
MATHEMATICS OF COMPUTATION
Volume 84, Number 292, March 2015, Pages 543–562
S 0025-5718(2014)02911-6
Article electronically published on October 3, 2014

WELL-POSEDNESS STUDY AND FINITE ELEMENT

SIMULATION OF TIME-DOMAIN CYLINDRICAL

AND ELLIPTICAL CLOAKS

JICHUN LI, YUNQING HUANG, AND WEI YANG

Abstract. The goal of this paper is to prove the well-posedness for the gov-
erning equations which are used for cylindrical cloaking simulation. A new

time-domain finite element scheme is developed to solve the governing equa-
tions. Numerical results demonstrating the cloaking phenomenon with the
cylindrical cloak are presented. We finally extend the analysis and simulation
to an elliptical cloak model.

1. Introduction

The idea of invisibility cloaking using metamaterials got its start in 2006 when
Pendry et al. [46] and Leonhardt [31] laid out the blueprints for making objects
invisible to electromagnetic waves. In late 2006, a 2-D reduced cloak was suc-
cessfully fabricated and demonstrated to work in the microwave frequency regime
[48]. This is the first practical realization of such a cloak, and the result matches
well with the computer simulation [16] performed using the commercial package
COMSOL. The basic principle of Pendry, Schurig, and Smith’s cloaking is to use
the form-invariant property of Maxwell’s equations under coordinate transforma-
tion to define the permittivity and permeability of the cloaking metamaterial. We
want to note that essentially the same idea was discussed earlier by Greenleaf, Las-
sas, and Uhlmann [20] for electrical impedance tomography. Of course, there exist
many other promising schemes for achieving invisibility cloaks by using metama-
terials. Examples include a scheme based on optical conformal mapping [31], one
using anomalous localized resonance [41], one based on special but object-dependent
coatings [1], and one using zero index metamaterials [24, 44], etc.

Since 2006, the study of using metamaterials to construct invisibility cloaks of
different shapes (e.g. [28, 34, 45, 52]) has been a very hot research topic. Cloaks
operating from microwave frequencies to optical frequencies have been investigated,
more details and references on cloaking can be found in some recent reviews (e.g.,
[12, 21, 22, 51]) and a recent book by Leonhardt and Philbin [32]. Numerical simu-
lation [25,35] plays a very important role in modeling of invisibility cloaks and val-
idating theoretical predictions. Generally speaking, cloaking simulation boils down

Received by the editor January 16, 2013 and, in revised form, July 22, 2013.
2010 Mathematics Subject Classification. Primary 78M10, 65N30, 65F10.
Key words and phrases. Maxwell’s equations, invisibility cloak, finite element method,

metamaterials.
The first author was supported by NSFC project 11271310 and NSF grant DMS-0810896.
The third author was supported by Hunan Education Department Key Project 10A117 and

Hunan Provincial Innovation Foundation for Postgraduate (CX2011B243).
This work was supported in part by the NSFC Key Project 11031006 and IRT1179 of PCSIRT.

c©2014 American Mathematical Society

543

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02911-6


544 JICHUN LI, YUNQING HUANG, AND WEI YANG

to solving metamaterial Maxwell’s equations in either frequency-domain or time-
domain. Though there are many excellent publications on finite element analysis of
Maxwell’s equations (e.g., papers [7,8,10,11,13–15,18,27,47,49,50,53], and books
[17,26,35,42]), there has not been much mathematical analysis done for those cloak-
ing models. In recent years, mathematicians have started investigating this fasci-
nating subject, but most works are still limited to frequency-domain or the quasi-
static regime by mainly solving the Helmholtz equation [2,3,5,29,30,37,39,43], the
conductivity problem [4], and the time-harmonic Maxwell’s equations [6]. The ad-
vancement of broadband cloaks [23,33,40] makes time-domain cloaking simulation
more appealing and necessary. The first experimental demonstration of a cloaking
event in the time domain was present in 2012 [19]. This achievement is a signif-
icant step towards the development of full spatio-temporal cloaking. In our very
recent paper [36], we developed a time-domain finite element method to simulate a
cylindrical cloak [52], and carried out some mathematical analysis for this model.
However, due to the complexity of the modeling equations, the rigorous analysis
of the well-posedness was unsuccessful then. One of the major contributions of
this paper is to complete the well-posedness study of the cylindrical cloak. Also,
we propose a more efficient finite element scheme than the one proposed in our
previous work [36], because the new scheme only solves three unknowns instead of
four.

The rest of the paper is organized as follows. We first describe the 2-D cylindrical
cloak modeling equations in Section 2. Then in Section 3, we investigate the well-
posedness of this model. Then we propose a new mixed finite element scheme for
simulating the cylindrical cloak. Numerical results showing the cloaking phenomena
obtained by the new scheme are illustrated in Section 4. In Section 5, we extend the
well-posedness study to an elliptical cloak model [28,45]. Numerical simulations of
the elliptical cloak are also performed. We conclude the paper in Section 6.

2. The modeling equations

The cloak modeling is based on the Faraday’s Law and Ampere’s Law written
as follows:

(1)
∂BBB

∂t
= −∇×EEE,

(2)
∂DDD

∂t
= ∇×HHH,

and the constitutive relations

(3) DDD = εEEE, BBB = μHHH,

where EEE and HHH are the electric and magnetic fields respectively, DDD and BBB are
the electric displacement and magnetic induction respectively, ε and μ are cloak
permittivity and permeability, respectively. For the cylindrical cloak, the ideal
material parameters in the polar coordinate system are given by [46]:

(4) εr = μr =
r −R1

r
, εφ = μφ =

r

r −R1
, εz = μz =

(
R2

R2 −R1

)2
r −R1

r
,

whereR1 and R2 are the inner and outer radius of the cloak. In this case, E becomes
a 2-D vector, and H is a scalar, i.e., we can write E = (Ex, Ey)

′ and H = Hz,
where the subindex x, y or z denotes the component in each direction. Moreover,
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we follow the convention to denote the 2-D curl operators: For a scalar function
H, we define ∇×H = (∂H∂y ,−

∂H
∂x )

′; while for a vector function E = (Ex, Ey)
′, we

define ∇×E =
∂Ey

∂x − ∂Ex

∂y .

Transforming the polar coordinate system to the Cartesian coordinate system,
we can obtain [52]:

(5) ε0εrεφEEE =

[
εr sin

2 φ+ εφ cos
2 φ (εφ − εr) sinφ cosφ

(εφ − εr) sinφ cosφ εr cos
2 φ+ εφ sin

2 φ

]
DDD.

Because the material parameters given in (4) cannot be used directly to simulate
the time-domain cloak, we have to map the parameters using the dispersive medium
models. Here we consider the Drude model for the permittivity:

(6) εr(ω) = 1−
ω2
p

ω2 − jωγ
,

where γ ≥ 0 and ωp > 0 are the collision and plasma frequencies, respectively. Note
that other dispersive material models (e.g., Debye, Lorentz etc. [35, pp. 232-235])
can also be considered here. Due to its simple form and easy implementation, the
Drude model is the most widely used one in the modeling of metamaterials.

Substituting (6) into (5) and changing into time-domain, we have [52]:
(7)

ε0εφ

(
∂2

∂t2
+ γ

∂

∂t
+ w2

p

)
EEE =

(
∂2

∂t2
+ γ

∂

∂t
+ w2

p

)
MADDD + εφ

(
∂2

∂t2
+ γ

∂

∂t

)
MBDDD,

where we denote D = (Dx, Dy)
′, I2 for the 2× 2 identity matrix, and matrices

MA=

[
sin2 φ − sinφ cosφ

− sinφ cosφ cos2 φ

]
, MB=

[
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

]
=I2−MA.

Similarly, we map the permeability using the Drude model [52]:

(8) μz(ω) = A

(
1−

ω2
pm

ω2 − jωγm

)
,

where A = R2

R2−R1
, and ωpm > 0 and γm ≥ 0 are the magnetic plasma and collision

frequencies, respectively. Substituting (8) into (3), we obtain

(9) Bz = μoμzHz = μ0A

(
1−

ω2
pm

ω2 − jωγm

)
Hz,

which in time-domain is equivalent to

(10)

(
∂2

∂t2
+ γm

∂

∂t

)
Bz = μ0A

(
∂2

∂t2
+ γm

∂

∂t
+ ω2

pm

)
Hz.

In summary, the time-domain cylindrical cloaking model is composed of equa-
tions (1), (2), (7), and (10), subject to proper boundary and initial conditions.
To be more specific, inside the annulus R1 ≤ r ≤ R2 (i.e., the so-called cloaking
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region), the governing equations are:

∂BBB

∂t
= −∇×EEE,(11)

∂DDD

∂t
= ∇×HHH,(12)

ε0εφ

(
∂2

∂t2
+ γ

∂

∂t
+ w2

p

)
EEE =

(
∂2

∂t2
+ γ

∂

∂t
+ w2

p

)
MADDD + εφ

(
∂2

∂t2
+ γ

∂

∂t

)
MBDDD,(13) (

∂2

∂t2
+ γm

∂

∂t

)
Bz = μ0A

(
∂2

∂t2
+ γm

∂

∂t
+ ω2

pm

)
Hz.(14)

We assume that the perfectly conducting (PEC) boundary condition is imposed
on the inner cylindrical boundary so that any object can be cloaked inside, since
no wave can be penetrated into the inner circle (i.e., the so-called cloaked region).
Outside the cloaking region is the free space, which is governed by the standard
Maxwell’s equations in air. Note that when the physical parameters

εr = μr = 1, εφ = μφ = 1, εz = μz = 1, ωp = ωpm = 0,

the constitutive equations (5) and (9) become asDDD = ε0EEE and BZ = μoHz, respec-
tively. In this case, (13) and (14) are redundant, while (11) and (12) just become
the standard Maxwell’s equations in air:

μo
∂HHH

∂t
= −∇×EEE, ε0

∂EEE

∂t
= ∇×HHH,

i.e., the cylindrical cloaking model (11)–(14) is reduced to the simple Maxwell’s
equations in air. In the next section, we will study the well-posedness of this
cloaking model.

3. The well-posedness of the cloaking model

To simplify the notation and analysis, in the rest of the paper we assume that

γ = γm.

Multiplying (7) by μ0A, then differentiating the resultant with respect to t and
using (2), we have

μ0Aε0εφ(Et3 + γEt2 + ω2
pEt)

= μ0A
[
(MA + εφMB)(Dt3 + γDt2) + ω2

pMADt

]
= μ0A(MA + εφMB)∇× (Ht2 + γHt) + μ0Aω2

pMA∇×H.

(15)

To simplify the notation, here and below we denote H = Hz, M = MA + εφMB,

and the k-th order partial derivative of a function u with respect to t as utk = ∂ku
∂tk

.
By (10) and (1), we have

(16) μ0A(Ht2 + γHt + ω2
pmH) = −∇×Et − γ∇×E.

Taking curl of (16) and substituting the resultant into the right-hand side of
(15), we have

μ0ε0Aεφ(Et3 + γEt2 + ω2
pEt) +M∇×∇×Et + γM∇×∇×E

= −μ0AM∇× (ω2
pmH) + μ0Aω2

pMA∇×H.(17)

First, we prove an interesting property of matrix M .
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Lemma 3.1. The matrix MA is symmetric and non-negative definite, and the
matrix M is symmetric positive definite.

Proof. By the definition of MA, it is easy to see that for any vector (u, v)′, we have

(u, v)MA

(
u
v

)
= (u2 sin2 φ− 2uv sinφ cosφ+ v2 cos2 φ)

= (u sinφ− v cosφ)2 ≥ 0,

which proves the non-negativeness of MA.
Similarly, using the definitions of MA and MB, and the fact that εφ > 1, we

have

(u, v)(MA + εφMB)

(
u
v

)
= (u2 sin2 φ− 2uv sinφ cosφ+ v2 cos2 φ)

+ εφ(u
2 cos2 φ+ 2uv sinφ cosφ+ v2 sin2 φ)

= (u sinφ− v cosφ)2 + εφ(u cosφ+ v sinφ)2

> (u sinφ− v cosφ)2 + (u cosφ+ v sinφ)2 = u2 + v2,

which shows the positive definiteness of MA + εφMB . �

By Lemma 3.1, the matrix M is invertible, and its inverse is denoted as MC =
(MA + εφMB)

−1. Moreover, we have

Lemma 3.2. For matrix MC = (MA + εφMB)
−1, MC ·MA = MA holds true.

Proof. Note that

MA + εφMB = I2 −MB + εφMB = I2 + (εφ − 1)MB = I2 +
R1

r −R1
MB(18)

=

[
1 + R1

r−R1
cos2 φ R1

r−R1
sinφ cosφ

R1
r−R1

sinφ cosφ 1 + R1
r−R1

sin2 φ

]
,(19)

from which we obtain its determinant det(MA + εφMB) = 1 + R1

r−R1
= r

r−R1
, and

its inverse

MC=
r −R1

r

[
1 + R1

r−R1
sin2 φ − R1

r−R1
sinφ cosφ

− R1

r−R1
sinφ cosφ 1 + R1

r−R1
cos2 φ

]
=

r −R1

r
(I2+

R1

r −R1
MA).

Using the property M2
A = MA, we have

MC ·MA =
r −R1

r
(MA +

R1

r −R1
M2

A) =
r −R1

r
· r

r −R1
MA = MA,

which completes the proof. �

To study the well-posedness, we will first rewrite the governing equations (16)
and (17) into a weak formulation. The domain Ω is the annulus R1 < r < R2, and
the PEC boundary condition n × E = 0 is imposed on ∂Ω, where n denotes the
unit outward normal to ∂Ω.

Let us denote the spaces

H(curl; Ω) = {v ∈ (L2(Ω))2; ∇× v ∈ (L2(Ω))2},(20)

H0(curl; Ω) = {v ∈ H(curl; Ω); n× v = 0 on ∂Ω}.(21)
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Left multiplying (17) by MC and then by a test function φ ∈ H0(curl; Ω), and
using integration by parts and similarly, multiplying (16) by a test function ψ ∈
L2(Ω), we obtain the following weak formulation: Find E, H such that

(i)

ε0μ0A[(εφMCEt3 ,φ) + γ(εφMCEt2 ,φ) + (ω2
pεφMCEt,φ)](22)

+ (∇×Et,∇× φ) + γ(∇×E,∇× φ)

= −μ0A(ω2
pmH,∇× φ) + μ0A(ω2

pMCMA∇×H,φ), ∀ φ ∈ H0(curl; Ω),

(ii)

μ0A
[
(Ht2 , ψ) + γ(Ht, ψ) + (ω2

pmH,ψ)
]

= −(∇×Et + γ∇×E, ψ). ∀ ψ ∈ L2(Ω).(23)

Below we first prove some bounds for the magnetic field H in terms of the electric
field E.

Lemma 3.3. For any t ∈ (0, T ], we have

||∇ ×H||20(t) ≤ C[||∇ ×H||20(0) + ||D||20(0) +
∫ t

0

(||Et2 ||20 + ||Et||20 + ||E||20)dt].

Proof. Multiplying (7) by MC and using the fact MC ·MA = MA, we obtain

Dt2 + γDt + ω2
pMAD = ε0εφMC(Et2 + γEt + ω2

pE).

Then multiplying this by Dt and integrating over Ω, we have

(24)
1

2

d

dt
[||Dt||20 + (ω2

pMAD,D)] ≤ C(||Et2 ||0 + ||Et||0 + ||E||0)||Dt||0.

Integrating (24) from 0 to t, and using Cauchy-Schwarz inequality to the right-
hand side of (24), we have

1

2
[||Dt||20(t) + (ω2

pMAD,D)(t)]

≤ 1

2
[||Dt||20(0) + (ω2

pMAD,D)(0)]

+
1

2

∫ t

0

||Dt||20dt+ C

∫ t

0

(||Et2 ||20 + ||Et||20 + ||E||20)dt,

from which, the fact Dt = ∇ × H, Lemma 3.1, and the Gronwall inequality, we
conclude the proof. �

Lemma 3.4. For any t ∈ (0, T ], we have

||Ht(t)||20 + ||ωpmH(t)||20

≤ C[||Ht(0)||20 + ||ωpmH(0)||20 +
∫ t

0

(||∇ ×Et||20 + γ2||∇ ×E||20)dt].
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Proof. Choosing ψ = Ht in (23), and integrating from 0 to t, we have

1

2
μ0A(||Ht(t)||20 + ||ωpmH(t)||20)

≤ 1

2
μ0A(||Ht(0)||20 + ||ωpmH(0)||20)

−
∫ t

0

(∇×Et + γ∇×E, Ht)dt

≤ 1

2
μ0A(||Ht(0)||20 + ||ωpmH(0)||20)

+

∫ t

0

(
1

2
μ0A||Ht(t)||20 +

1

2μ0A
||∇ ×Et + γ∇×E||20)dt,

together with the Gronwall inequality, we have, for any t ∈ [0, T ],

1

2
μ0A(||Ht(t)||20 + ||ωpmH(t)||20)

≤ eT [
1

2
μ0A(||Ht(0)||20 + ||ωpmH(0)||20)

+
1

μ0A

∫ t

0

(||∇ ×Et||20 + γ2||∇ ×E||20)dt],

which completes the proof. �

With the above preparation, now we can prove the following stability.

Theorem 3.1. For the solution of (22) and (23), the following stability holds true:

ε0μ0A[(εφMcEt2 ,Et2)(t) + (ω2
pεφMcEt,Et)(t)] + (∇×Et,∇×Et)(t)

+ (∇×E,∇×E)(t) +A(ω2
pεφMcE,E)(t)

+ μ0A(||Ht||20 + ||ωpmH||20)(t) ≤ CF (0),

(25)

where constant C > 0, and the function F (0) depends on initial conditions ∇ ×
E(0),∇×Et(0),E(0), Et(0),Et2(0), H(0),∇×H(0), Ht(0) and D(0).

Proof. Choosing φ = Et2 in (22), we obtain

1

2
ε0μ0A

d

dt
[(εφMCEt2 ,Et2) + (ω2

pεφMCEt,Et)] +
1

2

d

dt
||∇ ×Et||20

≤ −γ(∇×E,∇×Et2)− μ0A(ω2
pmH,∇×Et2) + μ0A(ω2

pMA∇×H,Et2),
(26)

and integrating from 0 to t, we have

1

2
ε0μ0A[(εφMCEt2 ,Et2)(t) + (ω2

pεφMCEt,Et)(t)] +
1

2
||∇ ×Et||20(t)

≤ 1

2
ε0μ0A[(εφMCEt2 ,Et2)(0) + (ω2

pεφMCEt,Et)(0)] +
1

2
||∇ ×Et||20(0)

− γ(∇×E,∇×Et)(t) + γ(∇×E,∇×Et)(0) + γ

∫ t

0

||∇ ×Et||20dt

− μ0A(ω2
pmH,∇×Et)(t) + μ0A(ω2

pmH,∇×Et)(0)

+ μ0A

∫ t

0

(ω2
pmHt,∇×Et)dt+ μ0A

∫ t

0

(ω2
pMA∇×H,Et2)dt.

(27)
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Substituting the following estimates

(i) γ(∇×E,∇×Et)(t) ≤ δ1||∇ ×Et||20 +
γ2

4δ1
||∇ ×E||20,

(ii) μ0A(ω2
pmH,∇×Et)(t) ≤ δ2||∇ ×Et||20 +

1

4δ2
(μ0A)2||ω2

mpH||20,

(iii) μ0A

∫ t

0

(ω2
pmHt,∇×Et)dt ≤

μ0A

2

∫ t

0

(||Ht||20 + ||ω2
pm∇×Et||20)dt,

(iv) μ0A

∫ t

0

(ω2
pMA∇×H,Et2)dt ≤

μ0A

2

∫ t

0

(||∇ ×H||20 + ||ω2
pMAEt2 ||20)dt,

into (27), and denoting rhs(0) for those terms at t = 0, we obtain

1

2
ε0μ0A[(εφMCEt2 ,Et2)(t) + (ω2

pεφMCEt,Et)(t)]

+ (
1

2
− δ1 − δ2)||∇ ×Et||20(t)

≤ rhs(0) +
γ2

4δ1
||∇ ×E||20 + γ

∫ t

0

||∇ ×Et||20dt

+
1

4δ2
(μ0A)2||ω2

pmH||20 +
μ0A

2

∫ t

0

(||Ht||20 + ||ω2
pm∇×Et||20)dt

+
μ0A

2

∫ t

0

(||∇ ×H||20 + ||ω2
pMAEt2 ||20)dt.

(28)

Similarly, choosing φ = E in (22), we obtain

1

2

d

dt
[||∇ ×E||20 + (ω2

pεφMCE,E)] + γ||∇ ×E||20
= −ε0μ0A[(εφMCEt3 ,E) + γ(εφMCEt2 ,E)]

− μ0A(ω2
pmH,∇×E) + μ0A(ω2

pMA∇×H,E),

and integrating from 0 to t, we have

1

2
[||∇ ×E||20(t) + (ω2

pεφMCE,E)(t)]

≤ 1

2
[||∇ ×E||20(0) + (ω2

pεφMCE,E)(0)]

− ε0μ0A(εφMCEt2 ,E)(t) + ε0μ0A(εφMCEt2 ,E)(0)

+ ε0μ0A

∫ t

0

(εφMCEt2 ,Et)dt− ε0μ0Aγ

∫ t

0

(εφMCEt2 ,E)dt

− μ0A

∫ t

0

(ω2
pmH,∇×E)dt+ μ0A

∫ t

0

(ω2
pMA∇×H,E)dt.

(29)

Let ωmin > 0 be a constant such that ωp ≥ ωmin, we have

(30)

ε0μ0A(εφMCEt2 ,E)(t)

≤ ε0μ0A[δ4(εφMCEt2 ,Et2) +
1

4δ4
(εφMCE,E)]

≤ ε0μ0A[δ4(εφMCEt2 ,Et2) +
1

4δ4ω2
min

(ω2
pεφMCE,E)].



WELL-POSEDNESS STUDY AND FE SIMULATION OF T-D CLOAKS 551

Substituting (30) into (29), and multiplying the result by 6γ2, we have

6γ2{1
2
||∇ ×E||20(t) +

1

2
(1− ε0μ0A

2δ4ω2
min

)(ω2
pεφMCE,E)(t)}

≤ 6γ2{1
2
[||∇ ×E||20(0) + (ω2

pεφMCE,E)(0)]

ε0μ0Aδ4(εφMCEt2 ,Et2)(t) + ε0μ0A(εφMCEt2 ,E)(0)

+ ε0μ0A

∫ t

0

(εφMCEt2 ,Et)dt− ε0μ0Aγ

∫ t

0

(εφMCEt2 ,E)dt

− μ0A

∫ t

0

(ω2
pmH,∇×E)dt+ μ0A

∫ t

0

(ω2
pMA∇×H,E)dt}.

(31)

Choosing δ1 = δ2 = 1
8 , and δ4 such that

(32)
ε0μ0A

δ4ω2
min

≤ 1

2
and 6γ2δ4 <

1

2
, or

ε0μ0A

ω2
min

≤ δ4 <
1

12γ2
,

then summing up (28) and (31), and using Lemmas 3.3 and 3.4 to bound those H
terms, we conclude the proof. �

Remark 3.1. The first constraint in (32) is used to make sure that the second term
on the left-hand side (LHS) of (31) is positive; while the second constraint in (32) is
needed to guarantee that the third term on the right-hand side of (31) is less than
the first term on the LHS of (28). When γ = 0, we just drop the multiplier 6γ2 in
(31), and simply choose δ4 = 1

4 and δ1 = δ2 = 1
8 to guarantee the stability (25).

Note that (32) always holds true in practice. For example, in cylindrical cloak
simulation (e.g., [36, 38]), the following parameters are often chosen: R1 = 0.1 m,
R2 = 0.2 m,ω = 2πf, γ = 0.01ω with operating frequency f = 2 GHz. Using the
fact that 1/

√
ε0μ0 = 3 ·108 m/s, we can see that ε0μ0A

ω2
min

≈ 1/(2∗9∗1016 ∗
√
2∗π ∗2∗

109) = 1
36

√
2π·1025 , which is much smaller than 1

12γ2 = 1
12∗(0.01∗2π∗2∗109) =

1
192π2·1014 .

Finally, we can prove the existence and uniqueness of the solution for our cloaking
model.

Theorem 3.2. For any t ∈ [0, T ], there exists a unique solution (E(·, t), H(·, t)) ∈
H0(curl; Ω)×H(curl; Ω) of (22) and (23).

Proof. Taking the Laplace transform of (15), we obtain

Aμ0ε0εφ[s
3Ê − s2E0 − sE′

0 −E′′
0 + γ(s2Ê − sE0 −E′

0) + ω2
p(sÊ −E0)]

= μ0AM∇× [s2Ĥ − sH0 −H ′
0 + γ(sĤ −H0)] + μ0Aω2

pMA∇× Ĥ

or

(33)
Aμ0ε0εφ(s

3 + γs2 + ω2
ps)Ê

= μ0AM∇× (s2Ĥ + γsĤ) + μ0Aω2
pMA∇× Ĥ + F0(s),

where F0(s) denotes all the terms related to initial conditions.
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Similarly, taking the Laplace transform of (16), we obtain

μ0A(s2Ĥ + γsĤ + ω2
pmĤ) = −∇× (sÊ + γÊ) +G0(s),

from which we obtain

(34) Ĥ =
1

μ0A(s2 + γs+ ω2
pm)

[−∇× (s+ γ)Ê +G0(s)],

where G0(s) denotes all the terms related to initial conditions.

Substituting (34) into (33) to eliminate Ĥ , we obtain

Aμ0ε0εφ(s
3 + γs2 + ω2

ps)Ê = −μ0AM∇× [
(s2 + γs)

μ0A(s2 + γs+ ω2
pm)

(s+ γ)∇× Ê + G̃0(s)]

− μ0Aω2
pMA∇× [

(s+ γ)

μ0A(s2 + γs+ ω2
pm)

∇× Ê + G̃0(s)] + F0(s)

or

(35) Aμ0ε0εφMC(s
3 + γs2 + ω2

ps)Ê +∇× (
s(s+ γ)2

s2 + γs+ ω2
pm

∇× Ê)

+ ω2
pMA∇× (

(s+ γ)

s2 + γs+ ω2
pm

∇× Ê) = F̃0(s).

Note that the matrix s(s+ γ)I2 + ω2
pMA is symmetric positive definite, and we

denote its inverse MD = [s(s + γ)I2 + ω2
pMA]

−1. Moreover, we denote p(s) =

s(s2 + γs+ ω2
p)(s

2 + γs+ ω2
pm), and rewrite (35) as

(36) Aμ0ε0εφp(s)MDMCÊ +∇× ((s+ γ)∇× Ê) = F ∗
0 (s).

The weak formulation of (36): Find Ê ∈ H0(curl; Ω) such that

(37) Aμ0ε0(εφp(s)MDMCÊ, φ) + ((s+ γ)∇× Ê,∇× φ) = (F ∗
0 (s), φ),

holds true for any φ ∈ H0(curl; Ω). The existence of a unique solution Ê ∈
H0(curl; Ω) of (37) is guaranteed by the Lax-Milgram lemma if the matrix MDMC

is symmetric positive definite, which will be proved below.
After some algebraic calculation, we obtain

MD =
1

det
[s(s+ γ)I2 + ω2

pMB],

where det = s2(s+ γ)2 + ω2
ps(s+ γ). Hence we have

MDMC =
1

det
[s(s+ γ)I2 + ω2

pMB ] · r −R1

r
(I2 +

R1

r −R1
MA)

=
1

det
· r −R1

r
· {s(s+ γ)I2 + ω2

pMB +
s(s+ γ)R1

r −R1
MA + ω2

p · R1

r −R1
MBMA}

=
1

det
· r −R1

r
· {s(s+ γ)I2 + ω2

pMB +
s(s+ γ)R1

r −R1
MA},

(38)

where in the last step we used the fact that MBMA = (I2 −MA)MA = 0.
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Figure 1. (a): The cloaking setup; (b): An exemplary coarse mesh.

Using the facts that for any nonzero vector (u, v)′,

(u, v)MA

(
u
v

)
≥ 0, (u, v)MB

(
u
v

)
≥ 0,

we see that (u, v)MDMC

(
u
v

)
> 0, which shows that the matrix MDMC is symmetric

positive definite.
The existence and uniqueness of Ĥ is implied from the existence and uniqueness

of Ê and (34). It is easy to see that (34) implies Ĥ ∈ L2(Ω). Furthermore, through
some algebraic calculation, we see that (33) is equivalent to

∇× Ĥ = ε0εφ(s
3 + γs2 + ω2

ps)MDMCÊ − 1

μ0A
MDMCF0(s),

which implies that ∇ × Ĥ ∈ L2(Ω). Hence Ĥ ∈ H(curl; Ω). The inverse Laplace

transforms of functions Ê and Ĥ are solutions of the time-dependent problem (22)
and (23). This completes the proof. �

4. Numerical results

In this section we present some cloaking simulations obtained with the cylindrical
cloaking model. Here we design a more efficient mixed finite element method than
that proposed in our previous work [36].

To solve our problem efficiently, we partition the physical domain Ω by a family
of regular meshes Th with hybrid grids: triangles in both cloaking and free space
regions; rectangles in the perfectly matched layer (PML) region. The PML concept
was introduced by Berenger [9] in 1994 to simulate wave propagation problems with
open boundaries. Since 1994 there have been many investigations of PML for both
Maxwell’s equations and other wave equations. We do not repeat the details about
how to use PML for the cylindrical cloaking simulation, which were discussed in
our previous work [36]. The specific cloaking simulation setup and a sample mesh
are given in Figure 1.

Denote τ for the time step size. With notations

δτu
n+ 1

2 =
un+ 1

2 − un− 1
2

τ
, δ2τu

n+ 1
2 =

δτu
n+ 1

2 − δτu
n− 1

2

τ
,

ǔn+ 1
2 =

1

2τ
(3un+ 1

2 − 4un− 1
2 + un− 3

2 ), ûn =
un+ 1

2 + 2un− 1
2 + un− 3

2

4
,



554 JICHUN LI, YUNQING HUANG, AND WEI YANG

we can construct a leap-frog mixed finite element scheme for solving our cloaking

model: for n = 1, 2, . . . , find D
n+ 1

2

h , E
n+ 1

2

h ∈ V 0
h , H

n
h ∈ Uh such that

(
δτD

n+ 1
2

h , φh

)
= (Hn

h ,∇× φh),(39)

ε0

(
εφδ

2
τE

n+ 1
2

h , ϕh

)
+ ε0γ

(
εφĚ

n+ 1
2

h , ϕh

)
+ ε0

(
ω2
pεφÊ

n

h, ϕh

)
(40)

=
(
Mδ2τD

n+ 1
2

h , ϕh

)
+ γ

(
MĎ

n+ 1
2

h , ϕh

)
+
(
ω2
pMAD̂

n

h, ϕh

)
,

μ0A
(
(δ2τH

n+1
h , ψh) + γ(Ȟn+1

h , ψh) + (ω2
pĤ

n+ 1
2

h , ψh)
)

(41)

= −(∇× Ě
n+ 1

2

h + γ∇× Ê
n

h, ψh)

hold true for any φh, ϕh ∈ V 0
h , ψh ∈ Uh. Recall that M = MA + εφMB. Here

the mixed finite element spaces UUUh and VVV h are chosen as [35, 42]: for rectangular
elements K ∈ Th,

UUUh = {ψh ∈ L2(Ω) : ψh|K ∈ Q0,0, ∀ K ∈ Th},
VVV h = {φh ∈ H(curl; Ω) : φh|K ∈ Q0,1 ×Q1,0, ∀ K ∈ Th},

where Qi,j denotes the space of polynomials whose degrees are less than or equal to
i and j in variables x and y, respectively. While on triangular elements, we choose

UUUh = {ψh ∈ L2(Ω) : ψh|K is a piecewise constant, ∀ K ∈ Th},
VVV h = {φh ∈ H(curl; Ω) : φh|K = span{λi∇λj − λj∇λi}, i, j = 1, 2, 3,∀ K ∈ Th},

where λi denotes the standard linear basis function at vertex i of element K. The
space

VVV 0
h = {φh ∈ VVV h, n× φh = 0 on ∂Ω}

is introduced to impose the perfect conducting boundary condition n×E = 0.
Note that the scheme (39)–(41) is very easy to solve. At each time step, we

first solve (39) for D
n+ 1

2

h , then solve (40) for E
n+ 1

2

h , followed by Hn+1
h from (41).

Compared to the scheme proposed in our previous work [36], the current one is
more efficient since we only solve for three unknowns instead of four in [36].

In our simulation we choose R1 = 0.1, R2 = 0.2, the operating frequency f = 2.0
GHz, and the lossless case with γ = γm = 0. The real mesh used is one obtained by
uniformly refining the coarse mesh shown in Figure 1 three times, which contains
65536 triangular elements and 28672 rectangular elements. The corresponding time
step τ = 2·10−13 second, i.e., 0.2 picosecond (ps), is chosen to guarantee the stability
of our explicit leap-frog explicit scheme.
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Figure 2. The Ey fields at various times: (a) t = 0.8ns (4,000
steps); (b) t = 1.6ns (8,000 steps); (c) t = 3.2ns (16,000 steps);
(d) t = 4ns (20,000 steps); (e) t = 6ns (30,000 steps); (f) t = 8ns
(40,000 steps).

Below we present two examples. The first one is used to make sure that our new
scheme can produce the same result as our old scheme [36]. The second one is a
cloaking simulation obtained with an incident wave generated by a point source.

Example 1. The incident wave is generated by a plane wave Hz = 0.1 sin(ωt) with
ω = 2πf . The obtained electric fields Ey at different time steps are presented in
Figure 2, which is consistent as our previous work.

Example 2. In this example, the incident wave is generated by a point source
Hz = 0.1 sin(ωt) imposed at a point (0.078, 0.4). The electric fields Ey at different
time steps are presented in Figure 3, which shows clearly that the incident wave
after passing the cloaking region resumes the wave pattern in free space. Hence any
object placed inside the cloak is undetected by the external electromagnetic waves.
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Figure 3. The Ey fields at various times: (a) t = 0.8ns; (b)
t = 1.6ns; (c) t = 3.2ns; (d) t = 4ns; (e) t = 6ns; (f) t = 8ns.

5. Extension to an elliptical cloak

5.1. The governing equations. Based on the idea of transformation optics [46]
(see also [35]), an elliptical cloak can be similarly designed [28]. Consider an ellip-
tical shell with semi-axes a and b in the y direction; and semi-axes ka and kb in the
x direction; cf. Figure 4. Here k denotes the axis ratio, and gives different cloaks:
a horizontal elliptical cloak when k > 1, a vertical elliptical cloak when k < 1 and
a circular cloak when k = 1.

In the elliptical cloak region (described by ka < r =
√

x2 + k2y2 < kb), the
relative permittivity and permeability can be expressed in the Cartesian coordinate
system as:

(42) ε = μ =

⎛⎝ εxx εxy 0
εxy εyy 0
0 0 εzz

⎞⎠ ,
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Figure 4. (Left) An elliptical cloak in the Cartesian coordinate
system; (Right) An exemplary coarse mesh.

where

εxx =
r

r − ka
+

k2a2R2 − 2kar3

(r − ka)r5
x2,

εxy =
k2a2R2 − ka(1 + k2)r3

(r − ka)r5
xy,

εyy =
r

r − ka
+

k2a2R2 − 2k3ar3

(r − ka)r5
y2,

εzz =

(
b

b− a

)2
r − ka

r
.

Here R =
√
x2 + k4y2. Detailed derivation can be found in [28].

Since ε is symmetric, it can be diagonalized by the eigenvalue matrix Λ and a
corresponding orthogonal matrix P , i.e., ε = PΛPT , where [45]:

Λ =

⎛⎝ λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ , P =

⎛⎝ p1 p2 0
−p2 p1 0
0 0 1

⎞⎠ .

Here we denote

λ1 =
m− 1

m+ 1
, λ2 =

1

λ1
, λ3 = εzz ,

m =

√
1 +

4r5(r − ka)

k2a2R2(x2 + y2)
, p1 =

εxy√
ε2xy + (λ2 − εyy)2

, p2 =
λ2 − εyy√

ε2xy + (λ2 − εyy)2
.

Since λ1 and λ3 are less than one in the cloak region, they must be replaced by
dispersive quantities such as the lossless Drude model:

(43) λi = ε∞i −
ω2
pi

ω2
, (i = 1, 3),

where ω is the angular frequency, ε∞i is the permittivity at infinite frequency, and
ωpi is the plasma frequency.

Using the constitutive equation D = ε0εE and the decomposition ε = PΛPT ,
we have

ε0E = PΛ−1PTD,
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which can be rewritten as

ε0Ex = [
1

λ1
p21 +

1

λ2
p22]Dx + (

1

λ2
− 1

λ1
)p1p2Dy,(44)

ε0Ey = (
1

λ2
− 1

λ1
)p1p2Dx + [

1

λ2
p21 +

1

λ1
p22]Dy,(45)

where (Dx, Dy) = D and (Ex, Ey) = E.
Substituting λ1 from (43) into (45) and simplifying the expression, we have

[(−ε∞1ω
2+ω2

p1)+λ2ω
2]p1p2Dx+[p21(−ε∞1ω

2+ω2
p1)−λ2p

2
2ω

2]Dy = ε0λ2(−ε∞1ω
2+ω2

p1)Ey,

which can be written in time domain as

(46)
p1p2(ε∞1 − λ2)

∂2Dx

∂t2
+ p1p2ω

2
p1Dx + (ε∞1p

2
1 + λ2p

2
2)
∂2Dy

∂t2
+ p21ω

2
p1Dy

= ε0λ2(ε∞1
∂2Ey

∂t2
+ ω2

p1Ey),

where we assumed exp(iωt) time dependence. Similarly, changing (44) into time
domain yields

(47)
(ε∞1p

2
2 + λ2p

2
1)
∂2Dx

∂t2
+ p22ω

2
p1Dx + p1p2(ε∞1 − λ2)

∂2Dy

∂t2
+ p1p2ω

2
p1Dy

= ε0λ2(ε∞1
∂2Ex

∂t2
+ ω2

p1Ex).

Similarly, changing the constitutive equation

B = μ0μH = μ0(ε∞3 −
ω2
p3

ω2
)H

into time domain, we obtain

(48) μ0(ε∞3
∂2H

∂t2
+ ω2

p3H) =
∂2B

∂t2
= −∇× ∂E

∂t
,

where we used (1) in the last step.
In summary, the time-domain elliptical cloaking simulation is governed by the

following equations:

Dt = ∇×H,(49)

ε0λ2

(
ε∞1Et2 + ω2

p1E
)
= MEDt2 +MFD,(50)

μ0

(
ε3Ht2 + ω2

p3H
)
= −∇×Et,(51)

subject to proper initial and boundary conditions. Here we denote matrices

ME =

(
p21λ2 + ε∞1p

2
2 p1p2(ε∞1 − λ2)

p1p2(ε∞1 − λ2) p22λ2 + ε∞1p
2
1

)
, MF = ω2

p1

(
p22 p1p2
p1p2 p21

)
.

The well-posedness of the model (49)–(51) can be proved similarly as we did for
the cylindrical cloaking model by letting γ = 0, and replacing MA by ME and MB

by MF . It is easy to check that all those properties of MA and MB are inherited
by ME and MF , respectively. For example, for any nonzero vector (u, v)′, we have

(u, v)ME

(
u
v

)
= (p21λ2 + ε∞1p

2
2)u

2 + 2p1p2(ε∞1 − λ2)uv + (p22λ2 + ε∞1p
2
1)v

2

= λ2(p1u− p2v)
2 + ε∞1(p2u+ p1v)

2 > 0,
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Figure 5. The electric fields Ey at various time steps: (Top left)
4,000; (Top right) 6,000; (Bottom left) 12,000; (Bottom right)
20,000.

and

(u, v)MF

(
u
v

)
= ω2

p1(p2u+ p1v)
2 ≥ 0.

5.2. Numerical results. Similar to the cylindrical cloak, we now construct a leap-

frog type scheme for the elliptical cloak: for n = 1, 2, . . . , find D
n+ 1

2

h , E
n+ 1

2

h ∈ V 0
h ,

Hn
h ∈ Uh such that(

δτD
n+ 1

2

h , φh

)
= (Hn

h ,∇× φh),(52)

ε0

(
λ2ε∞1δ

2
τE

n+ 1
2

h , ϕh

)
+ ε0

(
λ2ω

2
p1Ê

n

h, ϕh

)
(53)

=
(
MEδ

2
τD

n+ 1
2

h , ϕh

)
+
(
MF D̂

n

h, ϕh

)
,

μ0

(
ε∞3(δ

2
τH

n+1
h , ψh) + (ω2

p3Ĥ
n+ 1

2

h , ψh)
)
= −(∇× Ě

n+ 1
2

h , ψh)(54)

hold true for any φh, ϕh ∈ V 0
h , ψh ∈ Uh.

For our elliptical cloaking simulation, we choose a = 0.075, b = 0.15, k = 2, the
operating frequency f = 1.5 GHz, and ε∞1 = ε∞3 = 1. The elliptical cloak is
embedded inside the physical domain Ω = [0, 1]2, which is partitioned by a regular
triangular mesh. An exemplary coarse mesh is shown in Figure 4. The mesh used
for our simulation is obtained by uniformly refining this coarse mesh three times,
and surrounded by a PML region with 12 rectangular cells of h = 0.00625 in each
direction. The total numbers of triangular elements and rectangular elements are
64896 and 8400, respectively. The time step τ = 4 · 10−13s is used. The incident
plane wave is given by Hz = 0.1 sin(ωt). The electric fields Ey obtained at different
time steps are presented in Figure 5, which shows the cloaking phenomenon clearly.
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6. Conclusions

In this paper, we provide the well-posedness study of a 2-D cylindrical cloak
modeling equations. Also, we propose a new mixed finite element scheme for sim-
ulating the cylindrical cloak. Numerical results showing the cloaking phenomena
with cylindrical cloak are presented. Finally, we extend the well-posedness study
to an elliptical cloak model. Numerical simulations of the elliptical cloak are also
performed. Future works include extension of the proposed approach in this paper
to the 3-D spherical cloak model given in [46].
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