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THE PROBABILISTIC ESTIMATES ON THE LARGEST AND
SMALLEST q-SINGULAR VALUES OF RANDOM MATRICES

MING-JUN LAI AND YANG LIU

Abstract. We study the q-singular values of random matrices with pre-
Gaussian entries defined in terms of the �q-quasinorm with 0 < q ≤ 1. In
this paper, we mainly consider the decay of the lower and upper tail prob-
abilities of the largest q-singular value s

(q)
1 , when the number of rows of the

matrices becomes very large. Based on the results in probabilistic estimates on
the largest q-singular value, we also give probabilistic estimates on the smallest
q-singular value for pre-Gaussian random matrices.

1. Introduction

The extremal spectrum or the largest and smallest singular values of random
matrices have been of interest to many research communities including numerical
analysis and multivariate statistics. For example, the condition numbers of ran-
dom matrices were of interest as early as in von Neumann and Goldstein’1947, [28]
and Smale’1985, [19], and distribution of the largest and smallest eigenvalues of
Wishart matrices was studied in Wishart’1928, [30]. Some estimates for the prob-
ability distribution of the norm of a random matrix transformation were obtained
in Bennett, Goodman and Newman’1975, [2]. In 1988, Edelman presented a com-
prehensive study on the distribution of the condition numbers of Gaussian random
matrices together with many numerical experiments (cf. [5]). In particular, Edel-
man explained several interesting applications of eigenvalues of random matrices
in graph theory, the zeros of Riemann zeta functions, as well as in nuclear physics
(cf. [6]). Indeed, the well-known semi-circle law (cf. Wigner’1962, [29]) states that
the histogram for the eigenvalues of a large random matrix is roughly a semi-circle.
To be more precise, let A be a Gaussian random matrix and M(x) denote the pro-
portion of eigenvalues of the Gaussian orthogonal ensemble (A + AT )/(2

√
n) (the

symmetric part of A/
√
n) that are less than x. Then the semi-circle law asserts

that
d

dx
M(x) →

{
2
π

√
1 − x2, ifx ∈ [−1, 1],

0, otherwise.
This interesting property has made a long lasting impact and attracted many
researchers to extend and generalize the semi-circle law. See recent papers of
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Tao and Vu’2008, [24] and Rudelson and Vershynin’2010, [17] for new results
and surveys and the references therein. It is known that the largest eigenvalue
of Ms = 1

s
Vn×s(Vn×s)T converges to (1 + √

y)2 almost surely (cf. Geman’1980,
[10]) and the smallest eigenvalue converges to (1 − √

y)2 almost surely (cf. Sil-
verstein’1985, [18]), where Vn×s is a Gaussian random matrix of size n × s with
n/s → y ∈ (0, 1] and Vn×s(Vn×s)T is called a Wishart matrix. The behavior of the
largest singular value of random matrices A with i.i.d. entries is well studied. If a
random variable ξ has a bounded fourth moment, then the largest eigenvalue s1(A)
of an n×n random matrix A with i.i.d. copies of ξ satisfies the following property:

lim
n→∞

s1(A)√
n

= 2
√
Eξ2

almost surely. See, e.g., Yin, Bai, Krishnaiah’1988, [31] and Bai, Silverstein and
Yin’1988, [1]. The bounded fourth moment is necessary and sufficient in this case.
However, the behavior of the smallest singular value for general random matrices
has been much less known. Although Edelman showed that for every ε > 0, the
smallest eigenvalue sn(A) of Gaussian random matrix A of size n× n has

P

(
sn(A) ≤ ε√

n

)
≤ ε

for any ε > 0, the probability estimates for sn(A) for general random matrix A
were not known until the results in Rudelson and Vershynin’2008, [14]. In fact,
Rudelson in [16] presented a less accurate probability estimate for sn(A), and soon
both Rudelson and Vershynin found a simpler proof of much accurate estimate in
[15]. More precisely, Rudelson and Vershynin first showed (cf. [15]) the following
results:

Theorem 1.1. If A is a matrix of size n × n whose entries are independent
random variables with variance 1 and bounded fourth moment, then

lim
ε→0+

lim sup
n→∞

P

(
sn(A) ≤ ε√

n

)
= 0.

Furthermore, in Rudelson and Vershynin’2008, [14], they presented a proof of
the following

Theorem 1.2. Let A be an n×n matrix whose entries are i.i.d. centered random
variables with unit variance and fourth moment bounded by B. Then

lim
K→+∞

lim sup
n→∞

P

(
sn(A) ≥ K√

n

)
= 0.

These two results settled down a conjecture by Smale in [18] (the results on the
Gaussian case were established by Edelman and Szarek; see [6] and [22]). More
precise estimates for largest and smallest eigenvalues are given for sub-Gaussian
random matrices, Bernoulli matrices, covariance matrices, and general random ma-
trices of the form M +A with deterministic matrix M and random matrix A in the
last ten years. See, e.g. [25], [20], [14], [26], [23] and the references in [17].

In this paper, we extend these studies on the probability estimate of the largest
and smallest singular values of random matrices in the �2-norm and give estimates
for these extremal spectra in the setting of the �q-quasinorm for 0 < q ≤ 1. Not
only is it interesting to know if the probability estimates for largest and smallest
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singular values of random matrices in the �2-norm can be extended to the setting
of the �q-quasinorm, there are also some definite advantages of using the general
�q-quasinorm when studying the restricted isometry property of random matrices as
suggested in Chartrand and Steneva’2008, [4], Foucart and Lai’2009, [8] and Foucart
and Lai’2010, [9]. In addition to Gaussian and sub-Gaussian random matrices, we
would like to study the probability estimates for pre-Gaussian random matrices.
A random variable ξ is pre-Gaussian if ξ has mean zero and the moment growth
condition E(|ξ|k) ≤ k!λk/2, i.e. (E(|ξ|k))1/k ≤ Cλk for k ≥ 1 (cf. Buldygin and
Kozachenko’2000, [3]). Note that the moment growth condition for a sub-Gaussian
random variable η is

(
E
(
|η|k

))1/k ≤ BC
√
k.

To be precise on what we are going to study in this paper, for any vector x =
(x1, · · · , xn)T in R

n, let

‖x‖qq =
n∑

i=1
|xi|q

for q ∈ (0,∞). It is known that for q ≥ 1, ‖·‖q is a norm for Rn and ‖·‖qq is a quasi-
norm for R

n for q ∈ (0, 1) that satisfies all the properties for a norm except the
triangle inequality. Let A = (aij)1≤i≤m,1≤j≤n be a matrix. The standard largest
q-singular value is defined by

(1.1) s
(q)
1 (A) := sup

{
‖Ax‖q
‖x‖q

: x ∈ R
n with x 	= 0

}
.

It is known that for q ≥ 1, the equation in (1.1) defines a norm on the space of
m× n matrices. In addition, we know

(1.2) max
j

‖aj‖q ≤ s
(q)
1 (A) ≤ n

q−1
q max

j
‖aj‖q ,

where aj , j = 1, 2, · · · , n, are the column vectors of A. We refer to any book on
matrix theory for the properties of the largest singular value sq1(A) when q ≥ 1, for
example, [11]. However, for q ∈ (0, 1), the properties of sq1(A) are not well-known.
For convenience, we shall explain some useful properties in the Preliminaries section.

The purpose of this paper is to study the matrix spectrum, e.g. sq1(A) for random
matrix A with pre-Gaussian entries. Two sets of our main results are the following

Theorem 1.3 (Upper tail probability of the largest q-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m×m matrix
with i.i.d. copies of ξ in its entries. Then for any 0 < q < 1,

(1.3) P

(
s
(q)
1 (A) ≥ Cm

1
q

)
≤ exp (−C ′m)

for some C, C ′ > 0 only dependent on the pre-Gaussian variable ξ.

Theorem 1.4 (Lower tail probability of the largest q-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m×m matrix
with i.i.d. copies of ξ in its entries. Then there exists a constant K > 0 such that

(1.4) P

(
s
(q)
1 (A) ≤ Km

1
q

)
≤ cm

for some 0 < c < 1, where K only depends on the pre-Gaussian variable ξ.

These results have their counterparts in papers by Yin, Bai, Krishnaiah’1988,
[31], Bai, Silverstein and Yin’1988, [1] and Sosnikov’2002, [20] for the �2-norm. It
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is interesting to know if the above results hold for general random matrices whose
entries are i.i.d. copies of a random variable of the bounded fourth moment.

Next we would like to study the smallest singular values. In general we can
define the k-th q-singular value as follows.
Definition 1.1. The k-th q-singular value of an m× n matrix A is defined by
(1.5)

s
(q)
k (A) := inf

{
sup

{
‖Ax‖q
‖x‖q

: x ∈ V \ {0}
}

: V ⊆ R
n, dim (V ) ≥ n− k + 1

}
.

It is easy to see that

(1.6) s
(q)
1 (A) ≥ s

(q)
2 (A) ≥ . . . ≥ s

(q)
min(m,n) (A) ≥ 0.

The smallest singular value sqmin(m,n) is also of special interest in various studies.
In the lower tail probability estimate, we divide the study in two cases when m > n
(tall matrices) and m = n (square matrices) under the assumption that A is of full
rank. The study is heavily dependent on the known results on the compressible and
incompressible vectors. In the upper tail probability estimate, we use the known
estimates on the projection in the �2-norm. Another set of main results is as follows.
For tall random matrices, we have
Theorem 1.5 (Lower tail probability on the smallest q-singular value). Let us fix
0 < q ≤ 1. Let ξ be the pre-Gaussian random variable with mean 0 and variance
1. Suppose that A is an m × n matrix with i.i.d. copies of ξ in its entries with
m > n. Then there exist some ε > 0, c > 0 and λ ∈ (0, 1) dependent on q and ε
such that
(1.7) P

(
s(q)
m (A) ≤ εm1/q

)
< e−cm

when n ≤ λm.
For square random matrices, we have

Theorem 1.6 (Lower tail probability on the smallest q-singular value). Let us fix
0 < q ≤ 1. Let ξ be the pre-Gaussian random variable with variance 1 and A be
an n×n matrix with i.i.d. copies of ξ in its entries. Then for any ε > 0, one has

(1.8) P

(
s(q)
n (A) ≤ γn−1/q

)
< ε,

where γ > 0 depends only on the pre-Gaussian variable ξ.
The above theorem is an extension of Theorem 1.1. Finally we have

Theorem 1.7 (Upper tail probability on the smallest q-singular value). Given any
0 < q ≤ 1, let ξ be a pre-Gaussian random variable with variance 1 and A be an
n×n matrix with i.i.d. copies of ξ in its entries. Then for any K > e, there exist
some C > 0, 0 < c < 1, and α > 0 which are only dependent on the pre-Gaussian
variable ξ such that

(1.9) P

(
s(q)
n (A) > Kn−1/2

)
≤ C (lnK)α

Kα
+ cn.

In particular, for any ε > 0, there exist some K > 0 and n0 such that

(1.10) P

(
s(q)
n (A) > Kn−1/2

)
< ε

for all n ≥ n0.
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The above theorem is an extension of Theorem 1.2. Note that we are not able
to prove

(1.11) P

(
s(q)
n (A) > Kn−1/q

)
< ε

under the assumptions in Theorem 1.7. However, we strongly believe that the above
inequality holds. We leave it as a conjecture.

The remainder of the paper is devoted to the proof of these five theorems which
give a good understanding of the spectrum of pre-Gaussian random matrices in �q-
quasinorm with 0 < q ≤ 1. We shall present the analysis in four separate sections
after the Preliminaries section.

2. Preliminaries

First of all, one can easily derive the following

Lemma 2.1. For 0 < q < 1, the equation in (1.1)) defines a quasinorm on the
space of m×N matrices. In particular, we have(

s
(q)
1 (A + B)

)q

≤
(
s
(q)
1 (A)

)q

+
(
s
(q)
1 (B)

)q

for any m×N matrices A and B. Moreover,

(2.1) s
(q)
1 (A) = max

j
‖aj‖q

for 0 < q ≤ 1, where aj , j = 1, . . . , N , are the columns of matrix A.

Proof. It is straightforward and not hard to show that s
(q)
1 (A), q ≤ 1, defines a

quasinorm on matrices by using the quasi-norm properties of ‖x‖q, the �q-quasinorm
on vectors.

To prove equation (2.1), on one hand, we have

(2.2) ‖Ax‖qq ≤
N∑
j=1

|xj |q · ‖aj‖qq ≤ ‖x‖qq max
j

‖aj‖qq

for 0 < q ≤ 1, which implies

(2.3) s
(q)
1 (A) ≤ max

j
||aj ||q.

On the other hand, by (1.1), we have

(2.4) s
(q)
1 (A) = sup

x∈RN ,‖x‖q=1
‖Ax‖q ≥ ‖Aej‖q = ||aj ||q

for every j, where ej is the j-th standard basis vector of RN , and then it follows
that

(2.5) s
(q)
1 (A) ≥ max

j
||aj ||q.

Thus, combined with (2.3), we obtain the equation (2.1) for 0 < q ≤ 1 as desired.
�

Next we need the following elementary estimate. Mainly we need a linear bound
for partial binomial expansion.
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Lemma 2.2 (Linear bound for partial binomial expansion). For every positive
integer n,

n∑
k=�n

2 �+1

(
n
k

)
xk (1 − x)n−k ≤ 8x

for all x ∈ [0, 1].

Proof. Let us start with an even integer. For every x ∈
[ 1

8 , 1
]
, we have

(2.6)
2n∑

k=n+1

(
2n
k

)
xk (1 − x)2n−k ≤

2n∑
k=0

(
2n
k

)
xk (1 − x)2n−k = 1 ≤ 8x.

But for x ∈
[
0, 1

8
]
, we let

f (x) :=
2n∑

k=n+1

(
2n
k

)
xk (1 − x)2n−k

.

By De Moivre-Stirling’s formula (see e.g. [7]) and furthermore the estimate in [13],

n! =
√

2πn
(n
e

)n

eλn ,

where 1
12n+1 < λn < 1

12n . We have

(2.7)
(

2n
n

)
=

√
2π2n

( 2n
e

)2n
eλ2n(√

2πn
(
n
e

)n
eλn

)2 = 4n√
πn

eλ2n−2λn ≤ 4n√
πn

.

Since
(

2n
k

)
≤

(
2n
n

)
for n + 1 ≤ k ≤ 2n,

(2.8)

f (x) ≤
2n∑

k=n+1

(
2n
n

)
xk (1 − x)2n−k ≤

2n∑
k=n+1

(
2n
n

)
xk ≤ n

(
2n
n

)
xn+1

for all x ∈ [0, 1]. Using (2.7), we have

(2.9) f (x) ≤ 4n
√

n

π
xn+1.

Letting g(x) = 4n
√

n
πx

n, we have

ln(g(x)) = n ln(4x) + 1
2

lnn− 1
2

ln π ≤ −n ln 2 + 1
2

lnn− 1
2

ln π ≤ 0

for x ∈ [0, 1/8]. Thus we have f(x) ≤ x ≤ 8x. Also, we can have a similar estimate
for odd integers. These complete the proof. �

Remark 2.1. The coefficient on the right-hand side can be improved by Markov’s
inequality, but the estimate obtained by the analytic technique above is actually
good enough for the purposes of this paper.

Next we review the smallest q-singular values. Without loss of generality, we
consider m ≥ n. Then the n-th q-singular value is the smallest q-singular value
which can also be expressed in another way.
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Lemma 2.3. Let A be an m×n matrix with m ≥ n. Then the smallest q-singular
value

(2.10) s(q)
n (A) = inf

{
‖Ax‖q
‖x‖q

: x ∈ R
n with x 	= 0

}
.

Proof. By the definition,
(2.11)

s
(q)
n (A) = inf

{
sup

{‖Ax‖q

‖x‖q
: x ∈ V \ {0}

}
: V ⊆ R

n, dim (V ) ≥ 1
}

≤ inf
{
sup

{‖Av‖q

‖v‖q
: v ∈ V \ {0}

}
: V = span (x) : x ∈ R

n \ {0}
}

= inf
{‖Ax‖q

‖x‖q
: x ∈ R

n with x 	= 0
}
.

We also know the infimum can be achieved by considering the unit Sq-sphere in the
finite-dimensional space, and so the claim follows. �

In particular, if A is an n× n matrix, we know

(2.12)

s
(q)
n (A) = inf

{
‖Ax‖q
‖x‖q

: x ∈ R
n with x 	= 0

}

= 1

sup

{∥∥A−1x
∥∥
q

‖x‖q
: x ∈ Rn with x 	= 0

}

= 1
s
(q)
1 (A−1)

.

The estimate of the largest q-singular value can be used to estimate the smallest
q-singular values based on this relation.

As we see, the q-singular value is defined by the �q-quasinorm, as opposed to the
�2-norm, but using a similar proof for the relationship between the rank of a matrix
and its smallest singular value in �2, one has the following relationship between the
rank of a matrix and its smallest q-singular value.

Lemma 2.4. For any positive integer m and n, an m×n matrix A is of full rank
if and only if s(q)

min(m,n) (A) > 0.

Remark 1. One could also derive this lemma by the properties of singular values
defined by the �2-norm and by using the inequalities on the relations between the
�2-norm and the �q-quasinorm.

We shall need the following result to estimate the smallest q-singular values.

Lemma 2.5. Let A be a matrix of size m×N . Suppose that m ≥ N . Then

s
(q)
min(m,N)(A) ≤ min

j
‖aj‖q .

Proof. Choose ej0 to be a standard basis vector of R
N such that ‖Aej0‖q =

minj ‖aj‖q and use the definition of s(q)
min(m,N)(A) for m ≥ N . �

The following generalization of Lemma 4.10 in Pisier’1999, [12] will be used in a
later section.
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Lemma 2.6. For 0 < q ≤ 1, let Sq := {x ∈ R
n : |x|q = 1} denote the unit sphere

of Rn in the �q-quasinorm. For any δ > 0, there exists a finite set Uq ⊆ Sq with

min
u∈Uq

‖x− u‖qq ≤ δ for all x ∈ Sq and card(Uq) ≤
(

1 + 2
δ

)n/q

.

Proof. Let (u1, . . . , uk) be a set of k points on the sphere Sq such that |ui−j |qq > δ
for all i 	= j. We choose k as large as possible. Thus, it is clear that

min
1≤i≤k

|x− ui|qq ≤ δ for all x ∈ Sq.

Let Bq := {x ∈ R
n : |x|q ≤ 1} be the unit ball of Rn relative to the quasinorm | · |q.

It is easy to see that the (δ/2)-balls centered at ui,

ui +
(
δ

2

)1/q

Bq, 1 ≤ i ≤ k,

are disjoint. Indeed, if x would belong to the (δ/2)-ball centered at xi as well as
the (δ/2)-ball centered at xj , we would have

|ui − uj |qq ≤ |ui − x|qq + |uj − x|qq ≤ δ

2
+ δ

2
= δ,

which is a contradiction. Besides, it is easy to see that

ui +
(
δ

2

)1/q

Bq ⊆
(

1 + δ

2

)1/q

Bq, 1 ≤ i ≤ k.

By comparison of volumes, we get

kVol
((

δ

2

)1/q

Bq

)
=

k∑
i=1

Vol
(
ui +

(
δ

2

)1/q

Bq

)
≤ Vol

((
1 + δ

2

)1/q

Bq

)
.

Then, by homogeneity of the volumes, we have

k

(
δ

2

)n/q

Vol (Bq) ≤
(

1 + δ

2

)n/q

Vol (Bq) ,

which implies that k ≤
(

1 + 2
δ

)n/q

. This completes the proof. �

3. The upper tail probability of the largest q-singular value

We begin with the following

Theorem 3.1 (Upper tail probability of the largest 1-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m×m matrix
with i.i.d. copies of ξ in its entries. Then

(3.1) P

(
s
(1)
1 (A) ≥ Cm

)
≤ exp (−C ′m)

for some C, C ′ > 0 only dependent on the pre-Gaussian variable ξ.

Proof. Since aij are i.i.d. copies of the pre-Gaussian variable ξ, Eaij = 0, and there
exist some λ > 0 such that E |aij |k ≤ k!λk for all k. Without loss of generality, we
may assume that λ ≥ 1. With the variance Ea2

ij = 1, we have

E |aij |k ≤
Ea2

ij

2
Hk−2k!
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for H := 2λ3 and all k ≥ 2. By the Bernstein inequality (cf. Theorem 5.2 in [3]),
we know that

P

(∣∣∣∣∣
m∑
i=1

aij

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2 (m + tH)

)
= 2 exp

(
− t2

2 (m + 2tλ3)

)

for all t > 0 and for each j = 1, · · · , N . In particular, when t = Cm,

(3.2) P

⎛
⎝
∣∣∣∣∣∣
m∑
j=1

aij

∣∣∣∣∣∣ ≥ Cm

⎞
⎠ ≤ 2 exp

(
− C2m

4Cλ3 + 2

)
.

Here a condition on C will be determined later.
On the other hand, by Lemma 2.1,

s
(1)
1 (A) = max

j
||aj ||1 =

m∑
i=1

|aij0 |

for some j0. Furthermore, for any t > 0, by the probability of the union,

(3.3) P

(
m∑
i=1

|aij | ≥ t

)
≤

∑
(ε1,...,εm)∈{−1,1}m

P

(
m∑
i=1

εiaij ≥ t

)
.

But −aij has the same pre-Gaussian properties as aij0 , precisely, E (−aij) = 0 and
E |−aij |k ≤ k!λk. Thus we have

(3.4)

P

(
s
(1)
1 (A) ≥ Cm

)
≤ m P

(
m∑
i=1

|aij | ≥ Cm

)

≤ 2mmP

(∣∣∣∣∣
m∑
i=1

aij

∣∣∣∣∣ ≥ Cm

)

≤ 2mm exp
(
− C2m

4Cλ3+2

)
≤ exp

(
−
(

C2

4Cλ3+2 − ln 2 − 1
)
m
)
.

To obtain an exponential decay for the probability P

(
s
(1)
1 (A) ≥ Cm

)
, we require

that C2

4Cλ3+2 − ln 2 − 1 > 0, for which

(3.5) C > 2λ3 + 2λ3 ln 2 +
√

2 + 2 ln 2 + 4λ6 + 8λ6 ln 2 + 4λ6 ln2 2.

That is, choosing C ′ = C2

4Cλ3+2 − ln 2 − 1, we get (3.1). �

The previous theorem allows us to estimate the largest q-singular value for 0 <
q < 1. The estimate can follow easily from Theorem 3.1, but it is one of the tail
probabilistic estimates we wanted to obtain, so let us state it as a theorem, which
is Theorem 1.3.

Proof of Theorem 1.3. By Hölder’s inequality, we have ‖aj‖q ≤ m
1
q−1 ‖aj‖1 for

0 < q < 1. It follows from Lemma 2.1 that

(3.6) s
(q)
1 (A) = max

j
‖aj‖q ≤ m

1
q−1s

(1)
1 (A).
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From (3.1), we have

(3.7)
P

(
s
(q)
1 (A) ≥ Cm

1
q

)
≤ P

(
m

1
q−1s

(1)
1 (A) ≥ Cm

1
q

)
= P

(
s
(1)
1 (A) ≥ Cm

)
≤ exp (−C ′m)

for some C, C ′ > 0 . �

4. The lower tail probability of the largest q-singular value

Let us use the result in Lemma 2.2 to give estimates on the lower tail probabilities
of the largest q-singular value.

Lemma 4.1. Suppose ξ1, ξ2, · · · , ξn are i.i.d. copies of a random variable ξ.
Then for any ε > 0,

(4.1) P

(
n∑

i=1
|ξi| ≤

nε

2

)
≤ 8P (|ξ| ≤ ε) .

Proof. First, we have the relation on the probability events that

(4.2)

{
(ξ1, . . . , ξn) :

n∑
i=1

|ξi| ≤
nε

2

}

is contained in
(4.3)

n⋃
k=�n

2 �+1

⋃
{i1, . . . , ik}
⊂ {1, . . . , n}

{
(ξ1, . . . , ξn) : |ξi1 | ≤ ε, . . . , |ξik | ≤ ε,

∣∣ξik+1

∣∣ > ε, . . . , |ξin | > ε
}
,

where {i1, i2, . . . , ik} is a subset of {1, 2, . . . , n} and {ik+1, . . . , in} is its comple-
ment, and let us denote the set (4.3) by E .

Let x = P (|ξ1| ≤ ε). Then by the union probability,

(4.4) P (E) =
n∑

k=�n
2 �+1

(
n
k

)
xk (1 − x)n−k ,

and applying Lemma 2.2, we have
(4.5) P (E) ≤ 8x = 8P (|ξ1| ≤ ε) .
Since the event (4.2) is contained in the event (4.3), we have

(4.6) P

(
n∑

i=1
|ξi| ≤

nε

2

)
≤ P (E) ≤ 8P (|ξ1| ≤ ε) .

�

We start with a lower tail probability for the 1-singular values.

Theorem 4.1 (Lower tail probability of the largest 1-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m×m matrix
with i.i.d. copies of ξ in its entries. Then there exists a constant K > 0 such that

(4.7) P

(
s
(1)
1 (A) ≤ Km

)
≤ cm
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for some 0 < c < 1, where K only depends on the pre-Gaussian variable ξ.

Proof. Since aij has variance 1, there exists δ > 0 and 0 ≤ β < 1 such that
(4.8) P (|aij | ≤ δ) = β.

Let Bj be the number of variables in {aij}mi=1 that are less than or equal to δ.
Then if

∑m
i=1 |aij | ≤ δ · λm for 0 < λ < 1, then Bj ≥ (1 − λ)m, because otherwise∑m

i=1 |aij | > δ · λm. It follows that

(4.9) P

(
m∑
i=1

|aij | ≤ δ · λm
)

≤ P (Bj ≥ (1 − λ)m) .

By Markov’s inequality,

(4.10) P (Bj ≥ (1 − λ)m) ≤ EBi

(1 − λ)m
,

but Bj satisfies a binomial distribution of m independent experiments, each of
which yields success with probability β; therefore

(4.11) P (Bj ≥ (1 − λ)m) ≤ β

1 − λ
.

By choosing suitable λ, we can make 0 < β
1−λ < 1. Thus

(4.12) P

(
m∑
i=1

|aij | ≤ δ · λm
)

≤ c

for some 0 < c < 1. It follows that

(4.13)
P

(
s
(1)
1 (A) ≤ λδm

)
= P (max1≤j≤N (

∑m
i=1 |aij |) ≤ λδm)

=
∏m

j=1 P ((
∑m

i=1 |aij |) ≤ λδm)
≤ cm.

Thus letting K = λδ, we obtain (3.1).
�

For general 0 < q < 1, we have Theorem 1.4.

Proof of Theorem 1.4. We can use the same method as in the proof of Theorem 4.1.
Since aij has nonzero variance, there exists δ > 0 and 0 ≤ β < 1 such that
(4.14) P (|aij |q ≤ δ) = β.

Then by Lemma 4.1 and substituting aij in the proof of Theorem 4.1 by |aij |q,

(4.15)
P

(
s
(q)
1 (A) ≤ (λδ)

1
q m

1
q

)
= P (max1≤j≤N (

∑m
i=1 |aij |

q) ≤ λδm)
=

∏m
j=1 P ((

∑m
i=1 |aij |

q) ≤ λδm)
≤ cm

for some 0 < c < 1. Thus letting K = (λδ)
1
q , (1.4) follows. �

Remark 2. If one uses the quasinorm comparison inequality s
(q)
1 (A) ≤ s

(1)
1 (A) for

0 < q ≤ 1, one can get

(4.16) P

(
s
(q)
1 (A) ≤ Km

)
≤ cm

for 0 < q ≤ 1, but with a loss of the estimate on P

(
s
(q)
1 (A) ≤ Km

1
q

)
.
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Since the bounded moment growth condition for pre-Gaussian variables is not
needed in the proof of Theorem 4.1, the above proofs also show that the theorem
holds for any random variable with nonzero variance. Therefore, more generally,
we have

Theorem 4.2. Let ξ be a random variable with non-zero variance and A be an
m×m matrix with i.i.d. copies of ξ in its entries. Then there exists a constant
K > 0 such that

(4.17) P

(
s
(q)
1 (A) ≤ Km

1
q

)
≤ cm

for some 0 < c < 1, where K only depends on ε and the random variable ξ.

5. The lower tail probability of the smallest q-singular value

In this section, we first study the probability estimates of the smallest q-singular
value of rectangular random matrices with m > n. Then we give some estimates
for square random matrices.

5.1. The tall random matrix case. In this subsection, we assume that n ≤ λm
with λ ∈ (0, 1) and consider the smallest q-singular value of random matrices of
size m× n.

Theorem 5.1. Given any 0 < q ≤ 1, let ξ be the pre-Gaussian random variable
with variance 1 and A be an m × n matrix with i.i.d. copies of ξ in its entries.
Then there exist some γ > 0, b > 0 and ν ∈ (0, 1) dependent on the pre-Gaussian
random variable ξ such that

(5.1) P

(
s(q)
n (A) < γm1/q

)
< e−bm

with n ≤ νm.

To prove this result, we need to establish a few lemmas.

Lemma 5.1. Fix any 0 < q ≤ 1. For any ξ1, · · · , ξm that are i.i.d. copies of
a pre-Gaussian variable with non-zero variance, for any c ∈ (0, 1) there exists
λ ∈ (0, 1), that does not depend on m, such that

(5.2) P

(
m∑

k=1

|ξk|q < λm

)
≤ cm.

Proof. For any ξ1, · · · , ξm that are i.i.d. copies of a pre-Gaussian variable with
non-zero variance, we know that there exists some δ > 0 such that

(5.3) ε0 := P (|ξk| ≤ δ) < 1
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for k = 1, 2, · · · ,m, because otherwise the pre-Gaussian variable would have a zero
variance. Then using the Riemann–Stieltjes integral for expectation, we have

E exp
(
−|ξk|q

λ

)
=

∞̂

0

exp
(
− tq

λ

)
dP (|ξk| ≤ t)

≤
δˆ

0

dP (|ξk| ≤ t) +
∞̂

δ

exp
(
− tq

λ

)
dP (|ξk| ≤ t)

= ε0 +
∞̂

δ

exp
(
− tq

λ

)
dP (|ξk| ≤ t) .

Choose λ > 0 to be small enough such that

exp
(
− tq

λ

)
≤ exp

(
−δq

λ

)
<

ε0

2 (1 − ε0)
for t ≥ δ. Therefore, it follows that

E exp
(
−|ξk|q

λ

)
≤ ε0 + ε0

2 (1 − ε0)

∞̂

δ

dP (|ξk| ≤ t) ≤ ε0 + ε0

2
= 3

2
ε0.

Finally, applying Markov’s inequality, we obtain

P

(
m∑

k=1

|ξk|q < λm

)
= P

(
exp

(
m− 1

λ

m∑
k=1

|ξk|q
)

> 1

)

≤ E

(
exp

(
m− 1

λ

m∑
k=1

|ξk|q
))

= em
m∏

k=1

E exp
(
−|ξk|q

λ

)
.

≤ (3eε0/2)m.

For any c ∈ (0, 1), we choose ε0 such that 3eε0/2 = c. This completes the proof. �

The following lemma is a property of the linear combination of pre-Gaussian
variables, which allows us to obtain the probabilistic estimate on ‖Av‖q for the
pre-Gaussian ensemble A.

Lemma 5.2 (Linear combination of pre-Gaussian variables). Let aij, i = 1, 2,

· · · , m and j = 1, 2, . . . , n be pre-Gaussian variables and ηi =
n∑

j=1
aijxj. Then ηi

are pre-Gaussian variables for i = 1, 2, . . . , m.

Proof. Since aij are pre-Gaussian variables, Eaij = 0, and there are constants
λij > 0 such that E |aij |k ≤ k!λk

ij for i = 1, 2, . . . ,m and j = 1, 2, . . . , N . It is easy
to see

Eηi =
N∑
j=1

xjEaij = 0.
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Letting ‖x‖1 =
∑N

i=1 |xj |, we use the convexity to have

E

(
|ηi|k

)
≤ E

⎛
⎝‖x‖1

N∑
j=1

|aij |
|xj |
‖x‖1

⎞
⎠

k

≤ ‖x‖k1
N∑
j=1

|xj |
‖x‖1

E (|aij |)k ≤ k!‖x‖k1(max
j

{λij})k

for all integers k ≥ 1. Thus, ηk is a pre-Gaussian random variable. �
Combining two lemmas above, we obtain the following

Lemma 5.3. Given any 0 < q ≤ 1 and letting A be an m × n pre-Gaussian
matrix, for any c ∈ (0, 1) there exists λ ∈ (0, 1) such that

(5.4) P

(
‖Av‖q < λ1/qm1/q

)
≤ cm

for each v ∈ Sq, where Sq is the (n− 1)-dimensional unit sphere in the �q-
quasinorm.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By using Lemma 2.6, for any δ > 0 there exists a δ-net Uq

in unit sphere Sq such that

min
u∈Uq

‖x− u‖qq ≤ δ for all x ∈ Sq and card(Uq) ≤
(

1 + 2
δ

)n/q

.

By Lemma 5.3, for all v ∈ Uq we have

(5.5) P
(
‖Av‖qq < λm, for all v ∈ Uq

)
≤

(
1 + 2

δ

)n/q

cm.

Since the event s
(q)
n (A) < γm

1
q implies ‖Av′‖q < 2γm

1
q for some v′ ∈ Sq,

P(s(q)
n (A) < γm1/q) ≤ P

(
‖Av‖q < 2γm1/q for some v ∈ Sq

)
.

If v ∈ Uq, we use (5.5) with 2γ < λ1/q to have

(5.6) P(s(q)
n (A) < γm1/q) ≤

(
1 + 2

δ

)n/q

cm.

If v 	∈ Uq, we use Theorem 1.3 to have

P

(
‖Av‖q < 2γm1/q with v ∈ Sq\Uq

)
≤ e−c1m + P

(
s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q with v ∈ Sq\Uq

)
.

When v ∈ Sq\Uq in the event that s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q, there

exists a u ∈ Uq within a q-distance δ such that
‖Au‖qq ≤ ‖A (v − u)‖qq + ‖Av‖qq

≤
(
s
(q)
1 (A)

)q

‖v − u‖qq + ‖Av‖qq
≤ Kqmδ + (2γ)qm
< λqm
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if δ <
λq − (2γ)2

Kq
. We can use (5.5) again to conclude

(5.7)

P

(
s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q for some v ∈ Sq\Uq

)
≤
(

1 + 2
δ

)n/q

cm.

If we choose ν and c small enough in Lemma 5.1 with n = νm such that

c2 :=
(

1 + 2
δ

)ν/q

c < 1,

we have thus completed the proof by choosing b > 0 such that e−c1m + e−c2m ≤
e−bm. �

5.2. The square random matrix case. Now let us consider the square random
matrices with pre-Gaussian entries.

Theorem 5.2. Given any 0 < q ≤ 1, let ξ be the pre-Gaussian random variable
with variance 1 and A be an n × n matrix with i.i.d. copies of ξ in its entries.
Then for any ε > 0 and 0 < q ≤ 1, there exist some K > 0 and c > 0 dependent
on ε and the pre-Gaussian random variable ξ such that

(5.8) P

(
s(q)
n (A) < εn− 1

q

)
< Cε + Cαn + P

(
‖A‖ > Kn− 1

2

)
,

where α ∈ (0, 1) and C > 0 depend only on the pre-Gaussian variable and K.

To prove the above theorem, we generalize the ideas in Rudelson and Ver-
shynin’2008, [15] to the setting of the �q-quasinorm. We first decompose S

n−1
q

into the set of compressible vectors and the set of incompressible vectors. The con-
cepts of compressible and incompressible vectors in S

n−1
2 were introduced in [15].

See also Tao and Vu’2009, [27]. We shall use a generalized version of these concepts.
Recall that ‖x‖0 denotes the number of nonzero entries of the vector x ∈ R

n.

Definition 5.1 (Compressible and incompressible vectors in S
n−1
q ). Fix ρ, λ ∈

(0, 1). Let Compq (λ, ρ) be the set of vectors v ∈ S
n−1
q such that there is a vector

v′ with ‖v′‖0 ≤ λn satisfying ‖v − v′‖q ≤ ρ. The set of incompressible vectors is
defined as
(5.9) Incompq (λ, ρ) := S

n−1
q \ Compq (λ, ρ) .

Now using the decomposition in Definition 5.1, we have

(5.10)
P

(
s
(q)
n (A) < εn− 1

q

)
≤ P

(
infv∈Compq(λ,ρ) ‖Av‖q < εn− 1

q

)
+P

(
infv∈Incompq(λ,ρ) ‖Av‖q < εn− 1

q

)
.

In the following we are going to consider each of the two terms on the right hand
side of the above equation. For the first term on compressible vectors, we can apply
Lemma 5.3 since

(5.11) P

(
inf

v∈Incompq(λ,ρ)
‖Av‖q < εn− 1

q

)
≤ P

(
inf

v∈Incompq(λ,ρ)
‖Av‖q < νn

1
q

)
,

to conclude that it actually decays exponentially for n > 1, where ν = λ1/q as in
Lemma 5.3.

However, for incompressible vectors, we first consider distq (Xj , Hj), which de-
notes the distance between column Xj of an n×n random matrix A and the span of
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other columns Hj := span (X1, · · · , Xj−1, Xj+1, . . . , Xn) in the �q-quasinorm. We
generalize a result on the probability estimate of the distance in the �2-norm in [15]
to the �q-quasinorm setting. This allows us to transform the probabilistic estimate
on ‖Av‖q for v ∈ Incompq (λ, ρ) to the probabilistic estimate on the average of the
distances distq (Xj , Hj), j = 1, 2, . . . , n.

Lemma 5.4. Let A be an n × n random matrix with columns X1, . . ., Xn, and
let

Hj := span (X1, · · · , Xj−1, Xj+1, · · · , Xn) .
Then for any ρ, λ ∈ (0, 1) and ε > 0, one has

(5.12) P

(
inf

v∈Incompq(λ,ρ)
‖Av‖q < ερn− 1

q

)
<

1
λn

n∑
j=1

P (distq (Xj , Hj) < ε) ,

in which distq is the distance defined by the �q-quasinorm.

Proof. For every v ∈ Incompq (λ, ρ), by Definition 5.1, there are at least λn com-
ponents of v, vj , satisfying |vj | ≥ ρn− 1

q , because otherwise, v would be within
�q-distance ρ of the sparse vector, the restriction of v on the components vj satis-
fying |vj | ≥ ρn− 1

q with sparsity less than λn, and thus v would be compressible.
Thus if we let I1 (v) :=

{
j : |vj | ≥ ρn− 1

q

}
, then |I1 (v)| ≥ λn.

Next, let I2 (A) := {j : distq (Xj , Hj) < ε} and E be the event such that for the
cardinality of I2 (A), |I2 (A)| ≥ λn. Applying Markov’s inequality, we have

P (E) = P ({I2 (A) : |I2 (A, ε)| ≥ λn})

≤ 1
λn

E |I2 (A)|

= 1
λn

E {j : distq (Xj , Hj) < ε}

= 1
λn

n∑
j=1

P (distq (Xj , Hj) < ε) .

Since Ec is the event such that
|{j : distq (Xj , Hj) ≥ ε}| > (1 − λ)n

for random matrix A, if Ec occurs, then for every v ∈ Incompq (λ, ρ),
|I1 (v)| + |I2 (A)| > λn + (1 − λ)n = n.

Hence there is some j0 ∈ I1 (v) ∩ I2 (A). So we have

‖Av‖q ≥ distq (Av,Hj0) = distq (vj0Xj0 , Hj0) = |vj0 | distq (Xj0 , Hj0) ≥ ερn− 1
q .

If the events ‖Av‖q < ερn− 1
q occur, then E also occurs. Thus

P

(
inf

v∈Incompq(λ,ρ)
‖Av‖q < ερn− 1

q

)
≤ P (E) ≤ 1

λn

n∑
j=1

P (distq (Xj , Hj) < ε) .

These complete the proof. �

Note that distq (Xj , Hj) ≥ dist (Xj , Hj) because ‖·‖q ≥ ‖·‖2. Thus we can take
the advantage of the estimate on P (dist (Xj , Hj) < ε) given in [15] to obtain the
estimate on P (distq (Xj , Hj) < ε).
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Theorem 5.3 (Distance bound (cf. [15])). Let A be a random matrix whose
entries are independent variables with variance at least 1 and fourth moment
bounded by B. Let K ≥ 1. Then for every ε > 0,

(5.13) P

(
dist (Xj , Hj) < ε and ‖A‖ ≤ Kn− 1

2

)
≤ C (ε + αn) ,

where α ∈ (0, 1) and C > 0 depend only on B and K.
The above theorem implies that

(5.14)
P (distq (Xj , Hj) < ε) ≤ P (dist (Xj , Hj) < ε) ≤ C (ε + αn) + P

(
‖A‖ ≤ Kn− 1

2

)
.

Combining (5.10) and applying Lemma 5.4, we now reach the desired inequality in
Theorem 5.2.

Furthermore, since A is pre-Gaussian, using a standard concentration bound we
know that for every ε > 0 there exists some K > 0 such that P

(
‖A‖ ≤ Kn− 1

2

)
< ε.

Thus, we have proved Theorem 1.6.

6. The upper tail probability of the smallest q-singular value

In this section, we continue to study the estimate of the upper tail probability
of the smallest q-singular value of an n × n pre-Gaussian matrix. Mainly we are
going to prove Theorem 1.7. To do so, we need some preparation.

Let Xj be the j-th column vector of A and πj be the projection onto the subspace
Hj := span (X1, . . . , Xj−1, Xj+1, · · · , Xn). We first have
Lemma 6.1. For every α > 0, one has

(6.1) P

(
‖Xj − πj (Xj)‖q ≥ αn

1
q−

1
2

)
≤ c1e

−c2α + c3n
−c4

for each j = 1, 2, . . . , n, where c1, c2, c3, c4 > 0 are constants independent of j, n,
and q.
Proof. Without loss of generality, assume j = 1. Write (a1, a2, . . . , an) := X1 −
π1 (X1). Applying the Bessy-Esseen theorem (see for instance [21]), we know that

(6.2) P
(
‖Xj − πj (Xj)‖2 ≥ α

)
= P

(∣∣∣∣∣
∑n

i=1 aiξi√∑n
i=1 a

2
i

∣∣∣∣∣ ≥ α

)
= P (|g| ≥ α) + O

(
n−c

)
for some c > 0, where g is a standard normal random variable.

By the Hölder inequality,

‖Xj − πj (Xj)‖q ≤ n
1−q
q ‖Xj − πj (Xj)‖1 ≤ n

1
q−

1
2 ‖Xj − πj (Xj)‖2 .

It follows that
P

(
‖Xj − πj (Xj)‖q ≥ n

1
q−

1
2α

)
≤ P

(
n

1
q−

1
2 ‖Xj − πj (Xj)‖2 ≥ n

1
q−

1
2α

)
= P

(
‖Xj − πj (Xj)‖2 ≥ α

)
.

Therefore it follows from (6.2) that

P

(
‖Xj − πj (Xj)‖q ≥ αn

1
q−

1
2

)
≤ P (|g| ≥ α) + O

(
n−c

)
= 2√

2π

ˆ ∞

α

e−
1
2x

2
dx + O

(
n−c

)
≤ c1e

−c2α + c3n
−c4

for some positive constants c1, c2, c3, c4. �



1792 MING-JUN LAI AND YANG LIU

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. From Section 5.2 and by Lemma 2.4, we know that the n×n
pre-Gaussian matrix A is invertible with very high probability. Thus, we have
(6.3)

P

(
s(q)
n (A) ≤ αt

ε
· n−1/q

)
≥ P

(
‖v‖q ≤ α,

∥∥A−1v
∥∥
q
≥ ε

t
· n1/q for some v ∈ R

n
)
.

Thus it suffices to show that

(6.4) P

(
‖v‖q ≤ α,

∥∥A−1v
∥∥
q
≥ ε

t
· n1/q

)
≥ 1 − ε

for some vector v 	= 0.
Using the result established in Rudelson and Vershynin’2008, [14], we can easily

get the desired probability of the event that
∥∥A−1v

∥∥
q
≤ ε

t ·n
1
q occurs. Indeed, since∥∥A−1v

∥∥
q
≥

∥∥A−1v
∥∥

2, we know that

(6.5)
P

(∥∥A−1v
∥∥
q
≤ ε

t · n−1/q
)

≤ P
(∥∥A−1v

∥∥
2 ≤ ε

t · n1/q)
= P

(∥∥A−1v
∥∥

2 ≤ ε
t ·

(
n2/q)1/2)

≤ 2p
(
4ε, t, n2/q) ,

where p (ε, t, n) := c5

(
ε + e−c6t

2 + e−c7n
)

for some positive constants c5, c6, c7.
Next let us choose v = X1 − π1 (X1). Lemma 6.1 together with the estimate in

(6.5) yield (6.4). Indeed, letting u = t =
√

lnM with M > 1 and ε = 1
M , we have

(6.6) P

(
s(q)
n (A) > M lnM · n−1/2

)
≤ C

Mα
+ cn

for some C > 0, 0 < c < 1, and α > 0. Then choosing K := M lnM , we have
(6.7)

P

(
s(q)
n (A) > Kn−1/2

)
≤ C (lnM)α

Kα
+cn ≤ C (ln (M lnM))α

Kα
+cn = C (lnK)α

Kα
+cn

if M ≥ e, which requires K > e. These complete the proof. �
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