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LARGE-TIME ASYMPTOTICS, VANISHING VISCOSITY

AND NUMERICS FOR 1-D SCALAR CONSERVATION LAWS

LIVIU I. IGNAT, ALEJANDRO POZO, AND ENRIQUE ZUAZUA

Abstract. In this paper we analyze the large time asymptotic behavior of the
discrete solutions of numerical approximation schemes for scalar hyperbolic
conservation laws. We consider three monotone conservative schemes that
are consistent with the one-sided Lipschitz condition (OSLC): Lax-Friedrichs,
Engquist-Osher and Godunov. We mainly focus on the inviscid Burgers equa-
tion, for which we know that the large time behavior is of a self-similar nature,
described by a two-parameter family of N-waves. We prove that, at the nu-

merical level, the large time dynamics depends on the amount of numerical
viscosity introduced by the scheme: while Engquist-Osher and Godunov yield
the same N-wave asymptotic behavior, the Lax-Friedrichs scheme leads to
viscous self-similar profiles, corresponding to the asymptotic behavior of the
solutions of the continuous viscous Burgers equation. The same problem is
analyzed in the context of self-similar variables that lead to a better numerical
performance but to the same dichotomy on the asymptotic behavior: N-waves
versus viscous waves. We also give some hints to extend the results to more
general fluxes. Some numerical experiments illustrating the accuracy of the
results of the paper are also presented.

1. Introduction and main results

This paper is devoted to the analysis of the asymptotic behavior as t → ∞ for
1−D scalar hyperbolic conservation laws of the form

(1.1) ut +
[
f(u)

]
x
= 0, x ∈ R, t > 0.

We shall mainly focus on the Burgers equation with a quadratic flux f(u) = u2/2:

(1.2) ut +

(
u2

2

)
x

= 0, x ∈ R, t > 0.

The asymptotic behavior of the solutions of the hyperbolic Burgers equation is
well known to be of a self-similar nature (see [15]). Indeed, as t → ∞ the solutions
develop N-wave behavior, conserving the mass of the initial datum that is invariant
under the evolution. Note, however, that the mass does not suffice to identify the
asymptotic self-similar profile that belongs to a two-parameter family of solutions.
These parameters correspond to two invariants of the system: the positive and the
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negative masses. In particular, generically, the N-wave corresponding to solutions
emanating from changing sign initial data changes sign.

The asymptotic behavior differs significantly for the viscous version of these
models:

(1.3) uε
t +

[
f(uε)

]
x
= εuε

xx, x ∈ R, t > 0,

and

(1.4) uε
t +

[
(uε)2

2

]
x

= εuε
xx, x ∈ R, t > 0.

Indeed, for ε > 0 these problems are of a parabolic nature and, as t tends to infinity,
the solutions behave in a self-similar way with a viscous profile of constant sign that
is fully determined by the conserved mass (see [9]).

Of course, for finite time, the solutions of the viscous models (1.3) and (1.4) are
well known to converge to the entropy solutions of the hyperbolic scalar conservation
laws (1.1) and (1.2), respectively; but, as shown above, this limit cannot be made
uniform as time tends to infinity. Indeed, roughly, we could say that the vanishing
viscosity and large time limits do not commute and that, accordingly, the following
two limits yield two different results:

(1.5) lim
t→∞

lim
ε→0

uε(x, t) and lim
ε→0

lim
t→∞

uε(x, t).

While the first limit leads to the two-parameter hyperbolic N-waves, possibly
changing sign, the second one leads to a more restrictive class of asymptotic pro-
files, corresponding to the N-waves of constant sign. This issue has been precisely
analyzed for the quadratic nonlinearity f(u) = u2/2 (see, for instance, [10, 11] and
the references therein). In particular, in [11] the authors describe the transition
from the N-wave shape —the asymptotic profile of the inviscid equation— to the
diffusion wave —the asymptotic profile in the viscous equation.

The main result of this paper states that the same can occur when approximating
the hyperbolic equations (1.1) and (1.2) by numerical schemes. This is not so
surprising since, as it is well known, convergent numerical schemes introduce some
degree of numerical viscosity. Our analysis allows classifying numerical schemes in
those that, as time tends to infinity, introduce a negligible amount of numerical
viscosity, and therefore lead to the correct asymptotic behavior described by the
N-waves, and those that introduce too much numerical viscosity thus leading to
viscous self-similar profiles. As we shall see, Engquist-Osher and Godunov schemes
belong to the first category while the classical Lax-Friedrichs scheme belongs to
the second one. Summarizing, we can say that the solutions of the Engquist-Osher
and Godunov schemes, for a fixed mesh, capture the hyperbolic dynamics of the
continuous systems; the Lax-Friedrichs scheme, because of the excess of numerical
viscosity, leads to the wrong asymptotic behavior, of a viscous nature and not of a
hyperbolic one.

Our results, corresponding to the L1-setting, exhibit a significant difference with
respect to previous works regarding conservative monotone schemes. In [8], the
author analyzes the large-time behavior of these schemes in the context of rarefac-
tion waves, thus instead corresponding to a L∞-setting. Our case can be formally
understood as the limit one in which both values at ±∞ vanish and, hence, reveals
the second term in the asymptotic expansion of solutions. We show that, in this
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framework, the extra viscosity added by the schemes has to be handled carefully
to detect the asymptotic behavior as time tends to infinity of discrete solutions.

This issue is important in applications where solutions need to be computed
for long time intervals. This occurs, for instance, in the context of the design of
supersonic aircrafts where sonic-boom minimization is one of the key issues (see
[1]). Note that, although analysis is limited to hyperbolic models, the same con-
clusions are also to be taken into account when numerically approximating viscous
conservation laws where the amount of asymptotic effective viscosity as t tends to
infinity may very significantly depend on the nature of the numerical scheme under
consideration.

The main goal of the present paper is to analyze the asymptotic behavior as
n → ∞ of these discrete solutions for Δx and Δt fixed. Of course, we are interested
in numerical schemes that are well known to converge to the entropy solution of
(1.1) and with mesh-size parameters satisfying the corresponding CFL condition.
Let us now introduce more precisely the numerical schemes under consideration.
Given some grid size Δx and time step Δt, we consider un

j to be the approximation
of u(nΔt, jΔx), obtained by a conservative numerical scheme that approximates
equation (1.1) (e.g. Chapter III in [7]),

(1.6) un+1
j = uj

n − Δt

Δx

(
gnj+1/2 − gnj−1/2

)
, j ∈ Z, n > 0,

where gnj+1/2 = g(uj , uj+1) is the numerical flux, an approximation of the continu-

ous flux f by a continuous function g : R2 → R.
Our analysis is mainly concerned with the numerical schemes of Lax-Friedrichs,

Engquist-Osher and Godunov. They are of a conservative nature, and well known to
converge to the entropy solution of (1.1) under suitable CFL conditions and satisfy
the so-called one-sided Lipschitz condition (OSLC) that is required to establish,
in particular, decay properties as the discrete time tends to infinity. To be more
precise, let us consider {u0

j}j∈Z an approximation of the initial data; for instance,

(1.7) u0
j =

1

Δx

∫ xj+1/2

xj−1/2

u0(x)dx, xj+1/2 = (j +
1

2
)Δx.

We introduce the piecewise constant function uΔ defined almost everywhere in
[0,∞)× R by

(1.8) uΔ(t, x) = un
j , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1,

where tn = nΔt and un
j is computed by (1.6). Here, and subsequently, for v =

{vj}j∈Z and p ∈ [1,∞), we use the following discrete norms:

‖v‖p,Δ =
(
Δx

∑
j∈Z

|vj |p
)1/p

, ‖v‖∞,Δ = max
j∈Z

|vj |, TV (v) =
∑
j∈Z

|vj+1 − vj |.

The following theorem, focused on the Burgers equation, is the main result of
this paper.

Theorem 1.1. Let u0 ∈ L1(R) and choose mesh-size parameters Δx and Δt satis-
fying the CFL condition λ‖un‖∞,Δ ≤ 1, λ = Δt/Δx. Let uΔ be the corresponding
solution of the discrete scheme (1.6) for the hyperbolic Burgers conservation law
(1.2). Then, for any p ∈ [1,∞), it holds that

(1.9) lim
t→∞

t
1
2 (1−

1
p )‖uΔ(t)− w(t)‖Lp(R) = 0,
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where the profile w is as follows:

(1) For the Lax-Friedrichs scheme, w = wMΔ
is the unique solution of the

continuous viscous Burgers equation

(1.10)

⎧⎪⎨
⎪⎩
wt +

(
w2

2

)
x
= (Δx)2

2Δt wxx, x ∈ R, t > 0,

w(0) = MΔδ0,

with MΔ =
∫
R
u0
Δ.

(2) For Engquist-Osher and Godunov schemes, w = wpΔ,qΔ is the unique solu-
tion of the hyperbolic Burgers equation

(1.11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt +
(

w2

2

)
x
= 0, x ∈ R, t > 0,

w(0) = MΔδ0, lim
t→0

∫ x

−∞
w(t, z)dz =

⎧⎪⎨
⎪⎩
0, x < 0,

−pΔ, x = 0,

qΔ − pΔ, x > 0,

with MΔ =
∫
R
u0
Δ and

pΔ = −min
x∈R

∫ x

−∞
u0
Δ(z)dz and qΔ = max

x∈R

∫ ∞

x

u0
Δ(z)dz.

The initial data in the above equations (1.10) and (1.11) have to be understood
in the sense of the convergence of bounded measures. We refer to [4] and [15] for a
precise definition.

It is well known [5, 6] that the above profiles are explicitly given by

(1.12) wMΔ
(x, t) = −2

√
ν

t1/2
exp

(
− x2

4νt

)[
CMΔ

+

∫ x/
√
νt

−∞
exp

(
−s2

4

)
ds

]−1

,

where ν = Δx2/(2Δt) and CMΔ
is such that the mass of the solution wMΔ

is MΔ,
and

(1.13) wpΔ,qΔ(x, t) =

{
x
t , −

√
2pΔt < x <

√
2qΔt,

0, elsewhere.

Note that the viscous profiles (1.12) are fully determined by the total mass, which
is conserved under the dynamics under consideration both in the time-continuous
and time-discrete cases. On the contrary, the N-wave profiles (1.13) are uniquely
determined by the two parameters (p, q) of invariants that are constant along the
continuous and discrete dynamics. The quantity qΔ−pΔ is precisely MΔ, the mass
of function u0

Δ.
The difference among them can be observed in Figure 1, for instance, where we

have taken Δx = 1/100, Δt = 1/100, MΔ = 1/10, pΔ = 1/10 and qΔ = 1/5.

Remark 1. It is important to emphasize that, with this theorem, we classify the
most classical numerical schemes into two different types. Although the grid param-
eters Δx and Δt are fixed, as the discrete time tends to infinity, solutions develop a
continuous in time behavior that, depending on the numerical scheme, can be of hy-
perbolic or of parabolic nature. On the other hand, we remark that the asymptotic
profile of the discrete solutions depends on the way we choose the approximation
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Figure 1. Diffusive wave and N-wave evaluated at t = 10, with
Δx = 1/100, Δt = 1/100, MΔ = 1/10, pΔ = 1/10 and qΔ = 1/5.

of initial data {u0
j}j∈Z in (1.6), since the values of pΔ and qΔ are connected to

that discretization. Nevertheless, u0
Δ converges to the continuous initial data and,

accordingly, the same happens to pΔ, qΔ and MΔ.

In order to prove Theorem 1.1, we use scaling arguments, similar to those applied
in the proofs of the continuous analogues. We also introduce similarity variables,
which are also a standard tool in the analysis of asymptotic behavior of partial
differential equations. This will allow us to observe some phenomena in a clearer
manner.

The rest of this paper is divided as follows: in Section 2 we present some classical
facts about the numerical approximation of one-dimensional conservation laws and
obtain preliminary results that will be used in the proof of the main results of
this paper. In Section 3 we prove the main result, Theorem 1.1, and we illustrate
it in Section 4 with numerical simulations. In Section 5, we analyze the same
issues in the similarity variables and compare the results to the approximations
obtained directly from the physical ones. Finally, in Section 6 we discuss possible
generalizations to other numerical schemes and to more general fluxes (uniformly
convex or odd ones).

2. Preliminaries

Following [3] and [7], we recall some well-known results about numerical schemes
for 1-D scalar conservation laws. We prove some new technical results that will be
used in Section 3 in the proof of Theorem 1.1. We restrict our attention to the
Burgers equation (1.2). More general results will be discussed in Section 5 for
uniformly convex and odd fluxes.

First, given a time-step Δt and a uniform spatial grid Δ with space increment
Δx, we approximate the conservation law

(2.1)

{
ut +

(
u2

2

)
x
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
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by an explicit difference scheme of the form

(2.2) un+1
j = H(un

j−k, . . . , u
n
j+k), ∀n ≥ 0, j ∈ Z,

where H : R2k+1 → R, k ≥ 1, is a continuous function and un
j denotes the ap-

proximation of the exact solution u at the node (nΔt, jΔx). We assume that there
exists a continuous function g : R2k → R, called numerical flux, such that

H(u−k, . . . , uk) = u0 − λ [g(u−k+1, . . . , uk)− g(u−k, . . . , uk−1)] , λ = Δt/Δx,

so that scheme (2.2) can be put into conservation form. This means that setting
gnj+1/2 = g(uj−k+1, . . . , uj+k), we can rewrite scheme (2.2) as:

(2.3) un+1
j = un

j − λ
(
gnj+1/2 − gnj−1/2

)
, ∀n ≥ 0, j ∈ Z,

where {u0
j}j∈Z is an approximation of u0 ∈ L1(R), defined, for instance, as in (1.7).

It is obvious that if a scheme can be put into conservation form, then the mass
of the solution is conserved in time.

We will focus our analysis on monotone schemes. We recall that a numerical
scheme (2.2) is said to be monotone if function H is monotone increasing in each
of its arguments.

Let us remark that any 3-point (k = 1) monotone scheme in conservation form
satisfies that its numerical flux g(u, v) is an increasing function in the first argument
and decreasing in the second one. The consistency of the scheme also guarantees
that

(2.4) g(u, u) =
u2

2
, ∀u ∈ R.

Now, we recall a classical result about conservative schemes. For the sake of
simplicity, we denote HΔ(v) = {H(vj−k, . . . , vj+k)}j∈Z.

Proposition 2.1 (cf. [7, Chapter 3] ). Let v = {vj}j∈Z and w = {wj}j∈Z be two
sequences in l1(Z) ∩ l∞(Z). Any monotone numerical scheme (2.2) which can be
written in conservation form satisfies the following properties:

(1) It is a contraction for ‖ · ‖1,Δ, that is:
‖HΔ(v)−HΔ(w)‖1,Δ ≤ ‖v − w‖1,Δ.

(2) It is L∞-stable, that is:

‖HΔ(v)‖∞,Δ ≤ ‖v‖∞,Δ.

(3) It preserves the sign, that is, if v ≥ 0, then HΔ(v) ≥ 0.

Another important property that we need in order to prove the asymptotic be-
havior of the numerical scheme is the OSLC. Let us introduce

Dn = sup
j∈Z

(
un
j+1 − un

j

Δx

)+

where z+ := max{0, z}.

Definition 2.1 (cf. [3]). A numerical scheme (2.2) is said to be OSLC consistent
if:

(2.5) Dn ≤ D0

1 + nΔtD0
, n ≥ 1.
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In particular, if a numerical scheme is OSLC consistent, it satisfies that

(2.6)
un
j+1 − un

j−1

2Δx
≤ 2

nΔt
, n ≥ 1.

We emphasize that, to the best of our knowledge, there is no general result
stating whether a numerical scheme satisfies the OSLC or not. Nonetheless, there
are some well-known schemes that have already been proved to be OSLC consistent
(see [3]) on which we concentrate. In the sequel, we say that a scheme satisfies the
OSLC when (2.6) holds.

The analysis in this paper is limited to the following three 3-point schemes, with
their numerical fluxes respectively:

(1) Lax-Friedrichs:

(2.7) gLF (u, v) =
u2 + v2

4
− Δx

Δt

(
v − u

2

)
.

(2) Engquist-Osher:

(2.8) gEO(u, v) =
u(u+ |u|)

4
+

v(v − |v|)
4

.

(3) Godunov:

(2.9) gG(u, v) =

⎧⎨
⎩

min
w∈[u,v]

w2

2 , if u ≤ v,

max
w∈[v,u]

w2

2 , if v ≤ u.

Proposition 2.2 (cf. [3]). Assuming that the CFL condition λ‖un‖∞,Δ ≤ 1 is
fulfilled, the Lax-Friedrichs, Engquist-Osher and Godunov schemes are monotone
and OSLC consistent.

In the case of the three numerical schemes above, thanks to the OSLC, we obtain
that the lpΔ-norms of the solutions decay similarly as in the continuous case.

Proposition 2.3. Let us consider a monotone conservative numerical scheme that
is OSCL consistent. For any p ∈ [1,∞], there exists a constant Cp > 0 such that
the following holds:

(2.10) ‖un‖p,Δ ≤ Cp(nΔt)−
1
2 (1−

1
p )‖u0‖

1
2 (1+

1
p )

1,Δ , ∀n ≥ 1.

Proof. Estimate (2.10) for p = 1 follows from the fact that the scheme is conserva-
tive and, for 1 < p < ∞, it follows by applying Hölder’s inequality once (2.10) is
proved for p = ∞. Moreover, by the comparison principle, it is sufficient to consider
the case of nonnegative initial data u0.

Let us now prove (2.10) for p = ∞ and nonnegative initial data. By the maximum
principle, un

j is nonnegative for all j ∈ Z and n ≥ 0. We use now the OSLC (2.6).
For all integers m ≥ 1 we have

(2.11)
un
j+2m − un

j

2Δx
≤ 2m

nΔt
, n ≥ 1.

For a fixed n, let us now assume that the point j where un
j attains its maximum is

even, the treatment of the other case being analogous,

un
2j0 := max

j∈Z

un
j .
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Hence, in view of (2.11) we get

un
2j ≥ un

2j0 − 4(j0 − j)
Δx

nΔt
, ∀ j ≤ j0.

Let us set

γ = j0 −
nΔt

4Δx
un
2j0 .

The last inequality and the mass conservation property imply that

‖u0‖1,Δ = Δx
∑
j∈Z

u0
j = Δx

∑
j∈Z

un
j ≥ Δx

∑
j∈Z

un
2j ≥ Δx

j0∑
j=�γ�+1

un
2j

≥ Δx

j0∑
j=�γ�+1

(
un
2j0 − 4(j0 − j)

Δx

nΔt

)
=

4(Δx)2

nΔt

j0∑
j=�γ�+1

(j − γ),

where �γ� denotes the largest integer less than or equal to γ. Since γ ≤ j0, it follows
that

‖u0‖1,Δ ≥ 4(Δx)2

nΔt

j0∑
j=�γ�+1

(j − γ)

=
2(Δx)2

nΔt
(j0 − �γ�)(j0 + �γ�+ 1− 2γ)

=
2(Δx)2

nΔt
(j0 − γ + {γ})(j0 − γ + 1− {γ}) ≥ 2(Δx)2

nΔt
(j0 − γ)2

=
2(Δx)2

nΔt
(
nΔt

4Δx
un
2j0

)2,

where {γ} = γ − �γ� ∈ [0, 1). Hence, we obtain (2.10) for p = ∞:

(2.12) ‖un‖∞,Δ ≤
√
8√

nΔt
‖u0‖1/21,Δ.

The proof is now finished. �

As in the context of the continuous hyperbolic conservation laws, the asymptotic
profile of the numerical solutions needs to satisfy another property. For any initial
data u0 ∈ L1(R), the solution of (1.2) converges as the time t goes to infinity to
the N-wave wp,q, determined by two quantities,

p = −min
x∈R

∫ x

−∞
u0(y)dy, q = max

x∈R

∫ ∞

x

u0(y)dy.

In fact, these parameters remain invariant for all time (e.g. [14]) and the same
should be expected at the discrete level. Let us remark that the mass M of the
solution of (1.2) at each instant t is M = p+ q. We already know that the mass is
also preserved at the discrete level.

Theorem 2.1. Assume that u0 ∈ L1(R), the CFL condition λ‖un‖∞,Δ ≤ 1 is
fulfilled and the numerical flux of a 3-point monotone conservative scheme as in
(2.3) satisfies

g(η, ξ) = 0, when − 1/λ ≤ η ≤ 0 ≤ ξ ≤ 1/λ(2.13a)
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and

ξ − λg(ξ,−ξ) ≥ 0, when 0 ≤ ξ ≤ 1/λ.(2.13b)

Then, for any n ≥ 0 the following holds:

(2.14) min
k∈Z

k∑
j=−∞

un
j = min

k∈Z

k∑
j=−∞

u0
j and max

k∈Z

∞∑
j=k

un
j = max

k∈Z

∞∑
j=k

u0
j .

We point out that both Engquist-Osher and Godunov schemes satisfy the hy-
pothesis of this theorem, while Lax-Friedrichs does not. Indeed, for any η, ξ such
that −1/λ ≤ η ≤ 0 ≤ ξ ≤ 1/λ, we have that

gLF (η, ξ) = 0 if and only if ξ = η = 0

and

gEO(η, ξ) = gG(η, ξ) = 0.

Moreover, for any 0 ≤ ξ ≤ 1/λ, the following holds:

ξ − λgEO(ξ,−ξ) = ξ − λξ2 = ξ(1− λξ) ≥ 0,

ξ − λgG(ξ,−ξ) = ξ − λ
ξ2

2
= ξ(1− λ

ξ

2
) ≥ 0.

In the case of Engquist-Osher and Godunov schemes, property (2.14) will allow us to
identify the asymptotic N-wave as in the continuous case [15]. On the contrary, for
the Lax-Friedrichs scheme, the lack of the conservation of these quantities produces
the loss of the N-wave shape and the appearance of the diffusive wave.

Proof. For each n ≥ 0 we define

pnk :=

k∑
j=−∞

un
j and qnk :=

∞∑
j=k

un
j .

Let pn and qn be the corresponding minimum and maximum of {pnk}k∈Z and
{qnk }k∈Z, respectively. It is easy to check that, according to (2.3), pnk and qnk satisfy

pn+1
k = Hp(p

n
k−1, p

n
k , p

n
k+1) and qn+1

k = Hq(q
n
k−1, q

n
k , q

n
k+1),

where

Hp(x, y, z) := y − λg(y − x, z − y) and Hq(x, y, z) := y + λg(x− y, y − z).

Let us fix n ≥ 0 and assume that the minimum of {pnk}k∈Z is attained at some
index K, pnK . Then, it follows that

un
K = pnK − pnK−1 ≤ 0 ≤ pnK+1 − pnK = un

K+1

and the maximum of {qnk }k∈Z is given by qnK+1. Thus, using (2.13a), we obtain
that

pn+1 ≤ pn+1
K = pnK − λg(pnK − pnK−1, p

n
K+1 − pnK)

= pn − λg(pn − pnK−1, p
n
K+1 − pn) = pn

and

qn+1 ≥ qn+1
K+1 = qnK+1 + λg(qnK − qnK+1, q

n
K+1 − qnK+2)

= qn + λg(qnK − qn, qn − qnK+2) = qn.

Therefore pn ≤ p0 and qn ≥ q0 for all n ≥ 0.
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We will now prove the reverse inequalities pn ≥ p0 and qn ≤ q0, that will finish
the proof. This will be done by an inductive argument. Assuming that pnk ≥ p0 for

all k ∈ Z we show that pn+1
k ≥ p0. Using the identities

pn+1
k − p0 = pnk − p0 −λg(pnk − pnk−1, p

n
k+1 − pnk ) = Hp(p

n
k−1− p0, pnk − p0, pnk+1 − p0)

and

qn+1
k − q0 = qnk − p0 + λg(qnk − qnk−1, q

n
k+1 − qnk ) = Hq(q

n
k−1 − q0, qnk − q0, qnk+1 − q0)

it is enough to prove that

(2.15) Hp(x, y, z) ≥ 0 for all x, y, z ≥ 0

and

(2.16) Hq(x, y, z) ≤ 0 for all x, y, z ≤ 0.

Let us first prove (2.15). Set y− x = u and z− y = v. Since x, z ≥ 0, we have that
y ≥ u and y ≥ −v. We deduce that

y ≥ max{u,−v, 0}.
This means that

Hp(x, y, z) = y − λg(u, v) ≥ max{u,−v, 0} − λg(u, v) := F (u, v).

By the CFL condition, it is sufficient to prove that function F is nonnegative on
the set

Ω = {(u, v) ∈ R
2 : λ|u| ≤ 1, λ|v| ≤ 1}.

We distinguish four regions in Ω, according to the sign of u and v:

Ω+
+ = {(u, v) ∈ Ω : u, v ≥ 0}, Ω−

− = {(u, v) ∈ Ω : u, v ≤ 0},
Ω−

+ = {(u, v) ∈ Ω : u ≤ 0 ≤ v}, Ω+
− = {(u, v) ∈ Ω : u ≥ 0 ≥ v}.

Thus, we have explicitly:

F (u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u− λg(u, v), if (u, v) ∈ Ω+

+,

−v − λg(u, v), if (u, v) ∈ Ω−
−,

−λg(u, v), if (u, v) ∈ Ω−
+,

max{|u|, |v|} − λg(u, v), if (u, v) ∈ Ω+
−.

The monotonicity of the numerical flux g guarantees that F is increasing on v in
Ω+

+, decreasing on u in Ω−
−, decreasing on u and increasing on v in Ω−

+. This shows
that

min
Ω

F = min
Ω+

−

F.

Using that in set Ω+
− function F is increasing on u if |u| ≥ |v| and decreasing on v

if |u| ≤ |v|, we get

min
Ω+

−

F ≥ min
0≤ξ≤1/λ

F (ξ,−ξ) = min
0≤ξ≤1/λ

(
ξ − λg(ξ,−ξ)

)
.

The right-hand side of the above inequality is nonnegative due to hypothesis (2.13b).
Therefore, Hp satisfies (2.15) and, hence, pn = p0 for all n ≥ 0. Using a similar
argument, the same result is proved for qn, i.e., that qn = q0 for all n ≥ 0. The
proof is now complete. �
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To conclude this section, we present a second characterization of conservative
monotone schemes, that better illustrates the artificial viscosity issue we are dealing
with. The difference scheme (2.2) is said to be in viscous form if there exists a
function Q : R2k → R, called the coefficient of numerical viscosity, such that

un+1
j = un

j − λ

[
(un

j+1)
2 − (un

j−1)
2

4

]
+

Qn
j+1/2(u

n
j+1 − un

j )−Qn
j−1/2(u

n
j − un

j−1)

2
,

where

Qn
j+1/2 = Q(un

j−k+1, . . . , u
n
j+k).

Three-point monotone schemes, for instance, can always be written in that way.
For simplicity, when we treat the long time behavior of the numerical schemes, we
rather prefer to put them in the equivalent form

(2.17)
un+1
j − un

j

Δt
+

(un
j+1)

2 − (un
j−1)

2

4Δx
= R(un

j , u
n
j+1)−R(un

j−1, u
n
j )

where R can be defined in a unique manner as

(2.18) R(u, v) =
Q(u, v)(v − u)

2Δt
=

1

2Δx

(u2

2
+

v2

2
− 2g(u, v)

)
.

We recall that for the schemes considered in Theorem 2.2 we have

RLF (u, v) =
v − u

2Δt
,

REO(u, v) =
1

4Δx
(v|v| − u|u|),(2.19)

RG(u, v) =

⎧⎨
⎩

1
4Δx sign(|u| − |v|)(v2 − u2), v ≤ 0 ≤ u,

1
4Δx (v|v| − u|u|), elsewhere.

3. Asymptotic behavior

This section is devoted to the proof of the main result of this paper, stated in
Theorem 1.1, which describes the asymptotic profile developed by the numerical
solutions of the schemes defined in Proposition 2.2, that is, those satisfying the
OSLC. Our analysis uses the method of self-similar variables, i.e., a rescaling of the
solutions together with the compactness of the trajectories.

The key point in the analysis of the asymptotic behavior of the solutions of our
numerical schemes is the degree of homogeneity of the term R(u, v). We assume
that there exists a real number α such that for any u, v ∈ R and μ > 0, function R
satisfies

(3.1) R(μu, μv) = μαR(u, v).

From (2.19), it is clear that αLF = 1 for Lax-Friedrichs, while αG = αEO = 2 for
Godunov and Engquist-Osher, respectively.
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3.1. The piecewise constant solution. In order to pass to the limit when doing
the scaling argument, we first need to obtain bounds on the piecewise constant
function uΔ, the piecewise constant interpolation (1.8) of {un

j }j∈Z,n≥0 solution of
scheme (2.17), in some Lebesgue spaces. Let us now apply the results of Section 2
to uΔ. It follows from (2.17) that it satisfies the following equation:
(3.2)⎧⎪⎪⎨
⎪⎪⎩

uΔ(t+Δt, x)− uΔ(t, x)

Δt
+

(uΔ(t, x+Δx))2 − (uΔ(t, x−Δx))2

4Δx
= R(uΔ(t, x), uΔ(t, x+Δx))−R(uΔ(t, x−Δx), uΔ(t, x)), t ≥ 0, a.e. x∈R,

uΔ(t, x) = u0
Δ(x), t ∈ [0,Δt).

The following lemma gives us the first bound on the solution uΔ. In the sequel,
for any functions f and g, we will write f � g if there exists a constant C > 0 such
that f ≤ Cg.

Lemma 3.1. There exists a positive constant C = C(Δt, ‖u0‖1,Δ) such that the
following holds:

‖uΔ(t)‖L∞(R) ≤
C√
t
, ∀t > Δt.

Proof. From Proposition 2.3 we know that for any n ≥ 1 the following holds:

‖un‖∞,Δ ≤ C√
nΔt

‖u0‖1,Δ.

Let us now consider t ∈ [nΔt, (n+ 1)Δt) with n ≥ 1. Then

‖uΔ(t)‖L∞(R) = ‖un‖∞,Δ ≤ C√
nΔt

≤ 2C√
(n+ 1)Δt

≤ 2C√
t
,

which proves the desired inequality. �
For simplicity of presentation, from now on we will denote by ω(h) the L1(R)-

modulus of continuity of the initial data u0
Δ:

ω(h) =

∫
R

|u0
Δ(x+ h)− u0

Δ(x)|dx.

Lemma 3.2. The solution of system (3.2) satisfies∫
R

|uΔ(t, x+ h)− uΔ(t, x)|dx ≤ ω(h)

for all h > 0 and t > 0.

Proof. Let us consider k ∈ Z such that kΔx ≤ h < (k + 1)Δx. Then for any
piecewise constant function v as in (1.8), we have∫

R

|v(x+ h)− v(x)|dx =
∑
j∈Z

∫ xj+1/2

xj−1/2

|v(x+ h)− v(x)|dx

=
∑
j∈Z

∫ xj−1/2+(k+1)Δx−h

xj−1/2

|v(x+ h)− v(x)|dx

+
∑
j∈Z

∫ xj+1/2

xj−1/2+(k+1)Δx−h

|v(x+ h)− v(x)|dx

= ((k + 1)Δx− h)
∑
j∈Z

|vj+k − vj |+ (h− kΔx)
∑
j∈Z

|vj+k+1 − vj |.
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Applying this property to function uΔ and using that for any k ≥ 1 (cf. Proposition
2.1), ∑

j∈Z

|un
j+k − un

j | ≤
∑
j∈Z

|u0
j+k − u0

j |

we obtain that∫
R

|uΔ(t, x+ h)− uΔ(t, x)|dx

≤ ((k + 1)Δx− h)
∑
j∈Z

|u0
j+k − u0

j |+ (h− kΔx)
∑
j∈Z

|u0
j+k+1 − u0

j |

= ω(h).

This proves the desired result. �

3.2. The rescaled solutions. Let us now introduce for any μ > 0 the family of
rescaled solutions

uμ(t, x) = μuΔ(μ
2t, μx), t ≥ 0, x ∈ R.

It follows that uμ is piecewise constant on time intervals of length Δt/μ2 and space
intervals of length Δx/μ. Moreover, it satisfies the system
(3.3)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ2

Δt

(
uμ(t+ Δt

μ2 , x)− uμ(t, x)
)
+ μ

4Δx

(
(uμ(t, x+ Δx

μ ))2 − (uμ(t, x− Δx
μ ))2

)
= μ1−α

(
μ2R(uμ(t, x), uμ(t, x+ Δx

μ ))− μ2R(uμ(t, x− Δx
μ ), uμ(t, x))

)
,

t ≥ 0, a.e. x ∈ R,

uμ
Δ(t, x) = μu0

Δ(0, μx), t ∈ [0,Δt/μ2), a.e. x ∈ R.

The following lemmas will guarantee the convergence of the trajectories {uμ(t)}μ>0

as μ → ∞.

Lemma 3.3. The solution of system (3.3) satisfies the following two estimates:

(1) There exists a positive constant C independent of μ such that

(3.4) ‖uμ(t)‖∞ ≤ C√
t
, ∀t > Δt

μ2
.

(2) For all h > 0 and t > 0 the following holds:∫
R

|uμ(t, x+ h)− uμ(t, x)|dx ≤ ω(h).

Remark 2. On the interval [0,Δt/μ2] we have the rough estimate

(3.5) ‖uμ(t)‖∞ = μ‖u0
Δ‖∞ ≤ μ

Δx
‖u0

Δ‖L1(R).

Proof. The first estimate is a consequence of Lemma 3.1, while the second one
follows from Lemma 3.2. �

Lemma 3.4. For any 0 < t1 < t2, there exists a positive constant C such that

sup
t∈[t1,t2]

∫
R

|uμ(t+ h, x)− uμ(t, x)|dx ≤ C(h1/3 +
h2/3

√
t1

)‖u0‖L1(R) + ω(h1/3)

holds for any h > 0 and μ >
√

Δt
t1
.
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Proof. We proceed as in [12, 13]. Since uμ is piecewise constant in time, it is
sufficient to consider the case when t1, t2 ∈ (Δt/μ2)Z and h = kΔt/μ2 with k ∈ Z,
k ≥ 1. Let us set t′ = t+ h−Δt/μ2. Then, for t ∈ (Δt/μ2)Z we have

uμ(t+ h)− uμ(t) =
μ2

Δt

∫ t′

t

(
uμ(s+

Δt

μ2
)− uμ(s)

)
ds.

Let us choose φ a smooth, bounded function on R. Multiplying (3.3) by φ and
integrating in time and space we get∫

R

(uμ(t+h, x)− uμ(t, x))φ(x)dx = I1 + I2

=
μ

4Δx

∫ t′

t

∫
R

(uμ(s, x))2
(
φ(x+

Δx

μ
)− φ(x− Δx

μ
)
)
dsdx(3.6)

+ μ1−α

∫ t′

t

∫
R

μ2R
(
uμ(s, x), uμ(s, x+

Δx

μ
)
)(

φ(x)− φ(x+
Δx

μ
)
)
dsdx.

We now evaluate I1 and I2. Observe that since μ2 > Δt/t1 then t ≥ t1 ≥ Δt/μ2

and estimate (3.4) applies:

|I1| � ‖φ′‖L∞(R)

∫ t′

t

∫
R

(uμ(s, x))2dsdx

� ‖φ′‖L∞(R)

∫ t′

t

‖uμ(s)‖L∞(R)

∫
R

|uμ(s, x)|dsdx(3.7)

� ‖φ′‖L∞(R)‖u0‖L1(R)

∫ t′

t

ds√
s

� ‖φ′‖L∞(R)‖u0‖L1(R)
h√
t
.

In the case of I2, we use that R(u, v) satisfies R(u, v) = (v − u)/(2Δt) for the
Lax-Friedrichs scheme and |R(u, v)| � |u|2 + |v|2 for Engquist-Osher and Godunov
schemes. For Lax-Friedrichs (αLF = 1) we have for all t > 0 that

I2 =

∫ t′

t

∫
R

μ2

2Δt
uμ(s, x)

(
φ(x+

Δx

μ
)− 2φ(x) + φ(x− Δx

μ
)

)
dxds(3.8)

� ‖φ′′‖L∞(R)

∫ t′

t

∫
R

|uμ(s, x)|dxds ≤ h‖φ′′‖L∞(R)‖u0‖L1(R).

For Engquist-Osher and Godunov schemes (αEO = αG = 2), we have similar
estimates as in the case of I1:

I2 � ‖φ′‖L∞(R)

∫ t′

t

∫
R

(uμ(s, x))2dsdx � ‖φ′‖L∞(R)‖u0‖L1(R)
h√
t
.(3.9)

Plugging estimates (3.7), (3.8) and (3.9) into (3.6), we obtain that∫
R

(uμ(t+ h, x)− uμ(t, x))φ(x)dx � ‖u0‖L1(R)

(
h‖φ′′‖L∞(R) +

h√
t
‖φ′‖L∞(R)

)
.

Let us choose a mollifier ρ, a smooth nonnegative function supported in the
interval (−1, 1) with unit mass, and take

φh = h−1/3ρ(h−1/3) ∗
[
signuμ(t+ h)− sign uμ(t)

]
.
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We have that |φ′
h| ≤ h−1/3, |φ′′

h| ≤ h−2/3 and

(3.10)

∫
R

(uμ(t+ h, x)− uμ(t, x))φh(x)dx � ‖u0‖L1(R)

(
h1/3 +

h2/3

√
t

)
.

Using that φh has unit mass and that for any a, b ∈ R we have |a| − a sign(b) ≤
2|a− b|, we get

|uμ(t+ h, x)− uμ(t, x)| − (uμ(t+ h, x)− uμ(t, x))φh(x)

=

∫
R

φh(x− y)
(
|uμ(t+ h, x)− uμ(t, x)|

− (uμ(t+ h, x)− uμ(t, x))
(
signuμ(t+ h, y)− sign uμ(t, y)

))
dy

≤ 2

∫
R

φh(x− y)
∣∣(uμ(t+ h, x)− uμ(t, x)− (u(t+ h, y)− u(t, y))

∣∣dy
≤ 2

∫
R

φh(x− y)|uμ(t+ h, x)− uμ(t+ h, y)|dy

+ 2

∫
R

φh(x− y)|uμ(t, x)− uμ(t, y)|dy.

Integrating the above inequality in x we obtain that∫
R

|uμ(t+ h, x)− uμ(t, x)| − (uμ(t+ h, x)− uμ(t, x))φh(x)dx

≤ 2

∫
R

|uμ(t+ h, x+ h1/3)− uμ(t+ h, x)|dx

+ 2

∫
R

|uμ(t, x+ h1/3)− uμ(t, x)|dx

≤ 4ω(h1/3).

(3.11)

Combining (3.10) and (3.11) we obtain the desired result. �

Lemma 3.5. There exists a constant C = C(‖u0‖L1(R)) such that

(3.12)

∫
|x|>2R

|uμ(t, x)|dx ≤
∫
|x|>R

|u0
Δ|dx+ C(

t

R2
+

μ−1 + t1/2

R
)

holds for any t > 0, R > 0 and μ > 1.

Proof. We first observe that it is sufficient to consider nonnegative initial data.
Indeed, choosing ũ0 = |u0| as initial data in the numerical scheme, we have by
the maximum principle that |uμ(t, x)| ≤ ũμ(t, x) where ũμ is the solution that
corresponds to the initial data ũ0. It is then sufficient to prove estimate (3.12) for
nonnegative initial data and solutions.

Let us now prove (3.12) for nonnegative solutions. Since uμ is piecewise constant
in time we consider the case t = kΔt/μ2, k ∈ Z, k ≥ 1, the case k = 0 being obvious.
Let us choose ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1 and

ρ =

{
0, |x| ≤ 1,

1, |x| ≥ 2.
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We set ρR(x) = ρ(x/R). We multiply system (3.3) by ρR and integrate on (0, t′)×R

where t′ = t−Δt/μ2. The right-hand side is given by

μ2

Δt

∫ t′

0

∫
R

(
uμ(s+

Δt

μ2
, x)− uμ(s, x)

)
ρR(x)dxds

=

∫
R

uμ(t, x)ρR(x)dx−
∫
R

uμ(0, x)ρR(x)dx.

Hence∫
R

uμ(t, x)ρR(x)dx−
∫
R

uμ(0, x)ρR(x)dx

=

∫ t′

0

∫
R

(uμ(s, x))2
[
ρR(x+

Δx

μ
)− ρR(x− Δx

μ
)
] μ

4Δx
dxds

+ μ1−α

∫ t′

0

∫
R

μ2R
(
uμ(s, x), uμ(s+

Δx

μ
)
)[

ρR(x)− ρR(x+
Δx

μ
)
]
dxds.

= I1 + I2.

In the first case using (3.4) and (3.5) we get

I1 � ‖ρ′R‖L∞(R)

∫ t′

0

∫
R

(uμ(s, x))2dsdx

� 1

R

∫ t′

0

‖uμ(s)‖L∞(R)

∫
R

|uμ(s, x)|dsdx

≤ 1

R
‖u0‖L1(R)(

∫ Δt/μ2

0

‖uμ(s)‖L∞(R) +

∫ t′

Δt/μ2

1√
s
ds)

� R−1‖u0‖L1(R)(
1

μ
+ t1/2).

In the case of I2, using the same argument as in Lemma 3.4, we get

I2 �

⎧⎨
⎩

μ−1+t1/2

R ‖u0‖L1(R), α = 2,

t
R2 ‖u0‖L1(R), α = 1.

It follows that∫
|x|>2R

uμ(t, x)dx ≤
∫
|x|>μR

u0
Δ(x)dx+ C(

t

R2
+

μ−1 + t1/2

R
)

≤
∫
|x|>R

u0
Δ(x)dx+ C(

t

R2
+

μ−1 + t1/2

R
).

The proof is now complete. �

3.3. Passing to the limit. We are now in position to prove the main result of
this paper, stated in Theorem 1.1. The results obtained in the previous section will
guarantee the compactness of the set {uμ}μ>0 needed to pass to the limit.

Proof of Theorem 1.1. We proceed in several steps.
Step I. Passing to the limit as μ → ∞. From Riesz-Fréchet-Kolmogorov

and Arzelà-Ascoli theorems and Lemmas 3.3, 3.4 and 3.5, we infer that {uμ}μ>0

is relatively compact in C([t1, t2];L
1(R)) for any 0 < t1 < t2. Consequently, there
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exist a subsequence, which we do not relabel, and a function u∞ ∈ C((0,∞);L1(R))
such that for any 0 < t1 < t2,

(3.13) uμ → u∞ in C([t1, t2];L
1(R)) as μ → ∞

and

(3.14) uμ(t, x) → u∞(t, x), a.e. (t, x) ∈ (0,∞)× R.

Using the mass conservation of uμ we obtain that∫
R

u∞(t, x)dx = MΔ =

∫
R

u0
Δ(x)dx.

Moreover, the almost everywhere convergence in (3.14) shows that there is a positive
constant C such that the limit function u∞ satisfies

(3.15) t
1
2 ‖u∞(t)‖L∞(R) ≤ C, ∀t > 0.

We will now pass to the limit in the sense of distributions in equation (3.3). Let
us multiply it by a test function ϕ ∈ C∞

c ((0,∞)×R) and integrate it both in space
and time. The limit in the left-hand side is

u∞
t +

( (u∞)2

2

)
x
, in D((0,∞)× R).

It remains to identify the limit for the right-hand side. Let us denote

Iμ :=μ1−α

∫ ∞

0

∫
R

μ2R(uμ(t, x), uμ(t, x+
Δx

μ
))ϕ(t, x)dx

− μ1−α

∫ ∞

0

∫
R

μ2R(uμ(t, x− Δx

μ
), uμ(t, x))ϕ(t, x)dx.

In the case of the Lax-Friedrichs scheme, αLF = 1 and R(u, v) = (v − u)/(2Δt).
Thus

Iμ =
μ2

2Δt

∫ ∞

0

∫
R

uμ(t, x)
(
ϕ(t, x+

Δx

μ
)− 2ϕ(t, x) + ϕ(t, x− Δx

μ
)
)
dxdt

−→ (Δx)2

2Δt

∫ ∞

0

∫
R

u∞ϕxxdxdt, as μ → ∞.

Hence the limit u∞ satisfies

(3.16) u∞
t +

( (u∞)2

2

)
x
=

(Δx)2

2Δt
u∞
xx in D′((0,∞)× R).

In the case of Engquist-Osher and Godunov schemes, α = 2. Using the explicit
form of R(u, v) given in (2.19), we obtain that

|R(u, v)| � ||u|u− |v|v| ≤ |u− v|(|u|+ |v|).
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Assume that ϕ is supported in the time interval [t1, t2] with t1 > 0. Then

|Iμ| = μ−1

∣∣∣∣
∫ t2

t1

∫
R

μ2R(uμ(t, x), uμ(t, x+
Δx

μ
))
(
ϕ(t, x)dx− ϕ(t, x+

Δx

μ
)
)
dx

∣∣∣∣
� Δx‖ϕ′‖∞

∫ t2

t1

∫
R

|R(uμ(t, x), uμ(t, x+
Δx

μ
))|dxdt

� Δx‖ϕ′‖∞
∫ t2

t1

∫
R

|uμ(t, x)− uμ(t, x+
Δx

μ
)|
(
|uμ(t, x)|+ |uμ(t, x+

Δx

μ
)|
)
dxdt

� Δx‖ϕ′‖∞C(t1) max
t∈[t1,t2]

∫
R

|uμ(t, x)− uμ(t, x+
Δx

μ
)|dx.

Using Lemma 3.4 we obtain that Iμ → 0 as μ → ∞. Therefore, the limit point u∞

satisfies

(3.17) u∞
t +

( (u∞)2

2

)
x
= 0 in D′((0,∞)× R).

Let us now recall that in view of the OSLC (2.6) for any t > Δt and a.e. x ∈ R,
we have

uΔ(t, x+Δx)− uΔ(t, x−Δx)

2Δx
≤ C

t
.

Hence, for all t > Δt/μ2 we have

μ2

2Δx

(
uμ(t, x+

Δ

x
μ2)− uμ(t, x− Δ

x
μ2)

)
≤ C

t
.

Letting μ → ∞, we obtain that for any t > 0 the limit point u∞ satisfies

u∞
x (t) ≤ C

t
in D′(R).

This shows that u∞ is an entropy solution. Note that this can also be guaranteed
by the monotonicity of the numerical schemes, as monotone schemes are consistent
with any entropy condition [7, Chapter 3].

Step II. Initial data. It remains to identify the behavior of u∞ as t → 0. We
will prove that u∞(t) → MΔδ0 as t → 0, in the sense of bounded measures, i.e.,

(3.18) lim
t→0

∫
R

u∞(t, x)ϕ(x)dx = MΔϕ(0)

for every bounded continuous function ϕ. By a density argument it is sufficient to
consider the case ϕ ∈ C∞

c (R). Thus we will conclude that u∞(0) = MΔδ0 in the
sense of bounded measures.

Let us choose t = kΔt/μ2, k ∈ Z, k ≥ 1. Then for any k ≥ 1 (for k = 0 it is
obvious)

μ2

Δt

∫ t

0

∫
R

(
uμ(s+

Δt

μ2
, x)− uμ(s, x)

)
ϕ(x)dxds

=
μ2

Δt

∫ t+Δt
μ2

t

∫
R

uμ(s, x)ϕ(x)dxds− μ2

Δt

∫ Δt
μ2

0

∫
R

uμ(s, x)ϕ(x)dxds

=

∫
R

uμ(t, x)ϕ(x)dx−
∫
R

uμ(0, x)ϕ(x)dx.
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Let us consider a t such that kΔt/μ2 ≤ t < (k+ 1)Δt/μ2 for some k ≥ 0. Since uμ

is piecewise constant, we have:∫
R

uμ(t, x)ϕ(x)dx−
∫
R

uμ(0, x)ϕ(x)dx =

∫
R

(
uμ(k

Δt

μ2
, x)− uμ(0, x)

)
ϕ(x)dx

=
μ2

Δt

∫ kΔt
μ2

0

∫
R

(
uμ(s+

Δt

μ2
, x)− uμ(s, x)

)
ϕ(x)dxds

=
μ

4Δx

∫ kΔt
μ2

0

∫
R

(uμ(s, x))2
(
ϕ(x+

Δx

μ
)− ϕ(x− Δx

μ
)
)
dsdx

+ μ1−α

∫ kΔt
μ2

0

μ2R
(
uμ(s, x), uμ(s, x+

Δx

μ
)
)
(ϕ(x)− ϕ(x+

Δx

μ
))dsdx.

Following the same steps as in Lemma 3.4 and using that kΔt/μ2 ≤ t we obtain
that ∣∣∣ ∫

R

uμ(t, x)ϕ(x)dx−
∫
R

uμ(0, x)ϕ(x)dx
∣∣∣

� ‖u0
Δ‖L1(R)

(
‖ϕ′‖L∞(R)(μ

−1 + t1/2) + ‖ϕ′′‖L∞(R)t
)
.

Using the definition of uμ(0, x) and letting μ → ∞ we get∣∣∣∣
∫
R

u∞(t, x)ϕ(x)dx− ϕ(0)
(∫

R

u0
Δ(x)dx

)∣∣∣∣ ≤ C(ϕ)(t1/2 + t).

The proof of (3.18) is now complete.
Step III. Identification of the limit. In the case of the Lax-Friedrichs scheme

system (3.16)–(3.18) has a unique solution wM given by (1.12). Since wM is the
only possible accumulation point of {uμ}μ>0 in C((0,∞), L1(R)) as μ → ∞, the
whole family converges to wM . Therefore,

lim
μ→∞

‖uμ(1)− wM (1)‖L1(R) = 0;

so, setting μ = t1/2, we recover (1.9) for p = 1. Hölder’s inequality and Proposition
2.3 allow us to deduce (1.9) for p ∈ (1,∞).

In the case of Engquist-Osher and Godunov schemes, as proved in [15], there are
infinitely many solutions wpΔ,qΔ ∈ C((0,∞), L1(R)) of system (3.17)–(3.18), so we
have to identify the parameters pΔ and qΔ. As pointed out in [15] it remains to
identify the limit as t ↓ 0 of

v(t, x) =

∫ x

−∞
u∞(t, y)dy.

Since u∞ converges to Mδ0, we have

lim
t→0

∫ x

−∞
u∞(t, y)dy = 0, ∀x < 0 and lim

t→0

∫ x

−∞
u∞(t, y)dy = MΔ, ∀x > 0.

It remains to determine the above limit when x = 0. Note that the map t → v(t, 0)
is increasing when t ↓ 0 so that there exists

−l = lim
t↓0

v(t, 0).
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This proves that u∞ = wl,l+MΔ
. To finish the proof it remains to show that l = pΔ.

According to [15], parameter l is characterized by

−l = min
x∈R

∫ x

−∞
wl,l+MΔ

(t, y)dy = min
x∈R

∫ x

−∞
u∞(t, y)dy.

So it is sufficient to prove that

min
x∈R

∫ x

−∞
u∞(t, y)dy = min

x∈R

∫ x

−∞
u0
Δ(y)dy.

By Theorem 2.1, we know that

min
x∈R

∫ x

−∞
u0
Δ(y)dy = min

x∈R

∫ x

−∞
uΔ(μ

2t, y)dy = min
x∈R

∫ x

−∞
uμ(t, y)dy.

Since uμ converges to u∞ in L1(R), its primitive converges uniformly to the primi-
tive of u∞ when μ → ∞. So we have

min
x∈R

∫ x

−∞
u∞(t, y)dy = lim

μ→∞
min
x∈R

∫ x

−∞
uμ(t, y)dy = min

x∈R

∫ x

−∞
u0
Δ(y)dy = −pΔ.

We conclude that u∞ is the unique solution wpΔ,qΔ to (1.11) with pΔ and qΔ as
in Theorem 1.1. Since wpΔ,qΔ is the only possible accumulation point of {uμ} in
C((0,∞), L1(R)) as μ → ∞, the whole family converges to wpΔ,qΔ . Therefore,

lim
μ→∞

‖uμ(1)− wpΔ,qΔ(1)‖L1(R) = 0;

so, setting μ = t1/2, we recover (1.9) for p = 1. Hölder’s inequality and Proposition
2.3 allow us to deduce assertion (1.9) for p ∈ (1,∞). This completes the proof of
the main result of this paper. �

4. Simulations

In the following, we illustrate the main results of previous sections with some
numerical simulations. Let us consider the inviscid Burgers equation

(4.1) ut +

(
u2

2

)
x

= 0, x ∈ R, t > 0

with initial data

u0(x) =

⎧⎪⎨
⎪⎩
−0.05, x ∈ [−1, 0],

0.15, x ∈ [0, 2],

0, elsewhere.

In this case, the parameters that describe the asymptotic N-wave profile, defined
in (1.13), are

M = 0.25 , p = 0.05 and q = 0.3.

We focus our experiments on the schemes described in Proposition 2.2: on the
one hand, Engquist-Osher and Godunov schemes, as examples of well-behaving
schemes, and on the other, the Lax-Friedrichs scheme.

For the spatial domain discretization, we take Δx = 0.1 as the mesh-size for the
interval [−350, 800]. Let us remark that, in general, it is not possible to impose
homogeneous Dirichlet boundary conditions on both sides of the interval (e.g. [2]).
Nevertheless, due to the finite speed of propagation, we can consider a large enough
domain to guarantee that the boundary conditions do not interfere on the solution.
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Figure 2. Solution to the Burgers equation at t = 105 using
Lax-Friedrichs (left), Engquist-Osher (center) and Godunov (right)
schemes. The thin solid line corresponds to the predicted N-wave,
defined as in (1.13).

Figure 3. Evolution in time (on a logarithmic scale) of the total
mass of the solution (continuous line), together with the positive
(dotted) and negative (dashed) masses, using Lax-Friedrichs (left),
Engquist-Osher (center) and Godunov (right) schemes.

Regarding the time-step, we simply choose Δt = 0.5, that verifies the CFL condition
in the three cases.

In Figure 2 we show the numerical solution obtained at time t = 105. It is
possible to appreciate how the numerical viscosity of Lax-Friedrichs has dissipated
the negative part of the solution. After such a long time, it only remains a diffusive
positive profile, i.e., the wave described in the first case of Theorem 1.1. On the
contrary, both Engquist-Osher and Godunov schemes preserve the shape of the
N-wave.

We can confirm this loss of the negative part of the solution for the Lax-Friedrichs
scheme in Figure 3. While the mass of the solution is conserved throughout time
in the three cases, the Lax-Friedrichs scheme fails to preserve, in addition, both
the masses of the positive and negative parts, respectively. Let us notice that when
a solution crosses the horizontal axis just once, these masses are equivalent to the
parameters p and q computed at each time.

Finally, in Figure 4 we show the evolution of the L1 and L2 norms of the difference
between the numerical solution and the N-wave. This confirms that, for large times,
the behavior of the solutions obtained by the Engquist-Osher and Godunov schemes
are the expected ones. On the contrary, the performance of the Lax-Friedrichs
scheme is far from being correct.
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Figure 4. Evolution in time (on a logarithmic scale) of the L1

and L2 norms of the difference between the N-wave and the numeri-
cal solution given by Lax-Friedrichs (left), Engquist-Osher (center)
and Godunov (right) schemes.

5. Similarity variables

One of the disadvantages of the numerical approach we have developed in the
previous sections is that the considered computational domain has to be extremely
large, in comparison to the support of the initial data because of its time-spreading.
In this section we use similarity variables, a classical tool at the continuous level and
that, as we shall see, at the discrete one, leads to an alternate way of understanding
the large time behavior and to a significant decrease of the computational cost. In
[11] similarity variables were used to analyze the transition to the asymptotic states
to estimate the time of evolution from an N-wave to the final stage of a diffusion
wave for the viscous Burgers equation. As we shall see, the same phenomena
occurs for numerical schemes in case its effective asymptotic numerical positive is
nonnegligible as it occurs with the Lax-Friedrichs scheme.

Let us consider the change of variables given by

s = ln(t+ 1), ξ = x/
√
t+ 1, w(ξ, s) =

√
t+ 1 u(x, t),

which turns (4.1) into

(5.1) ws +

(
1

2
w2 − 1

2
ξw

)
ξ

= 0, ξ ∈ R, s > 0.

In this case, the asymptotic profile of the solutions is an N-wave as follows:

(5.2) Np,q(ξ) =

{
ξ, −

√
2p < ξ <

√
2q,

0, elsewhere,

where p and q are, respectively, the negative and positive mass of the initial data.
The asymptotic profiles of the Burgers equation in the original variables become,

in the similarity ones, steady state solutions. Accordingly, in the similarity vari-
ables, the asymptotic convergence towards a self-similar solution in the self-similar
ones becomes, simply, the convergence towards steady-states. One further advan-
tage of considering similarity variables is that the support of the solutions no longer
grows indefinitely and, thus, their numerical approximation is easier to handle.
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Figure 5. Comparison between the mesh on variables (ξ, s) and
(x, t). The rectangular mesh [−3, 3]× [0, 4] for (ξ, s) covers a trape-
zoidal domain that reaches x ∈ [−22, 22] at t ≈ 53.

5.1. Presentation of discrete similarity schemes. In our numerical analysis,
we first need to adjust the three numerical schemes under consideration to the
similarity variables. The general form of the scheme is still given in the conservative
form

(5.3) wn+1
j = wn

j − Δs

Δξ
(gnj+1/2 − gnj−1/2), j ∈ Z, n ≥ 0.

From [11], the numerical flux for the Godunov scheme is given by

(5.4) gnj+1/2 =

⎧⎪⎨
⎪⎩
I(wn

j+1, ξ̄), if h(wn
j , ξ̄) + h(wn

j+1, ξ̄) ≤ 0 and h(wn
j+1, ξ̄) ≤ 0,

I(wn
j , ξ̄), if h(wn

j , ξ̄) + h(wn
j+1, ξ̄) > 0 and h(wn

j , ξ̄) > 0,

−3ξ̄2/8, if h(wn
j , ξ̄) < 0 and h(wn

j+1, ξ̄) > 0,

where ξ̄ = ξj+1/2, h is the wave speed

h(w, ξ) = w − ξ/2

and I(w, ξ) is as follows:

(5.5) I(w, ξ) =
1

2
w2(eΔs − 1)− ξw(eΔs/2 − 1).

For the Lax-Friedrichs scheme we take

(5.6) gnj+1/2 =
(wn

j )
2 − ξ̄wn

j + (wn
j+1)

2 − ξ̄wn
j+1

4
− Δξ

Δs

(
wn

j+1 − wn
j

2

)
,

while for Engquist-Osher we choose

gnj+1/2 =
(wn

j − ξ̄/2)(wn
j − ξ̄/2 + |wn

j − ξ̄/2|)
4

(5.7)

+
(wn

j+1 − ξ̄/2)(wn
j+1 − ξ̄/2− |wn

j+1 − ξ̄/2|)
4

− ξ̄2

8
.

The advantage of using numerical schemes in these similarity variables is that
we do not need to cover large domains, neither in time nor space, to capture the
dynamics of solutions. In Figure 5 we transform a rectangular mesh on the space-
time domain [−3, 3]×[0, 4] for (ξ, s) into the corresponding parabolic mesh on (x, t).
We can observe that computations done for equation (5.1) in short periods of time
(for instance, up to s = 4) are equivalent to large-time solutions in the original
equation (4.1) ( t ≈ 53 in the example under consideration).
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5.2. Discussion on discrete steady states. For the numerical approximation
schemes above in the similarity variables we expect a similar behavior as in the
continuous case. Namely, that numerical solutions as the discrete self-similar time
evolves converge towards numerical steady state solutions. Of course we expect this
steady state solutions to converge towards the corresponding continuous ones as the
mesh-size tends to zero. A complete analysis of these issues is out of the scope of
this paper. As we shall see, the numerical experiments confirm this fact establishing
once more a clear distinction between the Lax-Friedrichs scheme that behaves in a
parabolic manner and the two others (i.e., Engquist-Osher and Godunov schemes).

To better understand the nature of the steady-state solutions, observe that those
of (5.1) satisfy:

(5.8)
(w2 − ξw

2

)
ξ
= 0, ξ ∈ R, s > 0.

Since the solution must vanish on the tails, we deduce that

(5.9)
1

2
w2 − 1

2
ξw = 0.

Thus, either w = 0 or w = ξ. Whether to choose one or the other is decided by
using entropy conditions and the conservation of p and q, as in the case of equation
(4.1) (cf. [11, 15]). The obtained profiles are, precisely, those given by (5.2).

On the other hand, the steady-state solution for the viscous version (with some
viscosity ε > 0) satisfies

(5.10) −εwξ +
w2 − ξw

2
= 0, ξ ∈ R, s > 0

which is no longer an algebraic equation, but an ODE.
Similarly, a steady-state solution w̄ = {w̄j}j∈Z for (5.3), if it exists, must satisfy

that

g(w̄j , w̄j+1, ξ̄j+1/2) = 0 ∀j ∈ Z.

In the case of the Godunov scheme (5.4), we can formally deduce from (5.5) that
the asymptotic profile can only take values

w̄j = 0 or w̄j =
2

eΔs/2 + 1
ξ̄ or w̄j+1 =

2

eΔs/2 + 1
ξ̄,

that is, w̄ can just be 0, linear or a combination of both. Let us observe that the
slope of the latter is not the same as the one of the continuous model, but tends to
it when Δs → 0. Note that this is compatible with a closed form of the numerical
flux of Godunov where the inequalities in (5.5) are not strict.

The nature of the steady-state solution of the Engquist-Osher scheme (5.7) is
slightly different. We have:

1

2

(
(w̄j − ξ̄/2)(w̄j − ξ̄/2 + |w̄j − ξ̄/2|)

2

+
(w̄j+1 − ξ̄/2)(w̄j+1 − ξ̄/2− |w̄j+1 − ξ̄/2|)

2

)
− ξ̄2

8
= 0.

This is an upwind discretization of equation (5.9), rewritten as follows:

(w − ξ/2)2

2
− ξ2

8
= 0, ξ ∈ R, s > 0.
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Therefore, the expected large-time behavior of the numerical simulation is, again,
similar to the one of the continuous equation.

On the contrary, for the Lax-Friedrichs scheme (5.6) we have that:

−Δξ

Δs

(
w̄j+1 − w̄j

2

)
+

1

2

(
(w̄j)

2 − ξ̄w̄j

2
+

(w̄j+1)
2 − ξ̄w̄j+1

2

)
= 0.

We can distinguish two terms: the second is an average of the flux, but the first term
corresponds to an artificial viscosity, as in (5.10). Thus, we can expect diffusivity
at large times that distort the asymptotic N-wave.

5.3. Numerical example. In the following example we compare the behavior
of the numerical solutions directly with the asymptotic profile of the continuous
solution of (5.1). Let us choose the initial data

(5.11) w0(x) =

⎧⎪⎨
⎪⎩
x+ 10, −12 < x < −8,

x, −
√
2 < x <

√
6,

0, elsewhere,

,

which corresponds to two separate N-waves. From the continuous point of view,
at the beginning the first one moves towards the origin until it collides with the
other one. Then they both interact, resulting on a new N-wave which is similar
to the expected asymptotic profile. The same behavior should be required for the
numerical schemes, but, as we show in Figures 6, 7 and 8, the performance may
vary depending on the chosen numerical flux.

We consider the mesh-size Δξ = 0.01 and a time-step Δs = 0.0005, which is
small enough to satisfy the CFL condition. Let us recall that, since the support of
the solution remains in a bounded interval, we can choose a small spatial domain.
In the first part of the simulation, the three numerical schemes behave in the correct
manner, as the two N-waves collapse into one. The first column in the figures shows
this regime.

Once the unique N-wave takes form, the behavior of the schemes takes different
paths. Both Godunov and Engquist-Osher schemes maintain the N-wave shape
that gradually converges to the hyperbolic asymptotic profile, as we can appreciate
in the second column of Figures 6 and 7.

Meanwhile, the artificial viscosity of the Lax-Friedrichs scheme starts becoming
dominant, making the solution evolve to the parabolic diffusion wave, which is the
steady state of the viscous version of (5.1) (cf. [11]).

5.4. Computational benefits. It is important to emphasize the benefits of using
similarity variables to perform long-time simulations. For instance, let us consider
the following initial data:

u0(x) =

⎧⎪⎨
⎪⎩
2, 0 < x ≤ 2,

−1, −1 ≤ x ≤ 0,

0, elsewhere.

We compute the numerical approximation of the corresponding solution to (4.1)
in two different ways, either in the original or in the self-similar variables, and
compare them to the exact solution, which can be computed explicitly. First we
consider scheme (2.3), based on physical variables, and then, scheme (5.3) using
similarity variables. In both cases we choose the Engquist-Osher numerical flux,



1658 L. I. IGNAT, A. POZO, AND E. ZUAZUA

i.e., (2.8) and (5.7) respectively. Also, in the latter case we use piecewise constant
interpolation to recover the solution in the physical space so that we can compare
it to the exact one.

Figure 6. Convergence of the numerical solution of (5.1) using
Godunov scheme (circle dots) to the asymptotic N-wave (solid
line). We take Δξ = 0.01 and Δs = 0.0005.

Figure 7. Convergence of the numerical solution of (5.1) using
Engquist-Osher scheme (circle dots) to the asymptotic N-wave
(solid line). We take Δξ = 0.01 and Δs = 0.0005.
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Figure 8. Numerical solution of (5.1) using the Lax-Friedrichs
scheme (circle dots), taking Δξ = 0.01 and Δs = 0.0005. The
N-wave (solid line) is not reached, as it converges to the diffusion
wave.

In Table 1 we compare the errors of the solutions at t = 100. Let us remark
that, in order to avoid interferences of boundary conditions, we need to choose
large enough spatial domains. We have chosen [−20, 30] for the case of physical
variables and [−3, 4] for the other one. We consider Δx = 0.1 and Δx = 0.01 and
Δt = Δx/2, according to the CFL condition. Parameter Δξ is chosen such that the
‖ · ‖1,Δ error made is similar to the corresponding case, while we take Δs = Δξ/20.
We make the same comparison in Table 2 for the solutions at t = 1000. In this
case, we have taken [−50, 100] and [−3, 4] space intervals, respectively. The criteria
for the mesh-size and time-step are the same as above.

Nodes Time-steps ‖uΔ − u‖1,Δ ‖uΔ − u‖2,Δ ‖uΔ − u‖∞,Δ

Phys. var. 501 2001 0.2140 0.1352 0.2745

Simil. var. 100 1306 0.2057 0.1136 0.2543

Nodes Time-steps ‖uΔ − u‖1,Δ ‖uΔ − u‖2,Δ ‖uΔ − u‖∞,Δ

Phys. var. 5001 20001 0.0280 0.0517 0.2828

Simil. var. 750 9877 0.0276 0.0379 0.2465

Table 1. Comparison of solutions at t = 100. We take Δx = 0.1
(top) and Δx = 0.01 (bottom). We choose Δξ such that the ‖·‖1,Δ
error is similar. The time-steps are Δt = Δx/2 and Δs = Δξ/20,
respectively, enough to satisfy the CFL condition.
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Nodes Time-steps ‖uΔ − u‖1,Δ ‖uΔ − u‖2,Δ ‖uΔ − u‖∞,Δ

Phys. var. 1501 19987 0.0867 0.0482 0.0893

Simil. var. 215 4225 0.0897 0.0332 0.0367

Nodes Time-steps ‖uΔ − u‖1,Δ ‖uΔ − u‖2,Δ ‖uΔ − u‖∞,Δ

Phys. var. 15001 199867 0.0093 0.0118 0.0816

Simil. var. 2000 39459 0.0094 0.0106 0.0233

Table 2. Comparison of solutions at t = 1000. We take Δx = 0.1
(top) and Δx = 0.01 (bottom). We choose Δξ such that the ‖·‖1,Δ
error is similar. The time-steps are Δt = Δx/2 and Δs = Δξ/20,
respectively, enough to satisfy the CFL condition.

We observe that to obtain similar accuracy, we need much less nodes and time
iterations to compute the numerical solution at a given time. In fact, the results
using similarity variables could be improved using a higher order reconstruction of
the solution, instead of piecewise constant, when doing the change of variables to
recover the physical solution.

6. Generalizations and further comments

Until now we have considered just the Burgers equation and Lax-Friedrichs,
Engquist-Osher and Godunov schemes, but the described techniques can be ex-
tended to more general types of fluxes and numerical schemes.

Regarding the latter, the main requirement is that the chosen scheme must verify
the OSLC, so that the decay estimates can be used to guarantee the compactness
of the rescaled solutions. The homogeneity of the dissipation, as defined at the
end of Section 2, will indicate if the introduced artificial viscosity is strong enough
to modify the asymptotic behavior of the numerical solution or if it preserves the
continuous property.

As for the fluxes, it is worth mentioning that the N-wave appearing as the as-
ymptotic profile is a common characteristic for all 1-D scalar conservation laws
with uniformly convex flux, that is, for those with f ′′(u) ≥ γ > 0, with γ > 0. For
that reason, one expects to observe the same phenomena in the discrete level as
the ones described in this paper. As we said before, the OSLC will play a key role.
Nevertheless, in this more general situation, obtaining the homogeneity α of the
dissipation might be not so straightforward. The coefficient R of the Lax-Friedrichs
scheme does not depend on f , so it will not develop the N-wave regardless of the
flux we consider. The analysis of Engquist-Osher and Godunov schemes is more
delicate, since their coefficients of viscosity are strictly related to the flux. In any
case, whenever α ≥ 1, the asymptotic profile will be the desired N-wave. The con-
clusion is the same for any uniformly concave flux, just by considering the reflected
N-wave.

The analysis is also valid for some type of odd fluxes, those that are concave on
one side of their axis of symmetry and convex in the other. Nevertheless, there will
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be no difference in the asymptotic profile anymore. For instance, let us consider
equation (1.1) with flux f(u) = |u|u/2. Then, the asymptotic behavior is the one
stated by the following theorem.

Theorem 6.1. Let u0 ∈ L1(R) and choose mesh-size parameters Δx and Δt satis-
fying the CFL condition λ‖un‖∞,Δ ≤ 1, λ = Δt/Δx. Let uΔ be the corresponding
solution of the discrete scheme (1.6) for the hyperbolic conservation law (1.1) with
flux f(u) = |u|u/2. Then, for any p ∈ [1,∞), it holds that

(6.1) lim
t→∞

t
1
2 (1−

1
p )‖uΔ(t)− w(t)‖Lp(R) = 0,

where the profile w is as follows:

(1) for the Lax-Friedrichs scheme, w = wMΔ
defined in (1.10).

(2) for Engquist-Osher and Godunov schemes, w = w0,MΔ
if MΔ > 0 or w =

wMΔ,0 if MΔ < 0, both given by (1.11).

The proof of this result is analogous to the one of Theorem 1.1. The key point
now is that the solution of the equations{

u∞
t +

(
u∞|u∞|

2

)
x
= Δx2

2Δt u
∞
xx,

u(0) = Mδ0,

which is the one appearing for Lax-Friedrichs, and{
u∞
t +

(
u∞|u∞|

2

)
x
= 0,

u(0) = Mδ0.

corresponding to Engquist-Osher and Godunov, is in both cases unique [15]. More-
over, both converge to the same continuous N-wave, which has unique sign, when
Δx,Δt → 0.
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