadratic programming problems, Appl. Math. Optim. 61 (2010), no. 1, 57–83, DOI
10.1007/s00245-009-9075-z. MR2575314 (2011b:90155)

[33] Jianzhong Zhang, Liwei Zhang, and Xiantao Xiao, A perturbation approach for an inverse
quadratic programming problem, Math. Methods Oper. Res. 72 (2010), no. 3, 379–404, DOI
10.1007/s00186-010-0323-4. MR2739050 (2011j:90119)

[34] Yi Zhang, Liwei Zhang, and Jia Wu, Convergence properties of a smoothing approach for
mathematical programs with second-order cone complementarity constraints, Set-Valued Var.
Anal. 19 (2011), no. 4, 609–646, DOI 10.1007/s11228-011-0190-z. MR2836713 (2012j:90180)

[35] Y. Zhang, J. Wu and L. Zhang, First order necessary optimality conditions for mathematical
programs with second-order cone complementarity constraints, submitted.

Department of Mathematics, School of Science, East China University of Science

and Technology, Shanghai, 200237, China.

E-mail address: zhangyi8407@163.com

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024,

China.

E-mail address: lwzhang@dlut.edu.cn

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024,

China.

E-mail address: wujia@dlut.edu.cn

Division of Science and Technology, Beijing Normal University-Hong Kong Baptist

University United International College, Zhuhai, 519085, China.

E-mail address: jzzhang@uic.edu.hk

http://www.ams.org/mathscinet-getitem?mr=2085943
http://www.ams.org/mathscinet-getitem?mr=2085943
http://www.ams.org/mathscinet-getitem?mr=2281228
http://www.ams.org/mathscinet-getitem?mr=2281228
http://www.ams.org/mathscinet-getitem?mr=2393047
http://www.ams.org/mathscinet-getitem?mr=2393047
http://www.ams.org/mathscinet-getitem?mr=3015981
http://www.ams.org/mathscinet-getitem?mr=2583394
http://www.ams.org/mathscinet-getitem?mr=2583394
http://www.ams.org/mathscinet-getitem?mr=2463131
http://www.ams.org/mathscinet-getitem?mr=2463131
http://www.ams.org/mathscinet-getitem?mr=1406213
http://www.ams.org/mathscinet-getitem?mr=1406213
http://www.ams.org/mathscinet-getitem?mr=1696416
http://www.ams.org/mathscinet-getitem?mr=1696416
http://www.ams.org/mathscinet-getitem?mr=1778308
http://www.ams.org/mathscinet-getitem?mr=1778308
http://www.ams.org/mathscinet-getitem?mr=2575314
http://www.ams.org/mathscinet-getitem?mr=2575314
http://www.ams.org/mathscinet-getitem?mr=2739050
http://www.ams.org/mathscinet-getitem?mr=2739050
http://www.ams.org/mathscinet-getitem?mr=2836713
http://www.ams.org/mathscinet-getitem?mr=2836713

	1. Introduction
	1.1. Motivation
	1.2. The problem description and paper organization

	2. Preliminaries
	2.1. Background in nonsmooth analysis and variational analysis
	2.2. Basic results for a second-order cone

	3. Problem reformulation
	4. Perturbation approach and convergence behavior
	5. Smoothing Newton method for solving 𝑃_{𝜇}
	6. Numerical results
	7. Conclusion
	Acknowledgement
	References

