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KNAPSACK PROBLEMS IN GROUPS

ALEXEI MYASNIKOV, ANDREY NIKOLAEV, AND ALEXANDER USHAKOV

Abstract. We generalize the classical knapsack and subset sum problems
to arbitrary groups and study the computational complexity of these new
problems. We show that these problems, as well as the bounded submonoid
membership problem, are P-time decidable in hyperbolic groups and give var-
ious examples of finitely presented groups where the subset sum problem is
NP-complete.

1. Introduction

1.1. Motivation. This is the first in a series of papers on non-commutative discrete
(combinatorial) optimization. In this series we propose to study complexity of the
classical discrete optimization (DO) problems in their most general form — in non-
commutative groups. For example, DO problems concerning integers (subset sum,
knapsack problem, etc.) make perfect sense when the group of additive integers is
replaced by an arbitrary (non-commutative) group G. The classical lattice problems
are about subgroups (integer lattices) of the additive groups Zn or Qn, their non-
commutative versions deal with arbitrary finitely generated subgroups of a group
G. The travelling salesman problem or the Steiner tree problem make sense for
arbitrary finite subsets of vertices in a given Cayley graph of a non-commutative
infinite group (with the natural graph metric). The Post correspondence problem
carries over in a straightforward fashion from a free monoid to an arbitrary group.
This list of examples can be easily extended, but the point here is that many
classical DO problems have natural and interesting non-commutative versions.

The purpose of this research is threefold. First, this extends the area of DO
to a new and mostly unknown territory, shedding some light on the nature of the
problems and facilitating a deeper understanding of them. In particular, we want
to clarify the “algebraic meaning” of these problems in the non-commutative situ-
ation. Second, these are algorithmic problems which are very interesting from the
computational algebra viewpoint. They unify various techniques in group theory
which seem to be far apart now. On the practical level, non-commutative DO
problems occur in many everyday computations in algebra, so it is crucial to study
their computational complexity and improve the algorithms. Third, we aim to de-
velop a robust collection of basic algebraic problems which would serve as building
blocks for complexity theory in non-commutative algebra. Recall, that the success
of the classical complexity theory in the area of NP computation is, mostly, due
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to a vast collection of discrete optimization problems which are known to be in
P or NP-complete. It took many years, starting from the pioneering works of
Cook, Levin and Karp in the 1970’s, to gradually accumulate this very concrete
knowledge. Nowadays, it is usually a matter of technique to reduce a new algo-
rithmic problem to some known discrete optimization problem. This makes the
theory of NP-complete DO problems, indeed, very robust. In the computational
non-commutative algebra the data base of the known NP-complete problems is
rather small, and complexity of some very basic problems is unknown. Our goal is
to start building such a collection in non-commutative algebra.

1.2. Stating the problems. In this paper we focus mostly on subset sum, knap-
sack, and submonoid membership problems and their variations (described below)
in a given group G generated by a finite or countably infinite set X ⊆ G. We refer
to all such problems as knapsack-type problems in groups.

Elements in G are given as words over the alphabet X ∪ X−1. We begin with
three principal decision problems.

The subset sum problem SSP(G,X): Given g1, . . . , gk, g ∈ G decide if

(1.1) g = gε11 . . . gεkk

for some ε1, . . . , εk ∈ {0, 1}.
Remark 1.1. The formal description of SSP(G,X) and other algorithmic problems
introduced below depends on the given finite (or sometimes countable) generating
set X of the group G. We go into detail regarding formal set-up and, in particular,
dependence of these problems on the generating set X in Section 2. For now we
mention that as we show in Subsection 2.3 (Lemma 2.5), if X and Y are two finite
generating sets for a group G and Π is any of the algorithmic problems introduced
in this section, then Π(G,X) is in P if and only if Π(G, Y ) is in P. However,
if at least one of the sets X and Y is infinite, the same is false in general (see
Example 2.2). Also note that while the complexity of Π(G,X) depends on the
choice of a generating set, the answer to the problem in each particular instance
does not. With that in mind, we often write Π(G) if a finite generating set is
implied, or if the generating set is fixed explicitly. We also often write Π instead
of Π(G) when we talk about the problem in general, or when the group G is clear
from the context.

The knapsack problem KP(G,X): Given g1, . . . , gk, g ∈ G decide if

(1.2) g =G gε11 . . . gεkk

for some non-negative integers ε1, . . . , εk.

There is also a variation of this problem, termed integer knapsack problem (IKP),
when the coefficients εi are arbitrary integers. However, it is easy to see that IKP
is P-time reducible to KP for any group G (see Section 2).

The third problem is equivalent to KP in the classical (abelian) case, but in
general it is a completely different problem that is of prime interest in algebra:

Submonoid membership problem SMP(G,X): Given elements g1, . . . , gk, g ∈
G decide if g belongs to the submonoid generated by g1, . . . , gk in G, i.e., if the
following equality holds for some gi1 , . . . , gis ∈ {g1, . . . , gk}, s ∈ N:

(1.3) g = gi1 , . . . , gis .
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The restriction of SMP to the case when the set of generators {g1, . . . , gn} is
closed under inversion (so the submonoid is actually a subgroup of G) is a well-
known problem in group theory, called the generalized word problem (GWP) or
the uniform subgroup membership problem in G. There is a huge bibliography on
this subject, we mention some related results in Section 1.4.

As usual in complexity theory, it makes sense to consider the bounded versions
of KP and SMP, at least they are always decidable in groups where the word
problem is decidable. In this case the problem is to verify if the corresponding
equalities (1.2) and (1.3) hold for a given g provided that the number of factors
in these equalities is bounded by a natural number m which is given in the unary
form, i.e., as the word 1m. In particular, the bounded knapsack problem (BKP)
for a group G asks to decide, when given g1, . . . , gk, g ∈ G and 1m ∈ N, if the
equality (1.2) holds for some εi ∈ {0, 1, . . . ,m}. This problem is P-time equivalent
to SSP in G (see Section 2.3), so it suffices for our purposes to consider only SSP
in groups. On the other hand, the bounded SMP in G is very interesting in its
own right.

Bounded submonoid membership problem BSMP(G,X): Given g1, . . . gk,
g ∈ G and 1m ∈ N (in unary) decide if g is equal in G to a product of the form
g = gi1 · · · gis , where gi1 , . . . , gis ∈ {g1, . . . , gk} and s ≤ m.

There are also interesting and important search variations of the decision prob-
lems above, when the task is to find an actual solution to equations (1.1), (1.2), or
(1.3), provided that some solution exists (see Section 2 for more details on this). In
most cases we solve both the decision and search variations of the problems above
simultaneously, while establishing the time complexity upper bounds for the algo-
rithms. However, as in the classical case, perhaps the most interesting variations of
the search problems are their optimization versions. It seems these problems were
never formally stated before for groups, so we discuss them in a bit more detail
here, leaving a more thorough discussion for Section 2.

The subset sum optimization problem SSOP(G,X): Given an instance g1,
. . . , gk, g ∈ G of SSP(G) find a solution, if it exists, ε1, . . . , εk ∈ {0, 1} subject
to the optimization condition that the sum

∑
i εi is minimal. Otherwise, output

No solutions.

The knapsack optimization problem KOP(G,X): Solve the equation (1.2)
with the minimum possible number of factors.

In fact, in Section 2 we also discuss other variations of KOP in groups, which
are even more direct generalizations of the classical KOP. In this case when given
g1, . . . , gk, g ∈ G one has to find ε1, . . . , εk ∈ N for which the product gε11 . . . gεkk is
as close to g (in the metric of the Cayley graph of G) as possible.

The submonoid membership optimization problem SMOP(G,X): Given
g1, . . . , gk, g ∈ G, express (if possible) g as a product

(1.4) g =G gi1 . . . gim

with the minimum number of factors m.

The submonoid membership optimization problem plays an important part in
geometric group theory. Indeed, in geometric language it asks to find a geodesic of a
given element in a group (relative to a fixed finite generating set) or the distortion of
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a given element in a given finitely generated subgroup — both are crucial geometric
tasks.

Sometimes (like in hyperbolic groups) the time complexity of the search SMP is
not bounded from above by any computable function, in this case it makes sense to
consider the optimization version of the bounded SMP, called BSMOP, in which
one has to solve BSMP(G) with the minimal possible number of factors.

In the context of the algorithmic problems introduced in this section, the typical
groups we are interested in are free, hyperbolic, abelian, nilpotent, or metabelian.
In all these groups, and this is important, the word problem is decidable in P-time.
We might also be interested in constructing some exotic examples of groups where
the problems mentioned above have unexpected complexity.

1.3. What is new? The general group-theoretic view on subset sum and knap-
sack problems provides several insights. It is well known that the classical SSP
is pseudo-polynomial, i.e., it is in P when the integers are given in unary form,
and it is NP-complete if the integers are given in binary. In the group-theoretic
framework the classical case occurs when the group G is the additive group of in-
tegers Z. In this case the complexity of SSP(Z) depends on whether the set X of
generators of Z is finite or infinite. Indeed, if X = {1} then we get SSP in Z in
the unary form, so in this case it is in P (likewise for any other finite generating
set). However, if X = {2n | n ∈ N} then SSP(Z) is P-time equivalent to the
classical SSP in the binary form, so SSP(Z) relative to this X is NP-complete
(see Example 2.2 for details). To our surprise the situation is quite different (and
much more complex) in non-commutative groups. In the non-commutative setting
inputs are usually given as words in a fixed generating set of the group G, i.e., in

the unary form (so the size of the word x210 is 210). It turns out that in the unary
form SSP(G) is NP-complete even in some very simple non-abelian groups, such
as the metabelian Baumslag–Solitar groups B(1, p), p ≥ 2, or the wreath product
Z � Z. Furthermore, the reasons why SSP(G) is hard for such groups G are ab-
solutely different. Indeed, SSP is hard for G = B(1, p) because B(1, p) contains
exponentially distorted infinite cyclic subgroups Z; while SSP is hard for Z � Z
since this group (also being finitely generated) contains an infinite direct sum Zω.
On the other hand, SSP(G) and KP(G) in the decision, search, or optimization
variations are in P for hyperbolic groups G (relative to arbitrary finite generat-
ing sets). Observe, that hyperbolic groups may contain highly (say exponentially)
distorted finitely generated subgroups, though such subgroups are not abelian. In
this case the main reason why SSP(G) and KP(G) are easy lies in the geometry
of hyperbolic groups, which is asymptotically “tree-like”. Another unexpected re-
sult which comes from the polynomial time solution of KP in hyperbolic groups
is that there is a hyperbolic group G with a finitely generated subgroup H such
that the bounded membership subgroup problem for H is in P, but the standard
subgroup membership problem for H is undecidable. This is the first result of this
sort in groups. Further yet, there are P-time algorithms solving SSP and SMP
(and all their variations) in finitely generated nilpotent groups, though in this case
the algorithms explore the polynomial growth of such groups, not their geometry.
It remains to be seen if there is a unifying viewpoint on why SSP, KP, or SMP
could be hard in a finitely generated group with polynomial time decidable word
problem. However, it is already clear that the nature of the complexity of these
problems is much deeper than it reveals itself in the commutative case.
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1.4. Results. The subset sum problem is one of the few very basic NP-complete
problems, so it was studied intensely (see [21]). Beyond the general interest SSP
attracted a lot of attention when Merkle and Hellmann designed a new public key
cryptosystem [26] based on the difficulty of some variation of SSP. The system was
broken by Shamir in [48], but the interest persists and the ideas survive in numerous
new cryptosystems and their variations (see [37]). Generalizations of knapsack-type
cryptosystems to non-commutative groups seem quite promising from the viewpoint
of post-quantum cryptography, but even the basic facts on complexity of SSP and
KP in groups are lacking.

In Section 4 we show that SSP(G) is NP-complete in many well-known groups
which otherwise are usually viewed as computationally tame, e.g., free metabelian
groups of finite rank r ≥ 2, the wreath product Z � Z, or, more generally, wreath
products of any two finitely generated infinite abelian groups. These groups are
finitely generated, but not finitely presented. Even more surprisingly, SSP(G) is
NP-complete in each of the Baumslag–Solitar metabelian groups B(1, p), p ≥ 2, as
well as in the metabelian group

GB =
〈
a, s, t | [a, at] = 1, [s, t] = 1, as = aat

〉
,

introduced by Baumslag in [3]. Notice, that these groups are finitely presented
and have very simple algebraic structure. Furthermore, it is not hard to see that
SSP(G) is NP-hard if it is NP-hard in some finitely generated subgroup of G.
In particular, every group containing subgroups isomorphic to any of the groups
mentioned above has NP-hard SSP. Baumslag [4] and Remeslennikov [43] showed
that every finitely generated metabelian group embeds as a subgroup into a finitely
presented metabelian group. This gives a method to construct various finitely
presented groups with NP-complete SSP. On the other hand, Theorem 3.3 shows
that SSP(G) is in P for every finitely generated nilpotent group G. The proof
is short, but it is based on a rather deep fact that such groups have polynomial
growth. One of the main results of the paper is Theorem 5.9 which states that
SSP(G), as well as its search variation, is in P for any hyperbolic group G. As
we mentioned above this also gives a P-time solution to the bounded knapsack
problem in hyperbolic groups. In Sections 5.4 and 6.3 we give polynomial time
solutions to the various subset sum optimization problems in hyperbolic groups,
notably SSOP1 and SSOP2 (see Section 2.2 for definitions).

The knapsack problems in groups, especially in their search variations, are related
to the algorithmic aspects of the big powers method, which appeared long before any
complexity considerations (see, for example, [2]). Recently, the method shaped up
as a basic tool in the study of equations in free or hyperbolic groups [10,23,24,39],
algebraic geometry over groups [5], completions and group actions [6, 28, 29], and
became a routine in the theory of hyperbolic groups (in the form of various lemmas
on quasigeodesics). We prove (Theorem 6.1) that KP(G) together with its search
variation are in P for any hyperbolic group G. To show this we reduce KP(G) in P-
time to BKP(G) in a hyperbolic group G. More precisely, we obtain the following
result (Theorem 6.7), which is of independent interest. For any hyperbolic group
G there is a polynomial p(x) such that if an equation g = gε1 . . . gεkk has a solution
ε1, . . . , εk ∈ N, then this equation has a solution with εi bounded by p(n), where
n = |g1| + . . . + |gk| + |g| (and it can be found in P-time). On the other hand,
decidability of quadratic equations in free groups is NP-complete [22]. We also
show that all the optimization versions (KOP,KOP1,KOP2) of the knapsack
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problem in hyperbolic groups are in P. To solve knapsack problems in hyperbolic
groups we developed a new graph technique, which we believe is of independent
interest. Namely, given an instance of a problem we construct a finite labelled
graph (whose size is polynomial in the size of the instance), such that one can see,
just by looking at the graph, whether or not a solution to the given instance exists
in the group, and if so then find it.

We would like to mention one more result (Theorem 5.12) here which came as
a surprise to us, it states that BSMP(G) is P-time decidable for every hyperbolic
group G. There are hyperbolic groups where the subgroup membership problem is
undecidable even for a fixed finitely generated subgroup; see [44]. It seems this is
the first natural example of an undecidable algorithmic problem in groups, whose
bounded version is in P. It would be interesting to exploit this direction a bit
further. The famous Mikhailova’s construction [34] shows that the generalized word
problem (GWP) is undecidable in the direct product F × F of a free non-abelian
group F with itself. We prove in Section 7 (Theorem 7.4) that there is a finitely
generated subgroup H in F2 × F2 such that the BSMP for this fixed subgroup H
in F2×F2 is NP-complete. It follows that BSMP(G) is NP-hard for any group G
containing F2×F2 as a subgroup. Notice, that Venkatesan and Rajagopalan proved
in [52] that in the multiplicative monoid Mat(n,Z) of all n×n integer matrices with
n ≥ 20 the BSMP is average-case NP-complete. One of the reasons of this is that
Mat(20,Z) contains a subgroup F2 × F2 .

In another direction observe that fully residually free (or limit) groups, as well
as finitely generated groups acting freely on Zn-trees, have decidable GWP [30,35,
36], though the time complexity of the decision algorithms is unknown. It would
be remarkable if BSMP for such groups was in P. Notice, that Schupp gave a
remarkable construction to solve GWP in P-time in orientable surface groups, as
well as in some Coxeter groups [47].

We note in passing that the subgroup and submonoid membership problems in
a given group could be quite different. For example, Romanovskii proved in [45]
that GWP is decidable in every finitely generated metabelian group, but recent
examples by Lohrey and Steinberg show that in a free metabelian non-abelian group
there is a finitely generated submonoid with undecidable membership problem [25].
It would be very interesting to see what is the time complexity of the BSMP in
free metabelian or free solvable groups. Notice that Umirbaev showed in [50] that
GWP in free solvable groups of class ≥ 3 is undecidable.

2. General properties

2.1. Problem set-up. Since the knapsack-type problems were not previously stud-
ied in a non-commutative setting it is worthwhile to say a few words on how we
present the data, models of computations, size functions, etc. (we refer to the
book [32] for more details). Our model of computation is RAM (random access
machines).

To make the statements of the problems (from Section 1.2) a bit more precise
consider the following. If a generating set X = {x1, . . . , xn} of a group G is finite,
then the size of the word g = x1 . . . xk is its length |g| = k and the size of the tuple
g1, . . . , gk, g from G is the total sum of the lengths |g1|+ . . .+ |gk|+ |g|.

If the generating set X of G is infinite, then the size of a letter x ∈ X is not
necessarily equal to 1, it depends on how we represent elements of X. In what
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follows we always assume that there is an efficient injective function ν : X →
{0, 1}∗ which encodes the elements in X such that for every u ∈ {0, 1}∗ one can
algorithmically recognize if u ∈ ν(X), or not. In this case for x ∈ X define

size(x) = |ν(x)|
and for a word w = x1 . . . xn with xi ∈ X define

size(w) = size(x1) + . . .+ size(xn).

Similar to the above the size of a tuple (g1, . . . , gk, g) is

size(g1, . . . , gk, g) = size(g1) + . . .+ size(gk) + size(g).

One can go a bit further and identify elements x ∈ X with their images ν(x) ∈
{0, 1}∗, and words w = x1 . . . xn ∈ X∗ with the words ν(x1) . . . ν(xn) ∈ {0, 1}∗.
This gives a homomorphism of monoids ν∗ : X∗ → {0, 1}∗. If, in addition, ν is such
that for any x, y ∈ X the word ν(x) is not a prefix of ν(y) (this is easy to arrange),
then:

• ν∗ is injective,
• ν∗(X∗) and ν∗(X) are algorithmically recognizable in {0, 1}∗,
• and for every word v ∈ ν∗(X∗) one can find the word w ∈ X∗ such that
ν∗(w) = v.

From now on we always assume that a generating set comes equipped with a func-
tion ν, termed encoding, satisfying all the properties mentioned above. In fact,
almost always all of our generating sets X are finite, and on those rare occasions
when X is infinite we describe ν precisely.

In general, we view decision problems as pairs (I,D), where I is the space of
instances of the problem equipped with a function size : I → N and a set D ⊆ I
of affirmative (positive) instances of the problem. Of course, the set I should be
constructible and size function should be computable. In all our examples the set
I consists either of tuples of words (g1, . . . , gk, g) in the alphabet ΣX for some
(perhaps, infinite) set of generators X of a group G, or, in the case of BKP or
BSMP, tuples of the type (g1, . . . , gk, g, 1

m) where 1m is a natural number m
given in unary. The problem (I,D) is decidable if there is an algorithm A that for
any x ∈ I decides whether x is inD or not (A answers “Yes” or “No”). The problem
is in class P if there is a decision algorithm A with polynomial time function with
respect to the size of the instances in I, i.e., there is a polynomial p(n) such that
for any x ∈ I the algorithm A starts on x, halts in at most p(size(x)) steps, and
gives a correct answer “Yes” or “No”. Similarly, we define problems in linear or
quadratic time, and non-deterministic polynomial time NP.

Recall that a decision problem (I1, D1) is P-time reducible to a problem (I2, D2)
if there is a P-time computable function f : I1 → I2 such that for any u ∈ I1 one
has u ∈ D1 ⇐⇒ f(u) ∈ D2. Such reductions are usually called either many-to-one
P-time reductions or Karp reductions. Since we do not use any other reductions we
omit “many-to-one” from the name and call them P-time reductions. Similarly, one
can introduce linear or quadratic time reductions, etc. We say that two problems
are P-time equivalent if each of them P-time reduces to the other.

Now we define an optimization problem as a tuple (I, J, F, μ, extr), where I is
the set of instances, J is a set of solutions, F : I → P (J) is a function that to each
instance u ∈ I associates a subset F (u) ⊆ J of all feasible solutions for an instance u,
μ(u, v) is a non-negative real function that for u ∈ I, v ∈ F (u) measures the cost of
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a solution v for an instance u, extr is either min or max. This optimization problem,
given u ∈ I, asks to find v ∈ F (u) such that μ(u, v) = extr{μ(u, v′) | v′ ∈ F (u)}.
Given two optimization problems Pi = (Ii, Ji, Fi, μi, extri), i = 1, 2, we say that
P1 is P-time reducible to P2 if there are P-time computable functions f : I1 → I2,
fu : F1(u) → F2(f(u)), u ∈ I1, such that v ∈ F1(u) ⇐⇒ fu(v) ∈ F2(f(u)) and
μ1(u, v) = extr1{μ1(u, v

′) | v′ ∈ F1(u)} ⇐⇒ μ2(f(u), fu(v)) = extr2{μ2(f(u), v
′) |

v′ ∈ F2(f(u))}. In our consequent considerations, the functions fu are apparent
from the set up and we do not mention them in our arguments. We say that two
optimization problem are P-time equivalent if each of them P-time reduces to the
other.

2.2. More on the formulation of the problems. In this section we continue
the discussion from the introduction on different variations of the problems SSP,
KP, SMP in groups.

There are two ways to state search variations of the problems: the first one, as
described in the introduction, considers only feasible instances of the problem, i.e.,
we assume that a solution to the instance exists; the second one is stronger, in this
case it is required to solve the decision problem and simultaneously find a solution
(if it exists) for a given instance. The former requires only a partial algorithm,
while the latter asks for a total one. The weaker version of the problems SSP(G),
KP(G), SMP(G) is always decidable in groups G with decidable word problems,
while the stronger one might be undecidable (for instance, SMP in hyperbolic
groups). In this paper we consider the stronger version of the search problems.

We mentioned in the introduction that the knapsack optimization problem
(KOP) may have different formulations in the non-commutative groups. Now we
explain what we meant.

Recall first, that perhaps the most typical version of the classical KOP asks,
when given positive integers a1, . . . , ak, a to find ε1, . . . , εk ∈ N such that the sum
ε1a1 + . . .+ εkak is less or equal to a but maximal possible under this restriction.
One can generalize this to non-commutative groups as follows.

KOP1(G,X): Given g1, . . . , gk, g ∈ G find ε1, . . . , εk ∈ N ∪ {0} with the least
possible distance between g and gε11 . . . gεkk in the Cayley graph Cay(G,X).

This formulation allows solutions with the “total weight” higher than the capac-
ity of the knapsack. To define precisely when a given solution fits in geometrically
in the knapsack we need the following. For elements g, h, u ∈ G we say that u
belongs to the segment [g, h] if there is a geodesic path in Cay(G,X) from g to h
that contains u. Now we can formulate the problem.

KOP2(G,X): Given g1, . . . , gk, g ∈ G find ε1, . . . , εk ∈ N∪{0} such that gε11 . . . gεkk
belongs to the segment [1, g] and the distance between g and gε11 . . . gεkk in the Cayley
graph Cay(G,X) is the least possible.

We formulate similar generalizations for the subset sum problem.

SSOP1(G,X): Given g1, . . . , gk, g ∈ G find ε1, . . . , εk ∈ {0, 1} such that the dis-
tance between g and gε11 . . . gεkk in the Cayley graph Cay(G,X) is the least possible.

SSOP2(G,X): Given g1, . . . , gk, g ∈ G find ε1, . . . , εk ∈ {0, 1} such that the
gε11 . . . gεkk belongs to the segment [1, g] and the distance between g and gε11 . . . gεkk
in the Cayley graph Cay(G,X) is the least possible.
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One can also consider optimization problems relative to a given non-trivial
“weight” function c : G → R. For example, instead of optimizing m → min in
(1.4), one can ask to optimize

∑
c(gij ) → min. Notice that the optimization prob-

lems above correspond to the case when the weight function c is a constant function
c = 1 on G.

Remark 2.1. Note that, unlike in the case of the decision, search and optimization
problems introduced in Section 1.2, the answer to a problem Σ ∈ {KOP1, KOP2,
SSOP1, SSOP2} depends on the choice of a generating set (cf. Remark 1.1). In
view of this, we never omit the generating set X from the notation Σ(G,X), unless
we are talking about the problem in general.

2.3. Examples and basic facts. The classical SSP is the following algorithmic
question. Given a1, . . . , ak ∈ Z and M ∈ Z decide if

M = ε1a1 + . . .+ εkak

for some ε1, . . . , εk ∈ {0, 1}. It is well known (see [16,41,42]) that if the numbers in
SSP are given in binary, then the problem is NP-complete, but if they are given in
unary, then the problem is in P. The examples below show how these two variations
of SSP appear naturally in the group theory context.

Example 2.2. Three variations of the subset sum problem for Z:

• SSP(Z, {1}) is linear-time equivalent to the classical SSP in which numbers
are given in unary. In particular, SSP(Z, {1}) is in P.

• For n ∈ N ∪ {0} put xn = 2n. The set X = {xn | n ∈ N ∪ {0}} obviously
generates Z. Fix an encoding ν : X±1 → {0, 1}∗ for X±1 defined by{

xi
ν�→ 0101(00)i11,

−xi
ν�→ 0100(00)i11.

Then SSP(Z, X) isP-time equivalent to its classical version where the num-
bers are given in binary form. In particular, SSP(Z, X) is NP-complete.

• Let X = {2n | n ∈ N ∪ {0}} and the number 2n is represented by the word
01(00)2

n

11 (unary representation). Then SSP(Z, X) is in P.
• One can easily define SSP and KP in arbitrary algebras A over a field.
These problems are equivalent to SSP and KP in the additive group A+

of A. �
The first example is of no surprise, of course, since, by definition, we treat

words representing elements of the group as in unary. The second one shows that
there might be a huge difference in complexity of SSP(G,X) for finite and infinite
generating sets X. The third one indicates that if X is infinite then it really matters
how we represent the elements of X.

Definition 2.3. Let G and H be groups generated by countable sets X and Y with
encodings ν and μ, respectively. A homomorphism ϕ : G → H is called P-time
computable relative to (X, ν), (Y, μ) if there exists an algorithm that given a word
ν(u) ∈ ν(Σ∗

X) computes in polynomial time (in the size of the word ν(u)) a word
μ(v) ∈ μ(Σ∗

Y ) representing the element v = ϕ(u) ∈ H.

Example 2.4. Let Gi be a group generated by a set Xi with encoding νi, i = 1, 2.
If X1 is finite then any homomorphism ϕ : G1 → G2 is P-time computable relative
to (X1, ν1), (X2, ν2).
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To formulate the following results put

DP = {SSP,KP,SMP,BKP,BSMP},
P = DP ∪ {SSOP,KOP,SMOP,BSMOP}.

Lemma 2.5. Let Gi be a group generated by a set Xi with an encoding νi, i = 1, 2.
If φ : G1 → G2 is a P-time computable embedding relative to (X1, ν1), (X2, ν2),
then Π(G1, X1) is P-time reducible to Π(G2, X2) for any problem Π ∈ P.

Proof. Straightforward. �

In view of Example 2.4 we have the following result.

Proposition 2.6. If X and Y are finite generating sets for a group G, then
Π(G,X) is P-time equivalent to Π(G, Y ) for any problem Π ∈ P.

Proposition 2.7. Let G be a group and X a generating set for G. Then the word
problem (WP) for G is P-time reducible to Π(G,X) for any problem Π ∈ P.

Proof. Let w = w(X). Then w = 1 in G if and only if 1ε = w in G for some
ε ∈ {0, 1}, i.e., if and only if the instance 1, w of SSP(G) is positive. Likewise for
other problems from P. �

Corollary 2.8. Let G be a group with a generating set X. Then:

1) SSP(G,X) (or BKP(G,X), or BSMP(G,X)) is decidable if and only if
the word problem for G is decidable.

2) If the word problem for G is NP-hard, then Π(G,X) is NP-hard for any
Π ∈ DP.

This corollary shows that from SSP viewpoint groups with polynomial time
decidable word problems are the most interesting.

The following result shows how the decision version of SSP(G) gives a search
algorithm to find an actual sequence of εi’s that is a particular solution for a given
instance of SSP(G).

Proposition 2.9. For any group G the search SSP(G) is P-time Turing reducible
to the decision SSP(G). In particular, if SSP(G) is in P, then search SSP(G) is
also in P.

Proof. The argument is rather known, so we just give a quick outline to show that
it works in the non-commutative case too. Let w1, . . . , wk, w be a given instance
of SSP(G) that has a solution in G. To find a solution ε1, . . . , εk ∈ {0, 1} for this
instance consider the following algorithm.

• Solve the decision problem for (w2, . . . , wk), w in G. If the answer is posi-
tive, then put ε1 = 0. Otherwise put ε1 = 1 and replace w with w−1

1 w.
• Continue inductively and find the whole sequence ε1, . . . , εk. �

Proposition 2.10. For any group G the following hold:

1) BKP(G) is P-time reducible to SSP(G);
2) BSMP(G), as well as its optimization variation, is P-time reducible to

SSOP(G).
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Proof. Given an instance 1m, w1, . . . , wk, w of BKP(G) we consider a sequence

(2.1) w1, . . . , w1, w2, . . . , w2, . . . , wk, . . . , wk, w ∈ G,

where each segment wi, . . . , wi has precisely m words wi. Obviously, the initial
instance of BKP(G) has a solution in G if and only if SSP(G) has a solution in G
for the sequence (2.1). This establishes a P-time reduction of BKP(G) to SSP(G).

To reduce BSMP(G) to SSOP(G) for a given instance 1m, w1, . . . , wk, w of
BSMP(G) consider a sequence

(2.2) w1, . . . , wk, w1, . . . , wk, . . . , w1, . . . , wk, w ∈ G,

where each segment w1, . . . , wk occurs precisely m times. Obviously, any solution of
BSMP for a given instance gives a solution of SSP(G) for the sequence (2.2) and
vice versa. Hence, solving SSOP(G) for the sequence (2.2) also solves BSMP(G)
and BSMOP(G) for the initial instance. This gives a polynomial time reduction
of BSMP(G) and BSMOP(G) to SSOP(G). �

Finally, note that replacing w1, . . . , wk with w1, w
−1
1 , . . . , wk, w

−1
k gives a poly-

nomial time reduction of IKP(G) to KP(G).

3. Nilpotent groups

In this section we study the knapsack-type problems in nilpotent groups.
Let G be a group generated by a finite set X. We assume that X is closed under

inversion in G, so X−1 = X. For n ∈ N we denote by Bn(X) the ball of radius n in
the Cayley graph Cay(G,X) of G relative to X. We view Bn(X) as a finite directed
X-labelled graph, which is the subgraph of Cay(G,X) induced by all vertices at
distance at most n from the based vertex 1.

The following result is known as folklore.

Proposition 3.1. Let G be a virtually nilpotent group generated by a finite set X.
Then there is a P-time algorithm that for a given n ∈ N outputs the graph Bn(X).

Proof. Denote by Vn the set of vertices of Bn(X). Clearly, V0 = {1}, and
(3.1) Vn = Vn−1 ∪y∈X Vn−1y.

By a theorem of Wolf [53] the growth of G is polynomial, i.e., |Vi| ≤ p(i) for some
polynomial p(n). It follows from (3.1) that it takes at most |X| steps (one for each
y ∈ X) to construct Bn(X) if given Bn−1(X), where each step requires taking an
arbitrary vertex v ∈ Bn−1(X)− Bn−2(X) (given by some word in X), multiply it
by the given y ∈ X, and check if the new word vy is equal or not to any of the
previously constructed vertices. Recall that finitely generated virtually nilpotent
groups are linear, therefore their word problems are decidable in polynomial time
(in fact, real time [20]). This shows that Bn(X) can be constructed in a time
polynomial in n for a given fixed G and X. �

Remark 3.2. The argument above and Theorem 3.3 below are based on the fact
that finitely generated virtually nilpotent groups have polynomial growth. By Gro-
mov’s theorem [18] the converse is also true, i.e., polynomial growth implies virtual
nilpotence, so the argument cannot be applied to other classes of groups.

Theorem 3.3. Let G be a finitely generated virtually nilpotent group. Then SSP(G)
and BSMP(G), as well as their search and optimization variations, are in P.
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Proof. Consider an arbitrary instance g1, . . . , gk, g of SSP(G). For every i =
0, . . . , k define a set

Pi = {gε11 . . . gεii | ε1, . . . , εi ∈ {0, 1}}.

Clearly, the given instance is positive if and only if g ∈ Pk. The set Pi can be
constructed recursively using the formula:

(3.2) Pi = Pi−1 ∪ Pi−1 · gi.

Observe that all elements of Pk lie in the ball Bm(X), where m = |g1|+ . . .+ |gk|.
Using formula (3.2) one can in polynomial time identify all vertices in Bm(X) that
belong to Pk (an argument similar to the one in Proposition 3.1 works here as well).
During the identification process one can also in polynomial time for each vertex
v ∈ Pk associate a tuple (ε1, . . . , εk), where εi ∈ {0, 1}, such that v = gε11 . . . gεkk in
G and with minimal possible total sum ε1 + . . . + εk. To do this one needs only
to keep the best current tuple during the identification process for each already
identified vertex in Pk. Now if the element g is given as a word w in X, one can
trace w off in the graph Bm(X) and check if this word defines an element from Pk

or not. If it does, one can get an optimal solution from the tuple associated with
the vertex in Pk defined by w. This solves SSP and SSOP in G in polynomial
time. By Proposition 2.10 this implies that BSMP(G) and BSMOP(G) are in P
as well. �

4. Groups with hard SSP

In this section we give many examples of various finitely generated and finitely
presented groups G with NP-hard SSP(G). We start with an infinitely generated
group Zω, a direct sum of countably many copies of the infinite cyclic group Z. We
view elements of Zω as sequences N → Z with finite support. For i ∈ N by ei we
denote a sequence such that ei(j) = δi,j , where δi,j is the Kronecker delta function.
The set E = {ei}i∈N is a basis for Zω. We fix an encoding ν : E±1 → {0, 1}∗ for
the generating set E defined by{

ei
ν�→ 0101(00)i11,

−ei
ν�→ 0100(00)i11.

Proposition 4.1. SSP(Zω, E) is NP-complete.

Proof. Below we reduce a problem known to be NP-complete, namely a zero-one
equation problem, to SSP(Zω, E). Recall that a vector v ∈ Zn is called a zero-one
vector if each entry in v is either 0 or 1. Similarly, a square matrix A ∈ Mat(n,Z)
is called a zero-one matrix if each entry in A is either 0 or 1. Denote by 1n the
vector (1, . . . , 1) ∈ Zn. The following problem is NP-complete (see [14]).

Zero-one equation problem (ZOE): Given a zero-one matrix A ∈ Mat(n,Z)
decide if there exists a zero-one vector x ∈ Zn satisfying A · x = 1n, or not.

ZOE can be reduced to SSP(Zω, E) as follows. Given zero-one n × n matrix
A = (aij) compute elements

gi =
n∑

j=1

aijej ∈ Zω (for i = 1, . . . , n)
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and put g = e1 + . . . + en. Clearly, the tuple g1, . . . , gn, g is P-time computable
and A is a positive instance of ZOE if and only if g1, . . . , gn, g is a positive instance
of SSP(Zω, E). This establishes a P-time reduction of ZOE to SSP(Zω, {ei}), as
claimed. �

The next proposition is obvious.

Proposition 4.2. Let G be a group generated by a set X. If ϕ : Zω → G is a P-
time computable embedding relative to the generating sets E and X, then SSP(G)
is NP-hard. If, in addition, the word problem for G is decidable in polynomial
time, then SSP(G) is NP-complete. �

This result gives a wide class of groups G with NP-hard or NP-complete
SSP(G).

Proposition 4.3. The following groups have NP-complete SSP:

(a) Free metabelian non-abelian groups of finite rank.
(b) Wreath product Z � Z.
(c) Wreath product of two finitely generated infinite abelian groups.

Proof. Let Mn be a free metabelian group with basis X = {x1, . . . , xn}, where
n ≥ 2. It is not hard to see that the elements

ei = x−i
1 [x2, x1]x

i
1 (for i ∈ N)

freely generate a free abelian group Zω (see, for example, the description of normal
forms of elements of Mn in [9]). This gives a P-time computable embedding of Zω

into Mn relative to the generating sets E and X. It is known that the word problem
in finitely generated metabelian groups is in P (see, for example, [31]). Hence, by
Proposition 4.2, SSP(Mn) is NP-complete and (a) holds.

The wreath product of two infinite cyclic groups generated by a and t, respec-
tively, is a finitely generated infinitely presented group

G =
〈
a, t | [a, t−iati] = 1, (for i ∈ N)

〉
.

The set {t−iati | i ∈ N} freely generates a subgroup isomorphic to Zω. In fact, the
map ei → t−iati defines a P-time computable embedding of Zω into G relative to
the generating sets E and {a, t}. Proposition 4.2 finishes the proof of (b).

Finally, consider arbitrary infinite finitely generated abelian groups A and B.
Then A � A1 × Z and B = B1 × Z and Z � Z can be P-time embedded into A � B.
The result now follows from (b). �

Thompson’s group F has a finite presentation〈
a, b | [ab−1, a−1ba] = 1, [ab−1, a−2ba2] = 1

〉
.

It is a remarkable group due to a collection of very unusual properties that made
it a counterexample to many general conjectures in group theory (see [11]).

Proposition 4.4. The subset sum problem for the Thompson’s group F is NP-
complete.

Proof. According to [13] the wreath product Z �Z can be embedded into F with no
distortion. The word problem for F is decidable in polynomial time [11, 49]. Now
the result follows from Propositions 4.2 and 4.3. �
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In [3] Baumslag gave an example of a finitely presented metabelian group

(4.1) GB =
〈
a, s, t | [a, at] = 1, [s, t] = 1, as = aat

〉
.

Proposition 4.5. SSP(GB) is NP-complete.

Proof. As shown in [3] the subgroup 〈a, t〉 of the group GB is isomorphic to Z � Z.
Hence, Z � Z embeds into GB and since Z � Z is finitely generated this embedding
is P-time computable. The word problem for GB is in P because GB is a finitely
presented metabelian group. Thus, by Propositions 4.3 and 4.2, SSP(GB) is NP-
complete. �

There are many examples of finitely presented metabelian groups with NP-
complete subset sum problem. Indeed, Baumslag [4] and Remeslennikov [43] proved
that every finitely generated metabelian group G embeds into a finitely presented
metabelian group G∗. Since G is finitely generated this embedding is P-time com-
putable with respect to the given finite generating sets. Therefore, if G contains
P-time computably embedded subgroup Zω so does G∗.

Now we describe another type of example of finitely presented groupsG withNP-
complete SSP(G). Consider the well-known Baumslag–Solitar metabelian group

BS(m,n) = 〈a, t | t−1amt = an〉.

Theorem 4.6. SSP(BS(1, 2)) is NP-complete.

Proof. We showed in Example 2.2 that SSP(Z, X) is NP-complete for a generating
set X = {xn = 2n | n ∈ N ∪ {0}}. The map

xn → t−natn

is obviously P-time computable and defines an embedding φ : Z → BS(1, 2) be-
cause t−natn = a2

n

. Hence, SSP(Z, X) P-time reduces to SSP(BS(1, 2)). Thus,
SSP(BS(1, 2)) is NP-complete. �

In fact, it is easy to prove that SSP(BS(m,n)) is NP-complete whenever |m| �=
|n| and m,n �= 0. It is less obvious that SSP(BS(n,±n)) is in P. We briefly outline
the algorithm here. Here we use graphs defined in the next section (see Figure 1)
in which edges are allowed to be labeled with arbitrary powers of a. Start with the
graph Γ(w1, . . . , wk, w). Repeatedly apply Britton’s lemma to the graph:

• for any path s1
t±1

→ s2
acm

→ s3
t∓1

→ s4 add the edge s1
acm

→ s4 in the case of

BS(n, n), or the edge s1
a−cm

→ s4 in the case of BS(n,−n) (where c ∈ Z),
and

• for any path s1
as

→ s2
at

→ s3 add the edge s1
as+t

→ s3.

The procedure terminates in polynomial time because powers m are bounded by
the length of the input. The answer is “Yes” if there exists an ε-edge from α to ω.

Corollary 4.7. If a group G contains a subgroup isomorphic to B(m,n) with |m| �=
|n| and m,n �= 0, then SSP(G) is NP-hard. �

5. SSP in hyperbolic groups

In this section we prove that the subset sum problem is P-time decidable for
every hyperbolic group. We refer to [1, 19] for introduction to hyperbolic groups.
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The proofs in this section are based on some results from [15, 33, 51] (see also the
book [32]).

Let G = 〈X | R〉 be a finitely presented group. A word w = w(X) is called
trivial, or a relator, or null-homotopic in G if w =G ε. A van Kampen diagram
over the presentation 〈X | R〉 is a planar finite cell complex D given with a specific
embedding D ⊆ R2 satisfying the following conditions.

• D is connected and simply connected.
• Each edge is labeled with a letter x ∈ X.
• Some vertex v ∈ ∂D is specified as a base-vertex.
• Each cell is labeled with a word from R.

Theorem 5.1 (van Kampen lemma). A word w = w(X) represents the identity of
G if and only if there exists a van Kampen diagram with the boundary label w.

For a diagram D one can define a dual graph Dual(D) = (V,E), where the vertex
set V is the set of all cells ofD (including the outer cell) and the edge set E is the set
of all pairs of cells (c1, c2) in D sharing at least one vertex. The maximal distance
in Dual(D) from the outer cell to another cell is called the depth of D, denoted
by δ(D). By the depth δ(w) of a trivial in G word w, we understand the minimal
depth of a van Kampen diagram with the boundary label w (see [15, 32, 33]).

Proposition 5.2 ([15]). Let G be a hyperbolic group given by a finite presen-
tation G = 〈X | R〉. Then for any word w = w(X) with w =G 1 one has
δ(w) = O(log2 |w|).

5.1. Finite state automata over hyperbolic groups. Our polynomial time
solution for the subset sum problem for hyperbolic groups uses finite state automata
and two operations, called R-completion and folding, described below.

Notation. For a finite automaton Γ over the alphabet X we denote by L(Γ)
the set of all words accepted by Γ. By |Γ| we denote the number of states in Γ. In
general, for a set S ⊂ X∗ by S we denote the image of S in G = 〈X | R〉 under the
standard epimorphism X∗ → G.

5.1.1. R-completion. Recall that a group presentation 〈X | R〉 is called symmetrized
if R = R−1 and R is closed under taking cyclic permutations of its elements. Given
a symmetrized presentation 〈X | R〉 and an automaton Γ over ΣX = X∪X−1∪{ε}
one can construct a new automaton C(Γ) obtained from Γ by adding a loop labeled
by r for every r ∈ R at every state v ∈ Γ. By R-completion of Γ we understand the
graph Ck(Γ) for some k ∈ N. We want to point out that, unlike in [33], we do not
perform Stallings foldings after adding relator-loops. Instead, we perform a special
transformation of the automaton described in Section 5.1.2.

Proposition 5.3 (Properties of C(Γ)). For every 〈X | R〉 and Γ the following holds:

(a) Γ is a subgraph of C(Γ).
(b) L(Γ) = L(C(Γ)).
(c) |C(Γ)| ≤ |Γ| · ‖R‖, where ‖R‖ =

∑
r∈R |r|.

Proof. Follows from the construction of C(Γ). �

5.1.2. Non-Stallings folding. Given an automaton Γ over a group alphabet ΣX one
can construct a new automaton F(Γ) obtained from Γ by a sequence of steps, at
each step adding new edges as described below. For every pair of consecutive edges
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of the form shown in the left column of the table below we add the edge from the
right column of the table (in the same row), provided this edge is not yet in the
graph.

s1
x→ s2

x−1

→ s3 s1
ε→ s3

s1
x→ s2

ε→ s3 s1
x→ s3

s1
ε→ s2

x→ s3 s1
x→ s3

s1
ε→ s2

ε→ s3 s1
ε→ s3.

Clearly, the procedure eventually stops, because the number of vertices does not
increase and the alphabet X is finite.

Proposition 5.4. L(Γ) = L(F(Γ)) for any finite automaton Γ over the alphabet
ΣX .

Proof. The language as a set of reduced words does not change. �

Lemma 5.5. Let 〈X | R〉 be a finite presentation of a hyperbolic group. Let Γ
be an acyclic automaton over ΣX with at most l non-trivially labeled edges. Then
1 ∈ L(Γ) if and only if there exists u ∈ L(CO(log l)(Γ)) satisfying u =F (X) ε.

Proof. If 1 ∈ L(Γ), then there exists v ∈ L(Γ) such that v =G 1. The length of v is
bounded by l. By Proposition 5.2 the depth of v is bounded by O(log |v|). Let D
be a diagram with perimeter label v of depth O(log |v|).

Next, we mimic the proof of [32, Proposition 16.3.14]. Cut D to obtain a new
“forest” diagram E of the height l with a perimeter label vu, where u =F (X) ε. See

[32, Figure 16.2]. The diagram E embeds into CO(log l)(Γ) and the initial segment
v of the perimeter label of E is mapped onto the corresponding word in Γ. This
way we obtain a path from α to ω labeled with u, as claimed.

The other direction of the statement follows from Proposition 5.3. �

Proposition 5.6. Let 〈X | R〉 be a finite presentation of a hyperbolic group. Let Γ
be an acyclic automaton over ΣX with at most l non-trivially labeled edges. Then

1 ∈ L(Γ) if and only if F(CO(log l)(Γ)) contains an edge α
ε→ ω.

Proof. Follows from Lemma 5.5, the definition of F , and Proposition 5.4. �

5.2. The algorithm. For a sequence of words w1, . . . , wk, w, construct an automa-
ton Γ = Γ(w1, . . . , wk, w) as in Figure 1. Edges labeled with wi’s on the picture
are sequences of edges labeled with the letters involved in wi’s. The initial state is
the leftmost state α and the final state is the rightmost state ω. It is easy to see
that |L(Γ)| ≤ 2n and the length of every u ∈ L(Γ) is bounded by |w|+

∑
|wi|. The

lemma below is obvious.

Lemma 5.7. Let Γ = Γ(w1, . . . , wk, w). An instance w1, . . . , wk, w of SSP(G) is

positive if and only if 1 ∈ L(Γ). �

• • • • • •

w1

��

ε
��

w2

��

ε
��

wk

��

ε
��

w−1

��. . .
α ω

Figure 1. The graph Γ(w1, . . . , wk, w).
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Theorem 5.8. Let G be a hyperbolic group given by a finite presentation 〈X | R〉
and w1, . . . , wk, w ∈ F (X). Then w =G wε1

1 . . . wεk
k for some ε1, . . . , εk ∈ {0, 1} if

and only if the graph F(CO(log(|w|+
∑

|wi|))(Γ)) contains the edge α
ε→ ω.

Proof. Follows immediately from the Lemma 5.7 above and Proposition 5.6 with
l = |w|+

∑
|wi|. �

As a corollary we get the following principal result.

Theorem 5.9. SSP(G) ∈ P for any hyperbolic group G.

Corollary 5.10. The search variation of SSP(G) is P-time solvable for any hy-
perbolic group G.

Proof. Follows from Proposition 2.9. �

Another corollary concerns with the bounded knapsack problem.

Corollary 5.11. BKP(G) ∈ P for any hyperbolic group G.

Proof. Follows from Proposition 2.10 �

5.3. The bounded submonoid membership problem. In this section we con-
sider the bounded submonoid problem (BSMP) in hyperbolic groups.

Theorem 5.12. Let G be a hyperbolic group. Then BSMP(G) ∈ P.

Proof. The proof uses the technique introduced in Section 5.1. Let wi be a word
representing the element gi, i = 1, . . . , k, and w a word representing h. We construct
a finite graph Γ similar to the one considered in Section 5.2 as shown in Figure 2.

• • • • • •

ε

��

w1

��
. . .

wk−1
��

wk

��

ε

��

w1

��
. . .

wk−1
��

wk

��

ε

��

w1

��
. . .

wk−1
��

wk

��
w−1

��. . .
α ω

Figure 2. Graph Γ.

By Proposition 5.6, g1, . . . , gk, h, 1
m is a positive instance of BSMP(G) if and

only if the graph F (CO(log(|w|+m
∑

|wi|))(Γ)) contains the edge α
ε→ ω. Hence the

result. �

5.4. Optimization problems. In this section we solve in polynomial time several
optimization problems in hyperbolic groups.

Theorem 5.13. Let G be a hyperbolic group. Then the subset sum optimization
problem in G is in P.

Proof. Let w1, . . . , wk, w be a given instance of SSOP(G). We may assume that
wi �= ε. Our algorithm is very similar to the algorithm described in Section 5.2,
one needs only to use one extra decoration of the graph Γ = Γ(w1, . . . , wk, w) from
Figure 1 (and all of its completions and foldings). We equip the graph Γ with a
function γ : E(Γ) → N ∪ {0}, termed the price function. This function γ is equal
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w1

w2

wkw−1

γ = 1

γ = 1

γ = 1

Figure 3. Grapth Γ, Theorem 5.15.

to zero on all edges except for the last edge in each word wi, where it is equal to 1.
The price of a path p = e1, . . . , em in Γ from a vertex α to a vertex β is defined by

γ(p) =
∑

γ(ei).

Now we describe how γ changes under completions and foldings. In the completion
process, as described in Section 5.1.1, one adds loops labelled with relations r ∈ R
and assigns zero price (γ = 0) to every new edge. Under the folding process every
new edge gets the price value that is equal to the sum of the prices of the folded
edges. When folding two edges e1 and e2, the folding algorithm adds a new edge e
only if such an edge does not already exist in the graph. If such e is there already
we replace its γ value γ(e) with the minimum of γ(e) and γ(e1) + γ(e2).

Now we construct the graph Δ = F(CO(log(|w|+
∑

|wi|))(Γ)) together with the
price function γ, it takes only polynomial time in the size of the instance w1, . . . , wk,
w. By Theorem 5.8, SSP(G) has an affirmative solution if and only if the graph

Δ contains the edge α
ε→ ω. Furthermore, it is not hard to see that the price of

this edge is the minimal number of wi’s required in the expression (1.4). Now, it is
straightforward to find the actual optimal solution from the graph Δ. �

Corollary 5.14. Let G be a hyperbolic group. Then the bounded submonoid opti-
mization problem is in P.

Proof. Follows from the theorem above and Proposition 2.10. �

We would like to point out that the usual unbounded subgroup membership prob-
lem is undecidable in some hyperbolic groups (Rips [44]), hence the search subgroup
membership problem in a given hyperbolic group, though decidable, cannot have
any computable upper bound on its time complexity. Nevertheless, in some special
cases one can solve the unbounded optimization problem in polynomial time, e.g.,
in free groups.

Theorem 5.15. The submonoid membership optimization problem in a free group
is polynomial time solvable.

Proof. We construct first a directed graph Γ for {w1, . . . , wk} with the tail labelled
with w−1 as in Figure 3. Then we apply Stallings foldings, decorated with a price
function as in the proof of Theorem 5.13. A few details are in order here. The
values of the price function are stored in binary. It is easy to see that the bit-length
of the values of γ in the folded graph is bounded by |X| · (|w|+

∑
|wi|). Hence, all

computations can be done in polynomial time. �



KNAPSACK PROBLEMS IN GROUPS 1005

≤ K1

≤ K1

≤ K1

≤ K1

≤ K1

≤ K1

≤ K1

≤ K1

≤ 4K1 ≤ 4K1

Figure 4. Lemma 6.3, H = 4.

We give polynomial time solutions to more optimization problems in hyperbolic
groups in Section 6.3.

6. Knapsack problem in hyperbolic groups

In this section we study the knapsack problem KP(G) in hyperbolic groups G
relative to finite generating sets. The main goal is to prove the following theorem.

Theorem 6.1. Let G be a hyperbolic group generated by finite set X. Then
KP(G,X) ∈ P. Moreover, there exists a P-time algorithm which for any positive
instance g1, . . . , gk, g ∈ G of KP(G) computes a sequence of non-negative integers
ε1, . . . , εk such that gε11 . . . gεkk = g in G.

To prove this theorem we need some results in hyperbolic groups.

6.1. Auxiliary results in hyperbolic groups. In our notation we follow the
paper [27], where one can also find all the needed notions and definitions.

Lemma 6.2. Let H be a δ-hyperbolic geodesic metric space. Let p, q be two (λ, ε)-
quasigeodesic paths in H joining points P1, P2 and Q1, Q2, respectively. Suppose
H ≥ 0 is such that |P1Q1| ≤ H and |P2Q2| ≤ H. Then there exists K =
K(δ, λ, ε,H) ≥ 0 such that p, q asynchronously K-fellow travel.

Proof. This is well known. For example, see [27]. �
Lemma 6.3. Let H be a δ-hyperbolic geodesic metric space. Let p, q be two (λ, ε)-
quasigeodesic paths in H joining points P1, P2 and Q1, Q2, respectively. Suppose
H ≥ 1 is such that |P1Q1| ≤ H and |P2Q2| ≤ H. Then there exists K1 =
K(δ, λ, ε) ≥ 0 such that p, q asynchronously K1H-fellow travel.

Proof. Let K1 be the constant K1 = K(δ, λ, ε, 1) provided by Lemma 6.2. Then
triangle inequality gives a linear in H bound K ≤ K1H on the constant of fellow
travel, as shown in Figure 4. �

It is well known that (quasi-)geodesic polygons in a hyperbolic space are “thin”.
In the following lemma we give a logarithmic bound on “thickness” of a quasi-
geodesic m-gon.

Lemma 6.4. Let p1p2 . . . pm be a (λ, ε)-quasigeodesic m-gon in a δ-hyperbolic
space. Then there is a constant H = H(δ, λ, ε) such that each side pi, 1 ≤ i ≤
m, belongs to the closed (H + H lnm)-neighborhood of the union of other sides
p1, . . . , pi−1, pi+1, . . . , pm.



1006 ALEXEI MYASNIKOV, ANDREY NIKOLAEV, AND ALEXANDER USHAKOV

Proof. First we prove the lemma in the case m = 2l. Drawing a diagonal in a
quadrangle, we obtain a constant H1 such that every side of a (λ, ε)-quasigeodesic
quadrangle belongs to the closed H1-neighborhood of the union of other three sides.
(Note that H1 also delivers the same statement for triangles.) Since H1 ≤ H1 +
H1 ln 4, this provides the base case l = 2.

Suppose the statement is proven for m = 2l with H = 3H1. Prove that H = 3H1

also suffices in the case m = 2l+1.
Indeed, let p1, . . . , pm be an m-gon. For each 1 ≤ i ≤ m−1, let pi have endpoints

Pi and Pi+1, and pm have endpoints Pm and P1. Draw geodesic diagonals q1, . . . , q2l
so that qi, 1 ≤ i ≤ 2l − 1, joins points P2i−1, P2i+1, and q2l joins Pm−1, P1. (See
Figure 5.)

≤ H1

≤ H1

≤ 3H1 + 3H1 ln 2
l

p1

p2

p3

q1

q2

Figure 5. Drawing diagonals in a 23+1-gon.

Since (2l)-gon q1 . . . q2l belongs to the closed H1-neighborhood of p1 . . . pm, by
triangle inequality, every side of p1 . . . pm is contained in the (H1 + H1 + (3H1 +
3H1 ln 2

l))-neighborhood of the union of other sides. Since

H1 +H1 + 3H1 + 3H1 ln 2
l ≤ 3H1 + 3H1 ln 2

l+1,

the case m = 2l+1 is obtained.
Finally, for arbitrary m, considering an m-gon as a degenerate 2l-gon, where

2l−1 < m ≤ 2l, we obtain that H = 6H1 proves the statement of the lemma. �

Let 〈X | R〉 be a finite presentation of a hyperbolic group G. We say that an
element g ∈ G is cyclically reduced if it has minimal geodesic length among all
elements in the conjugacy class gG. We say that a geodesic word w in the alpha-
bet X is cyclically reduced if the corresponding group element g = w is cyclically
reduced. We say that two elements g, h ∈ G are commensurable if their powers are
conjugated, i.e., there exist m,n ∈ Z, not both zero, c ∈ G such that c−1gmc = hn.

Lemma 6.5. For any finite presentation 〈X | R〉 of a hyperbolic group G, there
exist constants λ, ε with the following property. For any cyclically reduced word w,
for any n ∈ Z, the word wn is (λ, ε)-quasigeodesic.

Proof. See Lemma 27 of [40]. �

Lemma 6.6. Suppose 〈X | R〉 is a presentation of a group G. Let w1 and v1 be
words in the alphabet X such that the corresponding elements g1 = w1, f1 = v1 of
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w1 w1 w1 w1

v1 v1 v1 v1

u1

d1

u2

d2

ui

di

ui+1

di+1

Figure 6. Paths labeled uidi connect endpoints of copies of w1

and v1.

w1 w1 w1

v1 v1

u1

d1

u5

d5

Figure 7. If u1d1 = u5d5, then g41 = u1d1f
3
1u1d1

−1
.

G have infinite order. Suppose w and v are infinite paths in the Cayley graph of
〈X | R〉 labeled by w∞

1 and v∞1 .
Then there exists a constant L = L(|X|) with the following property. If a segment

of w, containing at least |v1|LK copies of w1, asynchronously K-fellow travels with
a segment of v, then g1 and f1 are commensurable.

Proof. Note that in such a case, the endpoint of each copy of w1 is connected by a
path labeled by a word ui of length at most K with a point on v. Therefore, the
endpoint of each copy of w1 is connected by a path labeled uidi with an endpoint
of a copy of v1, where di is a terminal subword of v1 (see Figure 6). Since there
are at most |v1| · (2|X|)K words of the form uidi, taking L > 2|X| guarantees that
words uidi repeat, yielding that in G one has

(6.1) gk1
1 = uidif

k2
1 uidi

−1
,

i.e., that g1, f1 are commensurable (for example, see Figure 7). �

6.2. Reduction of KP to BKP. Let G be a hyperbolic group. The following
result, which is of independent interest, P-time reduces KP(G) to BKP(G). This
proves Theorem 6.1 because BKP(G) is P-time decidable by Corollary 5.11.

Theorem 6.7. Let G be a hyperbolic group. Then there is a polynomial p(x) such
that if for g1, . . . , gk, g ∈ G there exist integers ε1, . . . , εk ∈ Z such that

g = gε11 . . . gεkk ,

then there exist such integers ε1, . . . , εk ∈ Z with

max{|ε1|, . . . , |εk|} ≤ p(|g1|+ . . . |gk|+ |g|).

Proof. Let E be the maximum order of torsion elements in G (it is well-defined
since a hyperbolic group has a finite number of conjugacy classes of finite subgroups,
see [7] or [8]), or E = 1 if G is torsion-free. For every torsion element gi, 1 ≤ i ≤ k,
we may assume that |εi| < E. Suppose now that among g1, . . . , gk there is at least
one element of infinite order.
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Fix a presentation 〈X | R〉 of G and denote |g1|X + . . .+ |gk|X + |g|X = n (here
| · |X denotes the geodesic length with respect to X).

Let gi1 , . . . , gim be the entirety of elements of infinite order among g1, . . . , gk.
For each infinite order gij , 1 ≤ j ≤ m, let hj , cj be such that gij = c−1

j hjcj and hj

cyclically reduced. Note that |hj |X , |cj |X ≤ |gij |X ≤ n. Given a product gε11 . . . gεkk ,
denote blocks of powers of finite order elements as follows:

cjg
εij+1

ij+1 . . . g
εij+1−1

ij+1−1 c−1
j+1 = bj+1 for 1 ≤ j ≤ m− 1,

b1 = gε11 . . . g
εi1−1

i1−1 c−1
1 , bm+1 = cmg

εim+1

im+1 . . . gεkk .

For convenience put εij = αj so that

gε11 . . . gεkk = b1h
α1
1 b2 . . . bmhαm

m bm+1.

Note that |bi| ≤ n · nE + 2n ≤ 3nE+1.
Consider and (2m+ 2)-gon with sides q1p1q2 . . . pmqm+1r where:

• qi, 1 ≤ i ≤ m+ 1, is labeled by a geodesic word representing bi,
• pi, 1 ≤ i ≤ m, is labeled by a (λ, ε)-quasigeodesic word representing hαi

i

(according to Lemma 6.5),
• r is labeled by a geodesic word representing g.

We will show that given a sufficiently large polynomial bound on M , if at least one
|αj | > M , then some powers |αi| > M can be reduced while preserving the equality
g = b1h

α1
1 b2 . . . bmhαm

m bm+1.
Assume some |αj | ≥ M , with M to be chosen later. By Lemma 6.4, the side pj

of the polygon belongs to a closed (H +H ln(2m+ 2))-neighborhood of the union
of the other sides, where H only depends on X, R, λ and ε. By Lemma 6.5, λ and
ε, in turn, only depend on X, R.

If two points pj(t1), pj(t2), t1 < t2 are (H + H ln(2m + 2))-close to a side q
(where q is one of sides pi, qi, r), then by Lemma 6.3 the subpath pj(t), t1 ≤ t ≤ t2
asynchronously K2 = K1(H + H ln(2m + 2))-fellow travels with a subpath of q.
Therefore we may assume that pj is split into at most (2m + 1) segments, so
that each segment asynchronously K2 = K1(H +H ln(2m+ 2))-fellow travels with
a segment of another side. By pigeonhole principle, at least one segment of pj
contains at least

(6.2) (M − 2m)/(2m+ 1) ≥ M

2m+ 1
− 2 ≥ M

3n
− 2 = M1

copies of the word representing hj . Denote this segment of pj by p and its fellow
traveler by s.

Note that since pj is (λ, ε)-quasigeodesic, geodesic length of s is at least

(6.3) λ−1(M1|h1|X − 2K2)− ε.

We show below that given sufficiently large lower bound on M , p can fellow travel
neither with qi, nor with r. Choosing

(6.4) M > 3n(λ(ε+ 3nE+1) + 2K2 + 2) = Q1(n)

guarantees M1 > λ(ε+3nE+1)+2K2, so by (6.3) geodesic length of |s|X > 3nE+1,
which eliminates the possibility that s is a segment of qi, 1 ≤ i ≤ m + 1. Note
that Q1(n) in (6.4) is of degree E + 2 in n since K2 = K1(H + H ln(2m + 2)) ≤
K1(H + 3nH). The same bound (6.4) also prohibits fellow travel with r since
geodesic length of r is at most n < 3nE+1.
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From (6.4) we conclude that with

(6.5) M > Q1(n) + E,

the only possibility is that p fellow travels with a segment of some pl, l �= j.
By Lemma 6.6, there exists L (depending on X) such that if p K2-fellow travels

with a segment of pl and M1 > nLK2 , then hj and hl are commensurable and form

a rectangle hk1
j = d−1hk2

l d (see (6.1)) with k1 between 0 and αj , and k2 between

0 and αl. In that case, αj and αl can be replaced by (αj − k1) and (αl − k2),
respectively, preserving the equality g = b1h

α1
1 . . . hαm

m bm+1. (See Figure 8.) Note

hk1
jhk2

l

d

d d

Figure 8. Removing rectangle hk1
j = d−1hk2

l d.

that

nLK2 = nLK1(H+H ln(2m+2))

= LK1Hn(2m+ 2)K1H lnL

≤ LK1Hn(4n)K1H lnL.

Hence, M1 ≥ nLK2 is guaranteed by

(6.6) M > 3n(LK1Hn(4n)K1H lnL + 2) = Q2(n),

which is of degree ≤ (2 +K1H lnL) in n. Consider

(6.7) M = Q1(n) +Q2(n) + E,

which satisfies inequalities (6.4), (6.5) and (6.6). By the argument above, if some
|εi| > M and gi is a torsion element, then εi can be replaced with ε′i where |ε′i| <
E < M . If some |εi| > M and gi is an infinite order element, then εi and some εj
can be replaced by ε′i and some ε′j , respectively, where |ε′i| < |εi| and |ε′j | < |εj |.

Repeating this procedure, we eventually obtain that for every 1 ≤ i ≤ k, |εi| <
M . It is only left to note that M in (6.7) is of degree max{E + 2, 2 +K1H lnL}
in n, where E,K1, H, L depend only on the presentation 〈X | R〉. This completes
proof of the theorem. �

If infinite order elements g1, . . . , gm are not commensurable, then a stronger
version of Theorem 6.7 holds.

Theorem 6.8. Let 〈X | R〉 be a finite presentation of a hyperbolic group G. Let
w1, . . . , wm be words in the alphabet X of total length |w1|+ |w2|+ . . .+ |wm| = n.
Suppose that the elements g1 = w1, . . . , gm = wm in G satisfy:

(a) gi has infinite order for every 1 ≤ i ≤ m.
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(b) gi, gj are commensurable if and only if i = j.

Then there is a polynomial p(x) that depends solely on the presentation 〈X | R〉,
such that for any K ∈ N, if the geodesic length of the product

h = gα1
1 · · · gαm

m

is less than K, then

max{|α1|, . . . , |αm|} ≤ K · p(n).

Proof. We assume |h|X < K and come up with a lower bound on M that makes
this impossible.

For each gi, 1 ≤ i ≤ m, let hi, ci be such that gi = c−1
i hici and hi cyclically

reduced. Note that |hi|X , |ci|X < |gi|X ≤ n. Given numbers α1, . . . , αm, consider
the product

h = gα1
1 gα2

2 · · · gαm
m = c−1

1 hα1
1 c1c

−1
2 hα2

2 c2 · · · cm−1c
−1
m hαm

m cm,

and (2m+ 2)-gon with sides q1p1q2 . . . pmqm+1r where:

• q1 is labeled by a geodesic word representing c−1
1 ,

• pi, 1 ≤ i ≤ m, is labeled by a (λ, ε)-quasigeodesic word representing hαi
i

(according to Lemma 6.5),
• qi, 2 ≤ i ≤ m, is labeled by a geodesic word representing ci−1c

−1
i ,

• qm+1 is labeled by a geodesic word representing cm,
• r is labeled by a geodesic word representing h.

Assume some αj ≥ M , with M to be chosen later. The proof then proceeds
similarly to the proof of the Theorem 6.7 using Lemmas 6.4 and 6.3.

Analogously to (6.4),

(6.8) M > 3n(λ(ε+ 2n+K) + 2K2 + 2) = P1(n,K)

forbids fellow travel with qi (since |qi| < 2n) or r (since |r| < K). Then

(6.9) M > 3n(LK1Hn(4n)K1H lnL + 2) = P2(n),

similarly to (6.6), allows us to apply Lemma 6.6 if pj fellow travels with a segment
of some pl, l �= j. Since gj , gl are not commensurable, this possibility is also
eliminated.

Now notice that

(6.10) M = P1(n,K) + P2(n)

satisfies (6.8) and (6.9), making |h|X < K impossible. Observe that M in (6.10)
is of degree max{2, 2 +K1H lnL} in n, where K1, H, L ultimately depend only on
the presentation 〈X | R〉, and linear in K. �

6.3. Knapsack optimization problems. In this section we describe polynomial
solutions to KOP, KOP1, KOP2, SSOP1, and SSOP2 (see Section 2.2) for
hyperbolic groups.

By Thereom 6.7, in hyperbolic groups KP reduces to BKP. Therefore, The-
orem 5.13 is enough to give a polynomial time solution to KOP. Similarly, by
Thereom 6.7, KOP1(G,X) in a given hyperbolic group G P-time reduces to
SSOP1(G,X). The following theorem suffices to solve the latter problem in poly-
nomial time.
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Theorem 6.9. Let G be a hyperbolic group given by a finite presentation 〈X | R〉.
There exists a polynomial time algorithm that, given g1, . . . , gk, g ∈ G and a unary
N ∈ N∪{0}, finds ε1, . . . , εk ∈ {0, 1} such that the distance between g and gε11 . . . gεkk
in the Cayley graph Cay(G,X) does not exceed N , or outputs “No solutions” if no
such ε1, . . . , εk exist.

Proof. By a standard argument, it is enough to solve the corresponding decision
problem: given g1, . . . , gk, g ∈ G and a unary N ∈ N ∪ {0}, decide whether there
exist ε1, . . . , εk ∈ {0, 1} such that the distance between g and gε11 . . . gεkk in the
Cayley graph Cay(G,X) does not exceed N .

We consider graph Γ = Γ(w1, . . . , wk, w,N) similar to the one in Figure 1, ac-
commodating a ball of radius N centered at w, as in Figure 9.

• • • • • • • •

w1

��

ε
��

wk

��

ε
��

x1

��

. . .
xm

��ε ��

x−1
1

		

. . .
x−1
m





x1

��

. . .
xm

��ε ��

x−1
1

		

. . .
x−1
m




w−1

��. . . . . .
α ωB1 BN

Figure 9. The graph Γ(w1, . . . , wk, w,N).

It is clear that the problem has a positive answer if and only if 1 ∈ L(Γ). By
Proposition 5.6, it suffices to check whether the graph

Δ = F(CO(log(|w|+
∑

|wi|+mN))(Γ))

contains the edge α
ε→ ω. �

Now we turn to solving KOP2(G,X). Again, by Thereom 6.7, it is enough to
solve SSOP2(G,X), which is achieved using the following statement.

Theorem 6.10. Let G be a hyperbolic group given by a finite presentation 〈X | R〉.
There exists a polynomial time algorithm that, given g1, . . . , gk, g ∈ G and a unary
N ∈ N ∪ {0}, finds ε1, . . . , εk ∈ {0, 1} such that gε11 . . . gεkk belongs to the segment
[1, g], and the distance between g and gε11 . . . gεkk in the Cayley graph Cay(G,X)
does not exceed N , or outputs “No solutions” if no such ε1, . . . , εk exist.

Proof. As in proof of Theorem 6.9, we only need solve the corresponding decision
problem.

Recall that hyperbolic groups are strongly geodesically automatic ([12]), which
means that they possess an automatic structure, where the language L accepted by
the word acceptor is the set of all geodesic words. Recall further that an equality
checker (see, for example, [17]) for an automatic group G is the automaton that
accepts the subset {(u, v) | u =G v} of L × L.

For a given g ∈ G, one can construct in polynomial time an automaton Mg that
accepts all geodesic words equal to g in G. Indeed, this can be done by building
an automaton product of the equality checker (see [17]) and the automaton Γg in
Figure 10, where w = y1y2 . . . y|g| is a geodesic word representing g in generators
X = {x1, . . . , xm}. Further, in the automaton Mg we mark every vertex that is a
distance at most N from the terminal one.
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(y1, x1)

(y1, x2)

(y1, xm)

(y2, x1)

(y2, x2)

(y2, xm)

(y|g|, x1)

(y|g|, x2)

(y|g|, xm)
α ω

Figure 10. The graph Γg.

• • • • •

w−1
k

��

ε
��

w−1
k−1

��

ε
��

w−1
1

��

ε
��. . .

α ω

Figure 11. The graph Γ.

Let Γ be the automaton displayed in Figure 11. We obtain an automaton Δ =
Δ(g1, g2, . . . , gk, g,N) by attaching copies Γ1,Γ2, . . . of Γ to every marked vertex of
Mg, as in Figure 12. We assign the initial vertex of Δ to be the initial vertex α of
Mg, and the set of terminal vertices to consist of the terminal vertices ω1, ω2, . . . of
the copies Γ1,Γ2, . . ..

NMg
α

ω1

ω2

ω3

Γ1

Γ2

Γ3

Figure 12. The graph Δ.

Notice that the problem has a positive answer if and only if 1 ∈ L(Δ). By Propo-

sition 5.6, it is enough to check whether there is the edge α
ε→ ωj in F(CO(log l)(Δ)),

where l is the number of edges in Δ. It is only left to note that the number of edges
in Mg and Γ is polynomial in

∑
|gi|+ |g|+N , therefore so is l. �

Corollary 6.11. Let G be a hyperbolic group given by a finite generating set X.
Then KOP(G,X), SSOP1(G,X), SSOP2(G,X), KOP1(G,X), KOP2(G,X)
are in P.

7. Bounded submonoid membership problem for F2 × F2

We proved in Section 5.3 that the bounded submonoid problem is decidable in
any hyperbolic group G in polynomial time. In this section we show that taking
a direct product does not preserve P-time decidability of BSMP unless P = NP.
In fact, we prove a stronger result. We show that there exists a (fixed!) subgroup
H = 〈h1, . . . , hk〉 in F2 × F2 with NP-complete bounded membership problem.

The bounded GWP for a fixed subgroup H = 〈h1, . . . , hk〉 ≤ G: Given
g ∈ G and unary 1n ∈ N decide if g can be expressed as a product of the form
g = h±1

i1
h±1
i2

· · ·h±1
il

, where l ≤ n and 1 ≤ i1, . . . , il ≤ k.
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Similar to Proposition 2.6, one can show that complexity of the bounded mem-
bership problem does not depend on a finite generating set for G, and, hence, we
can denote this problem BGWP(G;h1, . . . , hk).

Proposition 7.1. BGWP(G;h1, . . . , hk) is P-time reducible to BSMP(G).
Therefore, if BGWP(G;h1, . . . , hk) is NP-complete and the word problem in G
is in P, then BSMP(G) is NP-complete.

Proof. (g, 1n) is a positive instance of BGWP(G;h1, . . . , hk) if and only if (h1, . . . ,
hk, h

−1
1 , . . . , h−1

k , g, 1n) is a positive instance of BSMP(G). �
Below we prove that there exists a subgroup H = 〈h1, . . . , hk〉 in F2 × F2 with

NP-complete BGWP(F2 × F2;h1, . . . , hk). In our argument we employ the idea
used by Olshanskii and Sapir in [38, Theorems 2 and 7] to investigate subgroup
distortions in F2 × F2. The argument follows Mikhailova’s construction of a sub-
group of F2 × F2 with undecidable membership problem. We briefly outline that
construction as described in [34].

Let G = 〈X | R〉 be a finitely presented group. We may assume that both sets
X and R are symmetric, i.e., X = X−1 and R = R−1. Define a set:

(7.1) DG = {(r, 1) | r ∈ R} ∪ {(x, x−1) | x ∈ X} ⊂ F (X)× F (X).

Let H be a subgroup of F (X)× F (X) generated by DG. Then for any w ∈ F (X):

(7.2) (w, 1) ∈ H ⇔ w = 1 in G.

In more detail, the following lemma is true.

Lemma 7.2 ([34]). Let w = w(X). If

(w, 1) = (u1, v1)(u2, v2) . . . (un, vn) for some (ui, vi) ∈ DG,

then the word u1 . . . un is of the form

w0r1w1r2w2 . . . wm−1rmwm for some wi ∈ F (X), ri ∈ R

satisfying w0w1 . . . wm =F (X) 1 and, hence,

w =F (X)

m∏
i=1

(w0 . . . wi−1)ri(w0 . . . wi−1)
−1.

Moreover, by [38, Lemma 1] we may assume that |w0|+ . . .+ |wm| ≤ 4E, where
E is the number of edges in the minimal van Kampen diagram for w over 〈X | R〉.
Denoting C = max{|r| : r ∈ R}, we get |w0|+ . . .+ |wm| ≤ 4(Cm+ |w|), so
(7.3) n ≤ m+ 2(|w0|+ |w1|+ . . .+ |wm|) ≤ m+ 8(Cm+ |w|),
i.e., the number of elements of DG necessary to represent (w, 1) is bounded by a
polynomial (in fact, linear) function of |w| and m.

Lemma 7.3. Let 〈X | R〉 be finite presentation of a group G and DG ⊂ F (X) ×
F (X) the set given by (7.1). If the isoperimetric function for 〈X | R〉 is bounded by
a polynomial p, then the word problem in G is P-time reducible to BGWP(F (X)×
F (X);DG).

Proof. As above, let C = max{|r| : r ∈ R}. For an arbitrary w ∈ F (X) compute

n = p(|w|) + 8(Cp(|w|) + |w|).
Now it easily follows from Lemma 7.2 and inequality (7.3) that w = 1 in G if and
only if ((w, 1), 1n) is a positive instance of BGWP(F (X)× F (X);DG). �
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Theorem 7.4. There is a finitely generated subgroup H = 〈h1, . . . , hk〉 in F2 × F2

such that BGWP(F2 × F2;h1, . . . , hk) is NP-complete.

Proof. It is shown in [46] that there exists a finitely presented group G with NP-
complete word problem and polynomial Dehn function. Let DG = {h1, . . . , hk}
be a subset of F (X) × F (X) defined by (7.1). By Lemma 7.3, BGWP(F (X) ×
F (X);DG) is NP-hard. Since F2 × F2 contains subgroup isomorphic to F (X) ×
F (X), BGWP(F2 × F2;DG) is also NP-hard. It is only left to note that the
word problem in F2 × F2 is P-time decidable, so BGWP(F2 × F2;DG) is NP-
complete. �

Corollary 7.5. If G contains F2×F2 as a subgroup, then there exists {h1, . . . , hk} ⊆
G such that BGWP(G;h1, . . . , hk) and BSMP(G) are NP-hard. If, in addi-
tion, the word problem in G is P-time decidable, then BGWP(G;h1, . . . , hk) and
BSMP(G) are NP-complete.

Corollary 7.6. Linear groups GL(≥ 4,Z), braid groups and graph groups whose
graph contains an induced square C4 have NP-complete BGWP and BSMP.

References

[1] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H.
Short, Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste,
1990), World Sci. Publ., River Edge, NJ, 1991, pp. 3–63. Edited by Short. MR1170363
(93g:57001)

[2] Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962), 423–438. MR0140562
(25 #3980)

[3] Gilbert Baumslag, A finitely presented metabelian group with a free abelian derived group of
infinite rank, Proc. Amer. Math. Soc. 35 (1972), 61–62. MR0299662 (45 #8710)

[4] Gilbert Baumslag, Subgroups of finitely presented metabelian groups, J. Austral. Math. Soc.
16 (1973), 98–110. MR0332999 (48 #11324)

[5] Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov, Algebraic geometry
over groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), no. 1, 16–79, DOI
10.1006/jabr.1999.7881. MR1707663 (2000j:14003)

[6] Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov, Discriminat-
ing completions of hyperbolic groups, Geom. Dedicata 92 (2002), 115–143, DOI
10.1023/A:1019687202544. MR1934015 (2003i:20073)
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[39] A. Yu. Ol′shanskĭı, Diagrams of homomorphisms of surface groups (Russian), Sibirsk. Mat.

Zh. 30 (1989), no. 6, 150–171, DOI 10.1007/BF00970919; English transl., Siberian Math. J.
30 (1989), no. 6, 961–979 (1990). MR1043443 (91e:20028)
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