
MATHEMATICS OF COMPUTATION
Volume 84, Number 291, January 2015, Pages 475–484
S 0025-5718(2014)02857-3
Article electronically published on May 6, 2014

A FAST ALGORITHM FOR REVERSION OF POWER SERIES

FREDRIK JOHANSSON

Abstract. We give an algorithm for reversion of formal power series, based on
an efficient way to implement the Lagrange inversion formula. Our algorithm
requires O(n1/2(M(n)+MM(n1/2))) operations where M(n) and MM(n) are
the costs of polynomial and matrix multiplication, respectively. This matches
the asymptotic complexity of an algorithm of Brent and Kung, but we achieve
a constant factor speedup whose magnitude depends on the polynomial and
matrix multiplication algorithms used. Benchmarks confirm that the algorithm
performs well in practice.

1. Introduction

Classical algorithms for composition and reversion of power series truncated to
order n require O(n3) operations on elements in the coefficient ring [13]. This can
be improved to O(nM(n)) where M(n) is the cost of multiplying polynomials of
degree less than n. In [5], Brent and Kung gave two asymptotically faster algorithms
for composition, and observed that any algorithm for composition can be used for
reversion (and vice versa) via Newton iteration, with at most a constant factor
slowdown.

The first algorithm (BK 2.1) requires O(n1/2(M(n) + MM(n1/2))) operations
where MM(n) is the complexity of multiplying two n×n matrices. This reduces to
O(n1/2M(n) + n2) with classical matrix multiplication, and O(n1/2M(n) + n1.91)
with the Strassen algorithm. The last term can be improved to O(n1.688) with the
Coppersmith-Winograd algorithm [18], or O(n1.68632) with the recent bound for
MM(n) by Stothers [16] and Vassilevska Williams [19]. The best available bound
for the last term is O(n1.667), obtained by Huang and Pan [11] using improved
techniques for multiplication of nonsquare matrices.

The second algorithm (BK 2.2) requires O((n logn)1/2M(n)) operations. This
is asymptotically slower than BK 2.1 when classical (M(n) = O(n2)) or Karatsuba
multiplication (M(n) = O(nlog2 3) = O(n1.585)) is used, but faster when FFT

polynomial multiplication (M(n) = O(n log1+o(1) n)) is available [3, 18].
As noted by Brent and Kung, many special left-compositions, including the

evaluation of reciprocals, square roots, and elementary transcendental functions
of power series, can be done in merely O(M(n)) operations. Recent research has
focused on speeding up such evaluations by constant factors by eliminating redun-
dancy from Newton iteration [2, 7, 9]. Algorithms with quasi-linear complexity are
also known for certain right-compositions, including right-composition by algebraic
functions [17] and some special functions [4]. Improved composition algorithms
over special rings have also been investigated [1, 12, 15]. However, the algorithms

Received by the editor August 22, 2011 and, in revised form, April 26, 2013.
2010 Mathematics Subject Classification. Primary 68W30.
This work was supported by Austrian Science Fund (FWF) grant Y464-N18.

c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

475

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02857-3

476 FREDRIK JOHANSSON

of Brent and Kung have remained the best known for composition and reversion in
the general case.

In this paper, we give a new algorithm for reversion analogous to BK 2.1 and
likewise requiring O(n1/2(M(n)+MM(n1/2))) operations, but achieving a constant
factor speedup. The speedup ratio depends on the asymptotics ofM(n) andMM(n)
and is in the range between 1.2 and 2.6 with polynomial and matrix multiplication
algorithms used in practice. Our algorithm also allows incorporating the complexity
refinement of Huang and Pan.

Whereas BK 2.1 can be viewed as a baby-step giant-step version of Horner’s
rule, our algorithm can be viewed as a baby-step giant-step version of the Lagrange
inversion formula, avoiding Newton iteration entirely (apart from a single O(M(n))
reciprocal computation). It is somewhat surprising that such an algorithm has been
overlooked until now, with all publications following Brent and Kung apparently
having taken Newton iteration as the final word on the subject matter.

2. The algorithm

Our setting is the ring of truncated power series R[[x]]/〈xn〉 over a commutative
coefficient ring R in which the integers 1, . . . , n−1 are cancellable (i.e., nonzero and
not zero divisors). For example, we may take R = Z or R = Z/pZ with prime p ≥ n.
We recall the Lagrange inversion formula ([13], p. 527). If f(x) = x/h(x) where
h(0) is a unit in R, then the compositional inverse or reversion f−1(x) satisfying
f(f−1(x)) = f−1(f(x)) = x exists and its coefficients are given by

[xk]f−1(x) =
1

k
[xk−1]h(x)k.

The straightforward way to evaluate n terms of f−1(x) with the Lagrange in-
version formula is to compute h(x) (this requires O(M(n)) operations with New-
ton iteration) and then compute the powers h2, h3, . . . successively, for a total of
(n+O(1))M(n) operations.

Our observation is that it is redundant to compute all the powers of h given that
we only are interested in a single coefficient from each. To do better, we choose some
1 ≤ m < n and precompute h, h2, h3, . . . , hm. For 0 ≤ k < n, we can then write
hk as hi+j where 0 ≤ j < m and i = lm for some 0 ≤ l ≤ �n/m�, only requiring
hm, h2m, h3m, . . . to be computed subsequently. Determining a single coefficient in
hk = hihj can then be done in O(n) operations using the definition of the Cauchy
product. Picking m ≈ n1/2 minimizes the number of polynomial multiplications
required.

We give a detailed account of this procedure as Algorithm 1. We note that most
of the polynomial arithmetic is done to length n − 1 rather than length n, as the
initial coefficient is always zero.

An improved version. Algorithm 1 clearly requires O(n1/2M(n)+n2) operations
in R, as many as BK 2.1 with classical matrix multiplication. We can improve the
complexity by packing the inner loops into a single matrix product as shown in
Algorithm 2. This allows us to exploit fast matrix multiplication.

In the description of Algorithm 2, the matrices are indexed from 1 and the
pseudocode has been simplified by letting the exponents run out of bounds, using
the convention that [xk]p = 0 when k < 0 or k ≥ n− 1. To see that the algorithm

A FAST ALGORITHM FOR REVERSION OF POWER SERIES 477

Algorithm 1 Fast Lagrange inversion

Input: f = a1x+ a2x
2 + . . .+ an−1x

n−1 where n > 1 and a1 is a unit in R
Output: g = b1x+ . . .+ bn−1x

n−1 such that f(g(x)) = g(f(x)) = x mod xn

m ← �
√
n− 1�

h ← x/f mod xn−1

for 1 ≤ i < m do
hi+1 ← hi × h mod xn−1

bi ← 1
i [x

i−1]hi

end for
t ← hm

for i = m, 2m, 3m, . . . , lm < n do
bi ← 1

i [x
i−1]t

for 1 ≤ j < m while i+ j < n do

bi+j ← 1
i+j

∑i+j−1
k=0 ([xk]t) · ([xi+j−k−1]hj)

end for
t ← t× hm mod xn−1

end for
return b1 + b2x+ . . .+ bn−1x

n−1

Algorithm 2 Fast Lagrange inversion, matrix version

Input: f = a1x+ a2x
2 + . . .+ an−1x

n−1 where n > 1 and a1 is a unit in R
Output: g = b1x+ . . .+ bn−1x

n−1 such that f(g(x)) = g(f(x)) = x mod xn

m ← �
√
n− 1�

h ← x/f mod xn−1

Assemble m×m2 matrices B and A from h, h2, . . . , hm and hm, h2m, h3m,
for 1 ≤ i ≤ m, 1 ≤ j ≤ m2 do
Bi,j ← [xi+j−m−1] hi

Ai,j ← [xim−j] h(i−1)m

end for
C ← ABT

for 1 ≤ i < n do
bi ← Ci/i (Ci is the ith entry of C read rowwise)

end for
return b1 + b2x+ . . .+ bn−1x

n−1

is correct, write [xi1+(i2−1)m−1]hi1+(i2−1)m as

i1+(i2−1)m−1∑
j=0

([
xj
]
hi1

) ([
xi1+(i2−1)m−1−j

]
h(i2−1)m

)

and shift the summation index to obtain

i2m∑
j=m−i1+1

([
xi1+j−m−1

]
hi1

) ([
xi2m−j

]
h(i2−1)m

)

which is the inner product of the nonzero part of row i1 in B with the nonzero part
of row i2 in A.

478 FREDRIK JOHANSSON

The structure of the matrices is perhaps illustrated more clearly by an example.
Taking n = 8 and m = 3, we need the coefficients of 1, x, . . . , x6 in powers of h.
Letting hk

i denote [xi]hk, the matrices become

A =

⎛
⎝ h0

2 h0
1 h0

0 0 0 0 0 0 0
h3
5 h3

4 h3
3 h3

2 h3
1 h3

0 0 0 0
(h6

8) (h6
7) h6

6 h6
5 h6

4 h6
3 h6

2 h6
1 h6

0

⎞
⎠ ,

B =

⎛
⎝ 0 0 h1

0 h1
1 h1

2 h1
3 h1

4 h1
5 h1

6

0 h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6 (h2

7)
h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6 (h3

7) (h3
8)

⎞
⎠ ,

where entries in parentheses do not contribute to the final result and may be set
to zero. In this example the coefficient of x4 in h5 is given by the fifth entry in C,
namely C2,2 = h3

4h
2
0 + h3

3h
2
1 + h3

2h
2
2 + h3

1h
2
3 + h3

0h
2
4.

3. Complexity analysis

We now study the complexity in some more detail. Let m = �
√
n− 1�. Then

Algorithm 2 involves at most:

(1) 2m+O(1) polynomial multiplications, each with cost M(n),
(2) one (m×m2) times (m2 ×m) matrix multiplication,
(3) O(n) additional operations.

For comparison, BK 2.1 requires at most:

(1) m polynomial multiplications, each with cost M(n),
(2) one (m×m) times (m×m2) matrix multiplication,
(3) m polynomial multiplications and additions, each with cost M(n) + n.

Brent and Kung break the matrix multiplication into m products of m × m
matrices, requiring mMM(m) operations. We can do the same in Algorithm 2,
writing the product as a length-m inner product of m × m matrices. The extra
O(n3/2) additions in this matrix operation do not affect the complexity, but it is
interesting to note that they match the O(n3/2) additions in the last polynomial
stage of BK 2.1. To summarize, both Algorithm 2 and BK 2.1 require at most
(2n1/2 +O(1))M(n) + n1/2MM(n1/2) +O(n3/2) operations.

The primary drawback of our algorithm as well as BK 2.1 is the requirement to
store O(n3/2) temporary coefficients in memory, compared to O(n logn) for BK 2.2
and O(n) for a naive implementation of Lagrange inversion.

Avoiding Newton iteration. In effect, we need the same number of operations
to perform a length-n reversion with fast Lagrange inversion as to perform a length-
n composition with BK 2.1. However, to perform a reversion with BK 2.1, we must
employ Newton iteration. Using the update

gk+1(x) =
f(gk(x))− x

f ′(gk(x))
,

where the chain rule allows us to reuse the composition in the numerator for the
denominator, this entails computing a sequence of compositions of length l =
1, . . . , �n/4�, �n/2�, n, plus a fixed number of polynomial multiplications of the

A FAST ALGORITHM FOR REVERSION OF POWER SERIES 479

same length at each stage. If c and r are such that a length-n composition takes
C(n) = cnr operations, Newton iteration asymptotically takes

C(n) + C(n/2) + C(n/4) + . . . = cnr

(
2r

2r − 1

)
operations, ignoring additional polynomial multiplications. For example, with clas-
sical polynomial multiplication as the dominant cost (r = 5/2), the speedup given

by the expression in parentheses is 4
31 (8 +

√
2) ≈ 1.214 . With FFT polynomial

multiplication, and classical matrix multiplication as the dominant cost (r = 2),
the speedup is 4/3. We note that a more efficient form of the Newton iteration
might exist, in which case the speedup would be smaller.

Improving the matrix multiplication. If the matrix multiplication dominates,
we can gain an additional speedup from the fact that the ith m ×m block of the
matrix A only has m − i + 1 nonzero rows, whereas the matrices in BK 2.1 are
full. Classically, this gives a twofold speedup, reflected in the loop boundaries of
Algorithm 1. We should ideally modify Algorithm 2 to include this saving.

In fact, a speedup is attainable with any square matrix multiplication algorithm
MM(m) ∼ mω where ω > 2. For simplicity, assume thatm is sufficiently composite.
Do the first m/2 products as full products of size m, the next (m/2−m/3) in blocks
of size m/2, the next (m/3 − m/4) in blocks of size m/3, and so on. At stage k,
only k2 products of blocks of size m/k are required. The speedup achieved through
this procedure is

mω+1

(∞∑
k=1

(
m

k
− m

k + 1

)
k2

(m
k

)ω
)−1

>

(∞∑
k=0

2k−1

2kω

)−1

= 2− 22−ω > 1,

where the nontrivial inequality can be obtained by considering the analogous sub-
divison with blocks of size m/2k only.

Alternatively, we can write ABT = (AP)(P−1BT) where P is a permutation
matrix that makes each m×m block in A lower triangular, and use any algorithm
that speeds up multiplication between a full and a triangular matrix. A simple
recursive decomposition of size-k blocks into size-k/2 blocks has a proportional
cost of C(k) = 4C(k/2) + 2(k/2)ω + O(k2), providing a speedup of 2ω−1 − 2.
This is greater than 1 when ω > log2 6 ≈ 2.585, and better than the first method

when ω > 1 + log2(2 +
√
2) ≈ 2.771. In particular, we recover an optimal factor-

two speedup with classical multiplication, and a 3/2 speedup with the Strassen
algorithm.

Using rectangular multiplication. Let n = m2. In the preceding analysis, we
have multiplied m×n matrices via decomposition into square blocks. Remarkably,
Huang and Pan have shown [11] that this is not asymptotically optimal with the
best presently known algorithms. Letting MM(x, y, z) denote the complexity of
multiplying a matrix of size x×y by a matrix of size y×z, Huang and Pan show that
MM(m,m, n) = O(n1.667), improving on the best known bound mMM(m,m,m) =
O(n1.68632) obtained via multiplication of square matrices.

The complexity improvement of Huang and Pan also translates to Algorithm 2.
More precisely, given any algorithm for m×m by m×n matrix multiplication over a
general ring, there is a transposed version for m×n by n×m matrix multiplication
that uses the same number of scalar multiplications [10] and a number of extra

480 FREDRIK JOHANSSON

Table 1. Theoretical speedup of Algorithm 2 over BK 2.1 due
to avoiding Newton iteration and exploiting the matrix structure.
*Assuming that matrix multiplication can be ignored.

Dominant operation Complexity Newton Matrix Total

Polynomial, classical O(n5/2) 1.214 1 1.214
Polynomial, Karatsuba O(n1/2+log2 3) 1.308 1 1.308

Matrix, classical O(n2) 1.333 2.000 2.666

Matrix, classical, n-bit coeff. O(n3+o(1)) 1.142 2.000 2.285
Matrix, Strassen O(n(1+log2 7)/2) 1.364 1.500 2.047
Matrix, Cop.-Win. O(n1.688) 1.450 1.229 1.782
Matrix, Huang-Pan O(n1.667) 1.458 1? 1.458?

(Polynomial, FFT)* O(n3/2+o(1)) 1.546 1 1.546
(Polynomial, FFT, n-bit coeff.)* O(n5/2+o(1)) 1.214 1 1.214

scalar additions bounded by the number of entries [14]. We can therefore take
MM(m,n,m) = (1 + o(1))MM(m,m, n).

With the Huang-Pan algorithm, we do not know whether a constant factor can be
saved by exploiting the zero entries. This problem would be interesting to explore
further. In any case, the Huang-Pan algorithm is currently only of theoretical
interest, as the advantage probably only can be realized for infeasibly large matrices.

Practical performance. Table 1 gives a summary of the theoretical speedup
gained by Algorithm 2 over BK 2.1 with various matrix and polynomial multiplica-
tion algorithms. With FFT-based polynomial multiplication, BK 2.2 is asymptot-
ically faster than BK 2.1 and hence also than Algorithm 2. In practice, however,
the overhead of quasilinear polynomial multiplication compared to matrix multi-
plication is likely to be large. Fast Lagrange inversion can therefore be expected to
be faster than not only BK 2.1 but also BK 2.2 even for quite large n.

Of course, counting ring operations may not accurately reflect actual speed since
operations in most interesting rings take a variable amount of time to execute on a
physical computer. One consequence of this fact is that Newton iteration is likely
to impose a smaller overhead than predicted, since coefficients generally are smaller
in earlier steps than in later ones. Newton iteration can also be expected to perform
better than generically when the output as a whole has small coefficients.

Over Z, in particular, arithmetic operations with b-bit numbers cost O(b1+o(1)),
where the complexity measure is the number of bit operations. In power series
arising in applications, we often have b = O(n1±ε). Two complexity estimates
based on this assumption are included in Table 1. In practice, the speed will
be sensitive to the sizes of the coefficients appearing internally in each algorithm,
varying with the structure of f(x).

We note that fast Lagrange inversion becomes faster than generically when the
coefficients of x/f(x) grow slowly. This is often the case when f(x) is a rational
function. The reversion of a rational function of fixed degree can be computed
faster by a dedicated algorithm (Newton iteration takes O(M(n)) operations, using
polynomial evaluation and series division for the composition), but it is desirable
for a general-purpose algorithm to be efficient in this common case, and Lagrange
inversion of course also works for nonrational functions having this growth property.

A FAST ALGORITHM FOR REVERSION OF POWER SERIES 481

4. Benchmarks

We have implemented tuned versions of naive Lagrange inversion (“Lagrange”),
BK 2.1 with Newton iteration, and Algorithm 1 (“Fast Lagrange”) over Z/pZ, Z
and Q as part of the FLINT library [8]. For each of these rings, FLINT provides fast
coefficient arithmetic (using MPIR [6] for bignum arithmetic) and asymptotically
fast polynomial multiplication using Kronecker substitution and the Schönhage-
Strassen FFT algorithm. Matrix multiplication over Z/pZ uses the Strassen algo-
rithm when the smallest dimension is at least 256, which in principle helps BK 2.1
for n > 2562 (the speedup is not significant for feasible n, however).

Timings over Z/pZ obtained on an Intel Xeon E5-2650 2.0 GHz CPU with 256
GiB of RAM are given in Table 2. Algorithm 1 consistently runs about 1.6 times
faster than BK 2.1, agreeing with a predicted speedup of 1.546 with quasilinear
polynomial multiplication and negligible cost of matrix multiplication; we see that
polynomial multiplication indeed dominates in BK 2.1 for n up to at least 106.
We have also implemented BK 2.2 over Z/pZ, finding it to take about twice as
much time as BK 2.1 in the tested range. BK 2.2 might, however, be preferable for
larger n due to memory limits (with n = 106 and 64-bit coefficients, BK 2.1 uses
15 GiB of memory and fast Lagrange reversion uses 7.5 GiB of memory).

Table 2. Timings for reversion of a random power series over
Z/pZ, p = 263 + 29. The percentage of time spent on matrix mul-
tiplication in BK 2.1 is shown in parentheses.

n Lagrange BK 2.1 BK 2.2 Fast Lagrange
10 10 μs 10 18 6.1
102 2.8 ms 0.92 1.6 0.54
103 690 ms 66 120 45
104 110 s 3.3 (8%) 7.1 2.1
105 12100 s 144 (20%) 315 85
106 1.9 · 106 s 8251 (28%) 15131 4832

Ring operations in Z and Q do not take constant time, as reflected in Tables 3
and 4. Timings are roughly cubic in n as expected from theory, but sensitive to the
inputs. Fast Lagrange inversion is the fastest algorithm for small n in all examples,
the fastest in all examples over Z, and substantially faster for the rational functions
f3 and f6 (in both cases x/f(x) has small coefficients). For large n, BK 2.1 performs
well on f4 and f5, presumably due to generating smaller coefficients internally.

With larger coefficients (as seen especially in the case of f1), matrix multiplica-
tion appears to take a larger proportion of the time, suggesting that BK 2.2 becomes
competitive for smaller n. We have not implemented BK 2.2 over Z and Q, however,
and can therefore not provide a direct comparison.

Care must be taken to handle denominators efficiently. In our implementation of
BK 2.1, we found that naive matrix multiplication over Q took ten times as long as
polynomial multiplications. Clearing denominators and multiplying matrices over
Z resulted in a comparable time being spent on the matrix and polynomial stages.
Similar concerns apply when implementing Algorithms 1 and 2. On the other hand,
translating the entire composition or reversion to one over Z by rescaling the inputs
typically results in too much coefficient inflation, and can even run slower than a

482 FREDRIK JOHANSSON

Table 3. Timings for the reversion of f1(x) =
∑

k≥1 k!x
k,

f2(x) =
x√

1−4x
, f3(x) =

x+x2

1+x+x2 over Z.

n Lagrange BK 2.1 Fast Lagrange
f1 f2 f3 f1 f2 f3 f1 f2 f3

10 7.0 μs 6.5 6.3 10 10 10 4.9 4.3 4.1
102 31 ms 7.2 3.2 7.8 2.1 2.1 6.4 0.96 0.65
103 106 s 10 4.5 10 1.1 0.96 7.1 0.71 0.22

(38%) (31%) (11%)
104 - - - 24356 s 1453 538 8903 426 152

(81%) (67%) (10%)

Table 4. Timings for the reversion of f4(x) = exp(x)− 1,

f5(x) = x exp(x), f6(x) =
3x(1−x2)

2(1−x+x2)2 over Q.

n Lagrange BK 2.1 Fast Lagrange
f4 f5 f6 f4 f5 f6 f4 f5 f6

10 15 μs 15 13 31 28 28 11 11 9.1
102 40 ms 40 10 12 21 8.8 8.9 8.1 1.9
103 145 s 133 9.7 8.8 17 3.1 14 13 0.65

(28%) (24%) (19%)
104 - - - 13812 s 27057 1990 35633 27823 784

(27%) (27%) (14%)

classical algorithm working directly over Q. We expect the situation to be similar
when working with parametric power series having rational functions as coefficients.

An interesting alternative would be to work modulo small primes and recon-
struct the output using the Chinese remainder theorem. We have not investigated
this option in detail. It would provide additional memory benefits: for example, if
the coefficients have O(n) bits, direct application of BK 2.1 or fast Lagrange rever-
sion uses O(n5/2) bits of temporary space, while modular reversions each require
O(n3/2+o(1)) bits of space; less than the O(n2) bits required to store the output.

5. Conclusion

Fast Lagrange inversion is a practical algorithm for reversion of formal power
series, having essentially no higher overhead than a naive implementation of La-
grange inversion for small n and requiring fewer coefficient operations than Newton
iteration coupled with BK 2.1 for large n. Among currently available general-
purpose algorithms, it is likely to be the fastest choice for typical coefficient rings,
input series, and values of n, and may thus be a good choice as a default reversion
algorithm in a computer algebra system. Newton iteration with BK 2.2 remains
faster asymptotically when FFT polynomial multiplication is available, and uses
less memory, but may require very large n to become advantageous.

A FAST ALGORITHM FOR REVERSION OF POWER SERIES 483

An interesting question is whether a reversion analog of BK 2.2 can be con-
structed that avoids Newton iteration, or whether we can otherwise save constant
factors in BK 2.2. We may also ask whether the close correspondence in complexity
between Algorithm 2 and BK 2.1 can be explained by some underlying duality along
the lines of the transposition principle. Further investigation of improvements over
particular rings and of the special matrix multiplications arising in Algorithm 2
and BK 2.1 would also be warranted.

Acknowledgements

We thank the anonymous referee for pointing us to previous literature and pro-
viding several clarifications and corrections. We also acknowledge the valuable
feedback from William Hart and Manuel Kauers.

References

[1] Daniel J. Bernstein, Composing power series over a finite ring in essentially linear time, J.
Symbolic Comput. 26 (1998), no. 3, 339–341, DOI 10.1006/jsco.1998.0216. MR1633872

[2] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration, http://cr.
yp.to/papers.html#fastnewton, 2004.

[3] Daniel J. Bernstein, Fast multiplication and its applications, Algorithmic number theory: lat-
tices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge
Univ. Press, Cambridge, 2008, pp. 325–384. MR2467550 (2010a:68186)

[4] Alin Bostan, Bruno Salvy, and Éric Schost, Power series composition and change of basis, IS-
SAC 2008, ACM, New York, 2008, pp. 269–276, DOI 10.1145/1390768.1390806. MR2513515
(2010h:68221)

[5] R. P. Brent and J. T. Kung, Fast algorithms for manipulating formal power series, Journal
of the ACM, 25 (1978), no. 4, 581–595.

[6] The MPIR development team, MPIR: Multiple Precision Integers and Rationals, http://
www.mpir.org.

[7] G. Hanrot and P. Zimmermann, Newton iteration revisited, http://www.loria.fr/

~zimmerma/papers/fastnewton.ps.gz, 2004.
[8] W. B. Hart, Fast Library for Number Theory: An Introduction, Proceedings of the Third

international congress conference on Mathematical software (Berlin, Heidelberg), ICMS’10,
Springer-Verlag, 2010, http://flintlib.org, pp. 88–91.

[9] David Harvey, Faster algorithms for the square root and reciprocal of power series, Math.
Comp. 80 (2011), no. 273, 387–394, DOI 10.1090/S0025-5718-2010-02392-0. MR2728985
(2011m:68299)

[10] J. Hopcroft and J. Musinski, Duality applied to the complexity of matrix multiplication and
other bilinear forms, SIAM J. Comput. 2 (1973), 159–173. MR0471439 (57 #11172)

[11] Xiaohan Huang and Victor Y. Pan, Fast rectangular matrix multiplication and applications, J.

Complexity 14 (1998), no. 2, 257–299, DOI 10.1006/jcom.1998.0476. MR1629113 (99i:15002)
[12] Kiran S. Kedlaya and Christopher Umans, Fast polynomial factorization and modular compo-

sition, SIAM J. Comput. 40 (2011), no. 6, 1767–1802, DOI 10.1137/08073408X. MR2863194
[13] Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Pub-

lishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Com-
puter Science and Information Processing. MR633878 (83i:68003)

[14] Robert L. Probert, On the additive complexity of matrix multiplication, SIAM J. Comput. 5
(1976), no. 2, 187–203. MR0408311 (53 #12076)

[15] Peter Ritzmann, A fast numerical algorithm for the composition of power series with complex
coefficients, Theoret. Comput. Sci. 44 (1986), no. 1, 1–16, DOI 10.1016/0304-3975(86)90107-
6. MR858688 (88d:68043)

[16] A. J. Stothers, On the complexity of matrix multiplication, Ph.D. thesis, University of Edin-
burgh, 2010.

[17] Joris van der Hoeven, Relax, but don’t be too lazy, J. Symbolic Comput. 34 (2002), no. 6,
479–542, DOI 10.1006/jsco.2002.0562. MR1943041 (2003k:13026)

http://www.ams.org/mathscinet-getitem?mr=1633872
http://cr.yp.to/papers.html#fastnewton
http://cr.yp.to/papers.html#fastnewton
http://www.ams.org/mathscinet-getitem?mr=2467550
http://www.ams.org/mathscinet-getitem?mr=2467550
http://www.ams.org/mathscinet-getitem?mr=2513515
http://www.ams.org/mathscinet-getitem?mr=2513515
http://www.mpir.org
http://www.mpir.org
http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
http://flintlib.org
http://www.ams.org/mathscinet-getitem?mr=2728985
http://www.ams.org/mathscinet-getitem?mr=2728985
http://www.ams.org/mathscinet-getitem?mr=0471439
http://www.ams.org/mathscinet-getitem?mr=0471439
http://www.ams.org/mathscinet-getitem?mr=1629113
http://www.ams.org/mathscinet-getitem?mr=1629113
http://www.ams.org/mathscinet-getitem?mr=2863194
http://www.ams.org/mathscinet-getitem?mr=633878
http://www.ams.org/mathscinet-getitem?mr=633878
http://www.ams.org/mathscinet-getitem?mr=0408311
http://www.ams.org/mathscinet-getitem?mr=0408311
http://www.ams.org/mathscinet-getitem?mr=858688
http://www.ams.org/mathscinet-getitem?mr=858688
http://www.ams.org/mathscinet-getitem?mr=1943041
http://www.ams.org/mathscinet-getitem?mr=1943041

484 FREDRIK JOHANSSON

[18] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge
University Press, Cambridge, 2003. MR2001757 (2004g:68202)

[19] V. Vassilevska Williams, Breaking the Coppersmith-Winograd barrier, http://cs.berkeley.
edu/~virgi/matrixmult.pdf, 2011.

Research Institute for Symbolic Computation, Johannes Kepler University, 4040

Linz, Austria

E-mail address: fredrik.johansson@risc.jku.at

http://www.ams.org/mathscinet-getitem?mr=2001757
http://www.ams.org/mathscinet-getitem?mr=2001757
http://cs.berkeley.edu/~virgi/matrixmult.pdf
http://cs.berkeley.edu/~virgi/matrixmult.pdf

	1. Introduction
	2. The algorithm
	An improved version

	3. Complexity analysis
	Avoiding Newton iteration.
	Improving the matrix multiplication.
	Using rectangular multiplication
	Practical performance

	4. Benchmarks
	5. Conclusion
	Acknowledgements
	References

