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A METHOD FOR PROVING THE COMPLETENESS OF A LIST

OF ZEROS OF CERTAIN L-FUNCTIONS

JAN BÜTHE

Abstract. When it comes to partial numerical verification of the Riemann
Hypothesis, one crucial part is to verify the completeness of a list of pre-
computed zeros. Turing developed such a method, based on an explicit version
of a theorem of Littlewood on the average of the argument of the Riemann zeta
function. In a previous paper [BFJK13] we suggested an alternative method
based on the Weil-Barner explicit formula. This method asymptotically sac-
rifices fewer zeros in order to prove the completeness of a list of zeros with
imaginary part in a given interval. In this paper, we prove a general version
of this method for an extension of the Selberg class including Hecke and Artin
L-series, L-functions of modular forms, and, at least in the unramified case,
automorphic L-functions. As an example, we further specify this method for
Hecke L-series and L-functions of elliptic curves over the rational numbers.

1. Introduction

In this paper we develop a general method to prove that a list of zeros of an
L-function contains all zeros with imaginary part in a given interval [a, b]. The
method is proved for all L-functions in an extension of the Selberg class.

The method is an alternative to the Turing method [Tur53, Leh70], of which a
similar generic version has been developed in [Boo06]. The methods are similar
in that only the zeros in a neighbourhood of a and b have to be known within
a higher accuracy, but they differ with respect to the required number of addi-
tional zeros with imaginary part outside of [a, b]. While the Turing method re-
quires O(log(a)2) additional zeros below a and O(log(b)2) additional zeros above b,
the method described in this paper requires only O(log(a) log log(a)), respectively,
O(log(b) log log(b)) such zeros.

In the special case of the Riemann zeta function the implied constant for the
Turing method is small due to sophisticated explicit estimates of the Riemann zeta
function in the critical strip [Tru11a]. This led to the assumption in [BFJK13] that
the implied cross-over for the two methods would not occur before 1030. However,
numerical tests suggest that the new method generally requires fewer additional
zeros. Furthermore, we will provide improved estimates in this paper which show
that at the moderate height of 106 the Turing method already needs about twice
as many additional zeros.

A second advantage of this method is, that the proof of completeness only de-
pends on the correctness of the Weil-Barner explicit formula and very few explicit
estimates of the test function to which the Weil-Barner formula is applied. Only
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2 JAN BÜTHE

the specification of the implied constant in the aforementioned O-terms requires
longer calculations.

We will first formulate the explicit formula for the class of L-functions in consid-
eration, and then prove the general version of the method. Then, we further spec-
ify the method for the Riemann zeta function, improving the results in [BFJK13],
Hecke L-series and elliptic curves over Q. As far as the author knows, the Turing
method has not been adapted to the latter families of L-functions before.

2. The Weil-Barner explicit formula

The method is based on Barner’s version [Bar81] of Weil’s explicit formula
[Wei52]. Barner proves this explicit formula for Hecke L-series only, so we take
the very general work of Jorgenson and Lang [JL94] as a reference. The explicit
formula in [JL94] covers exotic L-functions as the Selberg zeta function, which
makes its proof long and complicated. Therefore, it should be pointed out, that the
explicit formula for the L-functions considered in this paper can be proved more
quickly by straightforward modifications of Barner’s proof.

We will consider all L-functions L : C → C ∪ {∞} satisfying the following
properties:

(L1) There are numbers a(n) ∈ C and a constant K ∈ R such that we have

L(s) =

∞
∑

n=1

a(n)n−s

for Re(s) > K where the sum converges absolutely.
(L2) There is a polynomial P ∈ C[x] such that the function P (s)L(s) continues to

an entire function of finite (power) order.
(L3) There exist c(pm) for all prime powers pm, a σ1 ∈ R, and a C > 0 such that

we have

|c(pm)| ≤ Cp(σ1−1)m,

and

L(s) = exp
(

∑

pm

c(pm)p−ms
)

for Re(s) > σ1.
(L4) There exists a σ0 < 2σ1, a k1 ∈ N, Q, λ1, . . . , λk ∈ (0,∞), µ1, . . . , µk ∈ C

with Re(µk) > −λkσ0/2, and a w ∈ C with |w| = 1, such that the complete
L-function

Λ(s) = Qs
k1
∏

k=1

Γ(λks+ µk)L(s)

satisfies the functional equation

Λ(s) = wΛ(σ0 − s).

Compared to the Selberg class [Sel92], we essentially gave up the Ramanujan-
Petersson conjecture, which for most automorphic L-functions is still an open prob-
lem, and we allow a finite number of poles (not only at s = 1). We also do not
assume the L-function to be normalized, i.e. we allow σ0 6= 1.
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We use the convention µk = uk + ivk, with uk and vk real, and define

G(s) = Qs
k1
∏

k=1

Γ(λks+ µk)

and

G0(s) = Qs
k1
∏

k=1

Γ(λks+ uk).

Furthermore, we denote by N (Λ) the set of zeros of Λ, which we also refer to as
the non-trivial zeros of L, and by P(Λ) the set of poles.

Given the parameters σ0 and σ1, we define the Barner class of test functions
(which actually only depends on σ1 − σ0

2 ) to be the class of functions f : R → C

satisfying the following properties:

(Ba1) There exists a c > σ1 − σ0

2 , such that

f(t) exp(c|t|) ∈ BV(R) ∩ L1(R).

(Ba2) The function f is normalized, i.e., for every t ∈ R we have

f(t) =
1

2
lim
hց0

(

f(t+ h) + f(t− h)
)

.

(Ba3) There exists an ε > 0 such that we have

2f(0) = f(t) + f(−t) +O(|t|ε)
for t → 0.

Now let f be a member of the Barner class. We define the Fourier transform by

f̂(ξ) =

∫ ∞

−∞

eiξtf(t) dt.

Then we have a pointwise Fourier inversion formula given by

f(t) =
1

2π

∫ ∞

−∞

e−iξtf̂(ξ) dξ.

With this we define the functionals

ws(f̂) =
∑∗

ρ

nρf̂
(

ρ
i − σ0

2i

)

= lim
T→∞

∑

|Im(ρ)|<T

nρf̂
(

ρ
i − σ0

2i

)

,

where the sum is taken over all zeros and poles of the function Λ(s) according to
their multiplicities nρ (poles being counted with negative multiplicity),

wf (f) = −
∑

pm

log p√
pmσ0

(

c(pm)f(m log p) + c(pm)f(−m log p)
)

,

and

w∞(f) = 2f(0)Re
G′

0

G0

(σ0

2

)

−
n
∑

k=1

λk

∫ ∞

0

e−(λkσ0/2+uk)t

1− e−t

(

e−ivktf(λkt) + eivktf(−λkt)− 2f(0)
)

dt.

Then, the Weil-Barner formula takes the form

ws(f̂) = wf (f) + w∞(f).
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3. The Method

Since the L-functions in consideration may have multiple zeros, we begin with
the following definition.

Definition 3.1. By a list of zeros of a function f we shall mean a sequence (ρj)j∈I

of zeros of f , such that every zero ρ with multiplicity nρ occurs at most nρ times
in the sequence. If Z is a set of zeros of f, we say that a list contains all zeros in

Z if every ρ ∈ Z occurs exactly nρ times.

We aim to verify that a list of zeros of an L-function contains all zeros with
imaginary part in [a, b] by applying the Weil-Barner explicit formula to the test
function

(3.1) fa,b,h(t) =
1

2π

e−ait − e−bit

it

1

cosh(h2 t)

which belongs to the Barner class for h > σ1 − σ0

2 .

For |Im(z)| < h
2 its Fourier transform is given by

(3.2) f̂a,b,h(z) =
2

π

[

arctan
(

exp
[

π
h (z − a)

])

− arctan
(

exp
[

π
h (z − b)

])

]

,

where arctan(z) is holomorphically extended to {z ∈ C | iz /∈ [1,∞) ∪ (−∞,−1]}.
The function f̂a,b,h is the convolution of χ[a,b] and

1
h cosh(π

h z) from which it inherits

the property of having positive real part in this strip. So if the zeros in the list

are used to approximate ws(f̂a,b,h), the Weil-Barner explicit formula thus gives an
upper bound for contribution of the zeros not contained in the list.

The additional parameter h controls a trade-off between the zeros being sacrificed
and the number of summands which are needed to approximate wf (fa,b,h) within
sufficient accuracy.

The general method is based on the following theorem.

Theorem 3.2. Let (σ0/2 + iγj)
m
j=1 be a list of non-trivial zeros of L. Let h >

2σ0 − σ1 and assume that b− a > 5h
π holds. Then, if the inequality

(3.3) wf (fa,b,h) + w∞(fa,b,h)−
m
∑

j=1

f̂a,b,h(γj) +
∑

ρ∈P(Λ)

|nρ|f̂a,b,h
(

ρ
i − σ0

2i

)

≤ 0.49

holds, the list contains all non-trivial zeros of L(s) with imaginary part in [a, b].
Conversely, under the assumption of the Riemann Hypothesis for L(s), for every

ε > 0 there exists a Bε > 0 such that

Cε(X) =
h

π
log log

(

e(Q+ 1)(|X |+ 1)
)

+Bε

satisfies the property that if the list contains all zeros with imaginary part in

[a− Cε(a), b+ Cε(b)], then the left hand side of (3.3) is smaller than ε.

The second part of the theorem also holds without the assumption of the Rie-
mann Hypothesis, but the proof is much shorter this way.

First, we prove some bounds for the functions fa,b,h and f̂a,b,h.
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Lemma 3.3. Let a < b, h > 0 and let |Im(z)| < h
2 . Then the following inequalities

hold:

Re f̂a,b,h(z) > 0(3.4)

0 < 1− Re f̂a,b,h(z) <
4

π
e−

π
h min{Re(z)−a,b−Re(z)} for Re(z) ∈ [a, b],(3.5)

Re f̂a,b,h(z) <
2

π
e−

π
h max{Re(z)−b,a−Re(z)} for Re(z) /∈ (a, b).(3.6)

If we additionally assume b− a > 5h
π , we have

(3.7) Re f̂a,b,h(z) > 0.49

for Re(z) ∈ [a, b].
Furthermore, we have

(3.8) |fa,b,h(t)| <
2

π

e−
h
2
|t|

|t|
for |t| ≥ 1 and arbitrary a, b ∈ R.

Proof. Since we have

2 arctan ez =

∫ Re(z)

−∞

dt

cosh(t+ i Im(z))
,

the bound in (3.4) follows from 1
cosh(z) having positive real part in |Im(z)| < π

2 .

Furthermore, since for Re(z) < 0 and |Im(z)| < π
2 the functions Im 1

cosh(z) and Im z

have the same sign, we get

(3.9) 0 ≤ Re arctan ez ≤ arctan eRe(z) =

∞
∑

n=0

(−1)n

2n+ 1
e(2n+1)Re(z) ≤ eRe(z)

for such z.
Now let Re(z) ∈ [a, b]. Since the chosen branch for arctan(z) satisfies

arctan(z) + arctan(1/z) =
π

2

in Re(z) > 0, we get

Re f̂a,b,h(z) = 1− 2

π

(

Re arctan e
π
h (a−z) +Re arctan e

π
h (z−b)

)

.

This together with (3.9) gives the bound in (3.5). For (3.7) we also use the fact

that the function x 7→ Re f̂a,b,h(x + iy) has a global maximum at x = a+b
2 and is

otherwise monotonic. Thus we have

Re f̂a,b,h(z) ≥ Re f̂a,b,h(a+ i Im y) ≥ 1

2
− 2

π
e−

π
h (b−a) > 0.49,

since b− a ≥ 5h
π .

The bound in (3.6) follows similarly, e.g., for Re(z) ≥ b we have

Re f̂a,b,h(z) =
2

π

(

Re arctan e
π
h (b−z) − Re arctan e

π
h (a−z)

)

≤ 2

π
e

π
h (b−Re z).

The remaining inequality in (3.8) follows directly from (3.1). �
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Proof of Theorem 3.2. Let (ρj)
∞
j=1 be the list of zeros that are missing in L. Then,

if the inequality in (3.3) is satisfied, we have

Re f̂a,b,h
(

ρl

i − σ0

2i

)

≤
∞
∑

j=1

Re f̂a,b,h
(ρj

i − σ0

2i

)

≤ 0.49

for every l ∈ N, where the first inequality follows from (3.4) and the second follows
from the explicit formula. Consequently, there is no ρ with Im(ρ) ∈ [a, b] among
the ρj, since by (3.7) every such zero would contribute an amount > 0.49.

It remains to prove the second part. Assuming the Riemann Hypothesis, we
have ρ = σ0

2 + iγ with γ ∈ R for all ρ ∈ N (Λ). We apply the Weil-Barner explicit
formula to the Fourier transform pair

gr,X(t) =
1

2
e−r|t|+iXt, ĝr,X(ξ) =

1

(ξ −X)2 + r2

(taking r > σ1 − σ0/2), and obtain the identity
(3.10)

∑

ρ∈N (Λ)

nρ

(γ −X)2 + r2
= Re

Λ′

Λ

(σ0

2
+ r + iX

)

+
∑

ρ∈P(Λ)

|nρ|
(i(σ0

2 − ρ)−X)2 + r2
,

the right hand side of which is O
(

log[(Q + 2)(|X |+ 2)]
)

by Stirling’s formula and
the uniform boundedness of the sum over poles. We take X = b + Cε(b). Then, in
view of (3.6), we have

f̂a,b,h(γ) ≤ 1.3e−
π
h (Cε(b)+γ−X) ≪r,h

e−
π
hCε(b)

r2 + (X − γ)2
.

Since there occur only positive summands on the left hand side of (3.10), this
implies

∑

ρ∈N (Λ)
γ>b+Cε,δ(b)

nρf̂a,b,h(γ) ≪r,h e−
π
hCε(b) log[(Q+ 2)(|X |+ 2)] ≪r,h e−

π
hBε ,

which is < ε/2 for Bε sufficiently large. The considerations for γ < a − Cε(a) are
exactly the same, so the assertion follows. �

The remaining part of this section will be devoted to the evaluation of wf (fa,b,h),
w∞(fa,b,h), and the sum over zeros.

3.1. Evaluation of wf (fa,b,h). The value wf (fa,b,h) is approximated by evaluating
(a usually small) part of the sum over prime powers. We give a simple estimate for
the remainder.

Lemma 3.4. Let M ∈ N>0, and let C be the constant in (L3). Then we have

(3.11)
∣

∣

∣

∣

∣

∣

2
∑

pm≤M

log p√
pσ0m

Re
(

c(pm)fa,b,h(m log p)
)

+ wf (fa,b,h)

∣

∣

∣

∣

∣

∣

≤ 8C

π

Mσ1−
h+σ0

2

σ0 + h− 2σ1
.

Proof. By (3.8), the left hand side of (3.11) is bounded by

4C

π

∞
∑

n=M+1

nσ1−1−
σ0+h

2 ≤ 4C

π

∫ ∞

M

tσ1−1−
σ0+h

2 dt =
8C

π

Mσ1−
σ0+h

2

σ0 + h− 2σ1
.
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�

3.2. Evaluation of w∞(fa,b,h). The term w∞(fa,b,h) gives an approximation to
the number of zeros with imaginary part in [a, b], which is closely related to the
imaginary part of a branch of logG. To avoid ambiguity the following notation will
be used.

Definition 3.5. Let U ⊂ C be open and convex and let f : U → C be holomorphic
and non-vanishing. Then, for any w ∈ U we define

lf,w(z) =

∫ z

w

f ′

f
(ξ) dξ.

We will need the obvious properties lfg,w = lf,w + lg,w and

lf,w(z)− lf,w(z
′) = lf,w′(z)− lf,w′(z′).

In particular we will use

lΓ,1(z) =

∫ ∞

0

(z − 1)
e−t

t
+

e−zt − e−t

t(1− e−t)
dt

for Re(z) > 0. This is the branch of log Γ(z) for which we have the Stirling formula

lΓ,1(z) =
(

z − 1

2

)

log(z)− z +
1

2
log(2π) +O(1/|z|),

where log(z) denotes the principle value logarithm.

Lemma 3.6. We have

(3.12) w∞(fa,b,h) =
1

π
Im
[

lG,σ0

(

σ0/2 + ib
)

− lG,σ0

(

σ0/2 + ia
)

]

−
k1
∑

k=1

1

π

∫ ∞

0

e−(
λkσ0

2
+uk)t

1− e−t

sin((λkb+vk)t)− sin((λka+vk)t)

t

( 1

cosh(λkh
2 t)

− 1
)

dt.

Proof. From (3.1) we get

wf (fa,b,h) =
b− a

π

G′
0

G0
(σ0/2)

−
k1
∑

k=1

1

π

∫ ∞

0

e−(
λkσ0

2
+uk)t

1− e−t

( sin((λkb + vk)t)− sin((λka+ vk)t)

t cosh(λkh
2 t)

− λk(b − a)
)

dt.

Using

λk
b − a

π

Γ′

Γ
(λkσ0/2 + uk) = λk

b− a

π

∫ ∞

0

(e−t

t
− e−(

λkσ0
2

+uk)t

1− e−t

)

dt

and

Im[lΓ,1(λk(
σ0

2 + ib) + µk)− lΓ,1(λk(
σ0

2 + ia) + µk)]

=

∫ ∞

0

(e−(
λkσ0

2
+uk)t

1− e−t
(sin((λkb+ vk)t)− sin((λka+ vk)t) + λk(b − a)e−t

) dt

t
,
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we get

(3.13)
1

π

∫ ∞

0

e−(
λkσ0

2
+uk)t

1− e−t

(sin((λkb+ vk)t)− sin((λka+ vk)t)

t cosh(λkh
2 t)

− λk(b− a)
)

dt

=
1

π
Im[lΓ,1(λk(

σ0

2 + ib) + µk)− lΓ,1(λk(
σ0

2 + ia) + µk)]− λk
b− a

π

Γ′

Γ
(λkσ0/2+ uk)

+
1

π

∫ ∞

0

e−(
λkσ0

2
+uk)t

1− e−t

sin((λkb+ vk)t)− sin((λka+ vk)t)

t

( 1

cosh(λkh
2 t)

− 1
)

dt.

If we take into account that

b− a

π
logQ =

1

π
Im
[

lQ·,1

(σ0

2
+ ib

)

− lQ·,1

(σ0

2
+ ia

)]

,

the assertion follows by summing (3.13) over k and adjusting the base points. �

Next, we will estimate the integrals in (3.12). They turn out to be of small
modulus when |λka+ vk| and |λkb+ vk| are sufficiently large.

Lemma 3.7. Let R ∈ R \ {0},

0 < Bk < min

{

2π,
π

λkh

}

and let

Ck =
1

Bk(1− cos(Bk))

(

1 +
1

cos(λkh
2 Bk)

)

.

Then we have

(3.14)

∣

∣

∣

∣

∣

∫ ∞

0

e−(
λkσ0

2
+uk)t

1− e−t

sin(Rt)

t

( 1

cosh(λkh
2 t)

− 1
)

dt

∣

∣

∣

∣

∣

≤ Ck

( 1

|R| +
e−|R|Bk

λkσ0

2 + uk

)

.

Proof. Let A = λkσ0

2 + uk and let

g(z) =
1

z(1− e−z)

(

1

cosh(λkh
2 z)

− 1

)

.

Then g(z) is holomorphic in |Im(z)| < min{2π, π
λkh

} and since we have

|cosh(z)| ≥ |cos(Im(z))|
and
∣

∣1− e−t
∣

∣

2
= 1− 2 cos(Im(z))e−Re(z) + e−2Re(z) ≥ (1− cos(Im(z))e−Re(z))2,

the Phragmén-Lindelöf principle gives

(3.15) |g(z)| ≤ 1

Bk(1− cos(Bk))

(

1

cos(λkh
2 Bk)

+ 1

)

= Ck

for |Im(z)| ≤ Bk. Since we have

∫ ∞

0

e(±iR−A)tg(t) dt = ±i

∫ Bk

0

e−(R+iA)tg(±it) dt

+

∫ ∞

0

e(±iR−A)(±iBk+t)g(t± iBk) dt,
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where by (3.15) the first integral is bounded by

Ck

∫ ∞

0

e−Rt dt =
Ck

R

and the second integral is bounded by

Cke
−BkR

∫ ∞

0

e−At dt =
Cke

−BkR

A
,

the assertion follows. �

If either a or b is close but not equal to −vk/λk, these bounds are insufficient in
order to apply the method. In such (rare) cases one could use numerical integration
to evaluate the critical integrals in (3.12).

3.3. Evaluation of the sum over zeros. It is not actually necessary to evaluate

f̂a,b,h(γj) in the form (3.2) for all j in (3.3) (which would make this method inef-

ficient compared to the Turing method). If we take e.g. R = h
π (logm + 5), where

m is the number of zeros in the list, and use the approximation f̂a,b,h(γj) ≈ 1 for
γj ∈ [a + R, b − R], this results in a total error < 1

100 . Therefore, as in the case
of the Turing method, only the zeros with imaginary part in a neighbourhood of
a and b are needed within an accuracy of O(1/ log |a|) resp. O(1/ log |b|), which is
well in the range of the average spacing between consecutive zeros.

4. Examples

We further specify this method to some well-known families of L-functions, for
which we also give an explicit converse statement.

4.1. The Riemann zeta function. The case of the Riemann zeta function has
already been carried out in [BJ10] and [BFJK13]. Unfortunately, in [BFJK13] there
is a mistake concerning the sign of the terms R

2π log π and b−a
2π log π in equations

(4.21) and (4.25).
We restate the results in a more general form and give an improved estimate for

the length of the cut-off interval.

Theorem 4.1. Let R ≥ 15, let h ∈ (1, π], and let α = h−1
2 . Let L = (12 + itn)

N
n=1

be a list of the zeros of the Riemann zeta function. Then, if the inequality

(4.1) − 1

π

∑

pm≤(30/α)1/α

sin(Rm log p)

mp
m
2 cosh(h2m log p)

+
1

π
Im
[

lΓ,1

(1

4
+ i

R

2

)]

− R

2π
log π +

1.6

R

−
N
∑

n=1

f̂0,R,h(tn) ≤ −0.56

holds, where f̂0,R,h is the function defined in (3.2), the list contains all zeros with

imaginary part in (0, R].
Conversely, if R ≥ 106 holds in addition to the previous assumptions, and if

L contains all zeros with imaginary part in
(

0, R + h
π (log logR + 0.4)

]

, then the

inequality in (4.1) holds.
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Proof. Let α be as in the theorem. Then, by Lemma 3.4 the sum on the first line
of (4.1) differs at most by

4

πα
M−α =

2

15π
< 0.043

from wf (f0,R,h).
In Lemma 3.7 we take B1 = 4.9

h . Then C1 = C1(h) takes its maximum on [1, π]
at h = π, which is < 2.6. Therefore, the oscillatory integral in (3.12) is bounded by

2.6

π

( 2

R
+ 4e−

4.9R
2h

)

<
1.6

R
.

Consequently, by Lemma 3.6, w∞(f0,R,h) does not exceed the value on the second
line of (4.1).

Finally, from (3.9) we get

2Re f̂0,R,h ≥ 1− 4

π
e−

π
hR > 1− 10−6,

so the first assertion, concerning the completeness of the list of zeros, follows from
Theorem 3.2.

For the second part of the theorem, we will also need the following lemma, whose
proof we postpone to the end of this section.

Lemma 4.2. Let a ∈ {0} ∪ (14,∞), let b > max{a, 14} and let h ∈ (1, π]. Then,

for Tb > b we have

(4.2)
∑

Im(ρ)>Tb

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ e
π
h (b−Tb)

[

(0.143+0.033h) logTb+0.354 log logTb+3.3
]

.

Also, we have

(4.3)
∑

Im(ρ)<0

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ e−
π
ha

10000
,

and for 14 < Ta < a we have

(4.4)
∑

0<Im(ρ)<Ta

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ e
π
h (Ta−a)

[

(0.143+0.033h) loga+0.354 log log a+3.3
]

.

Now, assuming R ≥ 106, let (ρj)
∞
j=1 be the list of zeros not contained in L.

Then, by (4.2) and (4.3) we have

(4.5)

∞
∑

j=1

f̂0,R,h

(ρ

i
− 1

2i

)

≤ 1

10000
+

e−0.4

log(R)

[

(0.143 + 0.033h) log(R)

+ 0.354 log logR+ 3.31
]

≤ 0.38,

where we also used log log(R+C) ≤ log logR+ C
R log(R) and log(R+C) ≤ log(R)+

C/R. Hence, the left hand side of (4.1) is smaller than

0.043 +
1.6

R
− 1 + 10−6 + 0.38 < −0.57.

�
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For general subintervals [a, b] of the positive real numbers, we get the following
theorem.

Theorem 4.3. Let h ∈ (1, π], let 15 < a < b − 5h
π and let α = h−1

2 . Let

L = (12 + itn)
N
n=1 be a list of the zeros of the Riemann zeta function. Then, if

the inequality

(4.6) − 2

π

∑

pm≤( 30
α )1/α

sin( b−a
2 m log p)

mpm/2

cos(a+b
2 m log p)

cosh(π2m log p)

+
1

π
Im
[

lΓ,1

(1

4
+ i

b

2

)

− lΓ,1

(1

4
+ i

a

2

)]

− b− a

2π
log π +

3.2

a

−
N
∑

n=1

f̂a,b,h(tn) ≤ 0.44

holds, where f̂a,b,h is the function defined in (3.2), the list L contains all zeros of

the zeta function with imaginary part in [a, b].
Conversely, if a ≥ 106 in addition to the previous assumptions on a and b, and

if L contains all zeros with imaginary part in [a− C(a)), b + C(b)], where

C(T ) =
h

π
(log logT + 1.1),

then (4.6) holds.

Proof. As in the proof of Theorem 4.1 we see that the expression on the first line of
(4.6) exceeds wf (fa,b,h) by at most 0.043, and the expression on the second line is
larger than w∞(fa,b,h). In a similar way, we see that the pole contribution is now
bounded by −10−6, so the first assertion follows from Theorem (3.2).

Now let (ρj)
∞
j=1 denote again the list of zeros not contained in L. Then, by

Lemma 4.2 we have

∞
∑

j=1

f̂a,b,h

(ρ

i
− 1

2i

)

≤ e−
π
h 106

10000
+ 2e−1.1

[

0.143 + 0.033h

+ 0.354
log log a

log(a)
+

3.31

log a

]

≤ 0.37,

and since we have

0.043 +
3.2

106
+ 10−6 + 0.37 < 0.42,

the second assertion follows. �

It remains to prove the lemma.

Proof of Lemma 4.2. Let

g(T ) =
T

2π
log

T

2πe
+

7

8

and let r(T ) = N(T ) − g(T ), where N is the function that counts the zeros (ac-
cording to their multiplicity) of the Riemann zeta function with imaginary part in
(0, T ]. Then we have

(4.7) |r(T )| ≤ r1(T ) = 0.112 logT + 0.278 log logT + 2.584
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for T ≥ e [Tru14]. From (3.6) we get

∑

Im(ρ)>Tb

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ 2

π

∫ ∞

Tb

e
π
h (b−t) dN(t)

= − 2

π
e

π
h (b−Tb)N(Tb) +

2

h

∫ ∞

Tb

e
π
h (b−t)(g(t) + r(t)) dt

≤ 2

π
e

π
h (b−Tb)r1(Tb) +

2

π

∫ ∞

Tb

e
π
h (b−t)g′(t) dt

+
2

h

∫ ∞

Tb

e
π
h (b−t)r1(t) dt.

Here we use g′(t) = 1
2π log t

2π , the bound in (4.7) and the obvious inequalities

∫ ∞

T

e−
π
h t log(at) dt ≤ h

π
e−

π
hT
(

log(aT ) +
h

πT

)

and
∫ ∞

T

e−
π
h t log log t dt ≤ h

π
e−

π
hT
(

log logT +
h

πT logT

)

which give the inequality in (4.2).
For the inequality in (4.3) we use the well-known fact, that we have N(T ) = 0

for 0 ≤ T ≤ 14 and that the zeros of the Riemann zeta function are symmetric
about the real axis, which gives

∑

Im(ρ)<0

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ 2

h

∫ ∞

14

e−
π
h (t+a)N(t) dt.

Here we use the bound

N(T ) ≤ T

2π
logT,

which for t ≥ 30 follows from (4.7) and for 14 ≤ t ≤ 30 from well-known numeric
results (e.g. [Bre79]), and the fact that 1 < h ≤ π. A simple calculation then
confirms the bound in (4.3).

In order to prove (4.4) we proceed in a similar way as in the proof of (4.2). We
have

∑

0<Im(ρ)<Ta

nρf̂a,b,h

(ρ

i
− 1

2i

)

≤ 2

π

∫ Ta

e

e
π
h (t−a) dN(t)

≤
[ 2

π
e

π
h (t−a)r(t)

]Ta

e
+

2

π

∫ Ta

e

e
π
h (t−a)g′(t) dt

+
2

h

∫ Ta

e

e
π
h (t−a)r1(t) dt.

Here we have
[ 2

π
e

π
h (t−a)r(t)

]Ta

e
≤ 2

π
e

π
h (Ta−a)

(

r1(Ta) + e
π
h (e−Ta)r1(e)

)

and the integrals can be estimated using the the monotony of g′(t) and r1(t). �
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Remark 4.4. We would like to compare these results to the Turing method, which
is based on the following identities:

N(T ) = −
∑

T<Im(ρ)<T+y

nρ
T + y − Im(ρ)

y
+

1

y

∫ T+y

T

θ(t) dt +
1

y

∫ T+y

T

S(t) dt

(4.8)

=
∑

T−y<Im(ρ)<T

nρ
Im(ρ) + y − T

y
+

1

y

∫ T

T−y

θ(t) dt+
1

y

∫ T

T−y

S(t) dt,

where

θ(t) =
1

π
Im lΓ,1

(1

4
+ i

t

2

)

− t

2π
log π + 1

and S(T ) = N(T )− θ(T ). From this one derives upper and lower bounds for N(T )
using approximations to the zeros with imaginary part in (T, T+y) resp. (T, T−y),
where the integral is bounded by

(4.9)

∣

∣

∣

∣

∫ t2

t1

S(t) dt

∣

∣

∣

∣

≤ 2.067 + 0.059 log t2

for t2 ≥ t1 ≥ 168π [Tru11a]. So for y sufficiently large, the number of zeros is
determined exactly by (4.8) if all zeros with imaginary part in (T − y, T ), resp.
(T, T + y) are known.

For a comparison we choose h = 2.5 in Theorem 4.1 and Theorem 4.3, evaluating
the sum over all prime powers ≤ 140. If we take R ≥ 106 in Theorem 4.1 (resp.
a ≥ 106 in Theorem 4.3) it follows from (4.9), that for a safe application of these
methods the minimal length of the cut-off interval has to be 2.5 times (resp. 2
times) as large for the Turing method. Nevertheless, all these methods usually
succeed with smaller cut-off intervals. E.g. some numerical tests with a, b, R and
T close to 1010 suggest, that for the Turing method a cut-off interval of length 4.5,
for the method in Theorem 4.3 one of length of 1.8 and for the method in Theorem
4.1 one of length of 1 is sufficient.

With the methods as stated above, the Turing method has a slight advantage
with respect to the minimal required precision of the zeros in the list. For the
method in Theorem 4.3 this precision is about four times as high as for the Turing
method and for the method in Theorem 4.1 it is about twice as high. This should
not impose practical restrictions, especially when fast evaluation techniques on
grids are applied, but if one would like to apply the new methods with very coarse
approximations to the zeros, the minimal required precision could be cut in half at
the expense of doubling the minimal length of the cut-off interval.

There also exists a variant of Turing’s method due to Lehmer, for which it suffices
to find a certain number of successive gram blocks satisfying the Rosser rule [Leh70].
This has been left out of the comparison, because very little can be said about the
length of the cut-off interval (the Rosser rule eventually fails a positive proportion
of the time [Tru11b]) or the accuracy which is required to separate the zeros.

4.2. Hecke L-series. Let K be an algebraic number field of degree N over Q with
absolute discriminant dK . We denote the number of real archimedian places by r1
and the number of complex places by r2. By χ we denote a Hecke größencharacter
and by f its conductor. For Re(s) > 1 the Hecke L-function for the character χ is
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given by

L(s, χ) =
∑

a

χ(a)

Nas
=
∏

p

(

1− χ(p)

Nps

)−1

,

where the sum is taken over all ideals in OK and the product is taken over all prime
ideals. We take

G(s, χ) =

( |dk|N f

4r2πN

)s/2 r1
∏

j=1

Γ

(

s+ iϕj + nj

2

) r1+r2
∏

j=r1+1

Γ

(

s+ iϕj +
|nj |
2

)

,

where the numbers ϕj ∈ R and nj ∈ Z uniquely determine χ at the archimedian
places. Then the complete L-function

Λ(s, χ) = G(s, χ)L(s, χ)

satisfies the functional equation

Λ(s, χ) = W (χ)Λ(1− s, χ),

where W (χ) is the root number of χ, a complex number of modulus 1.
For L(s, χ) we have the following result.

Theorem 4.5. Let L = (12 + itj)
n
j=1 be a list of non-trivial zeros of L(s, χ), and let

b− a > 5 such that for z ∈ {a, b} and j = 1, . . . , r1 + r2 we have either z + ϕj = 0
or |z + ϕj | > 20N . Let ε0 = 1 if χ is the principal character and else let ε0 = 0.
Furthermore, let

E0(t) =
{

0 t = 0,
1
|t| else,

and let

E(a, b) = 1.65

r1
∑

j=1

[E0(a+ ϕj) + E0(b+ ϕj)] + 5.57

r1+r2
∑

j=r1+1

[E0(a+ ϕj) + E0(b + ϕj)] .

Then, if the inequality

(4.10) − 2Re





∑

Npm≤20N

logNp

Npm/2
χ(pm)fa,b,π(m logNp)





+
1

π
Im

[

lG,1

(

1

2
+ ib, χ

)

− lG,1

(

1

2
+ ia, χ

)]

+ E(a, b)

−
n
∑

j=1

f̂a,b,π(tn) + 2ε0Re(f̂a,b,π(i/2)) ≤ 0.44

holds, where fa,b,π and f̂a,b,π are the functions defined in (3.1) and (3.2), L contains

all zeros with imaginary part in [a, b].
Conversely, let

Q′ =

( |dK |N f

4r2πN

)1/2

+ e, A = max
j

{|ϕj |}+max
j

{|nj |/2},

and let

C(X) = log log(|X |+A) + log logQ′ + log(N) + 3.
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We also assume that for z ∈ {a, b} we have

(4.11) |z| ≥ 10 log log(A+ 10) + 10 log log(Q′ + 10) + 10 log(N) + 50

and |z + ϕj | > 100N whenever z + ϕj 6= 0. Then, under the assumption of the

Riemann Hypothesis for L(s, χ), if L contains all zeros with imaginary part in

[a− C(a), b + C(b)], the inequality in (4.10) holds.

This result can be simplified a little for larger values of a and b. For example, if
we assumed |z + ϕj | > 2000N , the term E(a, b) in (4.10) could be omitted.

Proof. Since p splits in at most N prime ideals in OK , the coefficients c(pm) satisfy
the bound

(4.12) |c(pm)| =

∣

∣

∣

∣

∣

∣

∑

Npk=pm

χ(pk)

k

∣

∣

∣

∣

∣

∣

≤ N.

Therefore, by Lemma 3.4, the first line of (4.10) differs at most by

8N

π

(20N)
1−π
2

π − 1
≤ 0.05

from wf (fa,b,π).
Next, we investigate w∞(fa,b,π). For the real places we take Bk = 1.6 in Lemma

3.7. Then we have Ck < 2.58 and for R ∈ {a+ϕk

2 , b+ϕk

2 } the left hand side of (3.14)
is bounded by

2.58

(

1

|R| +
e−1.6|R|

1
4 + nk

2

)

≤ 2.59

|R| ,

where we used |R| ≥ 10. For the complex places we choose Bk = 0.8. Then we
have Ck < 17.46 and the left hand side of (3.14) is bounded by 17.47/|R|. Since
2 · 2.58/π ≤ 1.65 and 17.47/π ≤ 5.56, it follows from Lemma 3.6 that w∞(fa,b,π)
is bounded by the expression on the second line of (4.10). Thus, the statement
concerning the completeness of the list L follows from Theorem 3.2.

For the converse statement, we assume that all non-trivial zeros are given in the
form ρ = 1

2 + iγ. We then have to show that

(4.13)
∑

γ/∈[a−C(a),b+C(b)]

nρf̂a,b,π(γ) + 0.05 + 2E(a, b) ≤ 0.44

holds. Under the conditions imposed on a and b we have 2E(a, b) ≤ 0.06, and it is
therefore sufficient to show that the sum over zeros is < 0.33.

We treat the upper part of the sum, where γ > X = b + C(b), first, following
the idea in the proof of Theorem 3.2. Using the bound in (3.6), we see that

f̂a,b,π(γ) ≤
2

π
e−C(b)+X−γ ≤ 2

π

e−C(b)

1 + (X − γ)2

holds for such γ, and consequently we get

(4.14)
∑

γ>X

nρf̂a,b,π(γ) ≤
2

π
e−C(b)

(

Re
Λ′

Λ

(

3

2
+X,χ

)

+ ε0

)
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from (3.10). In order to estimate the contribution of the finite primes to the loga-
rithmic derivative of Λ(s, χ) we use the bound (4.26) in [BFJK13], which together
with (4.12) gives

(4.15)

∣

∣

∣

∣

L′

L
(3/2)

∣

∣

∣

∣

≤ −N
ζ′

ζ
(3/2) ≤ 1.51N.

For the contribution of the infinite primes to the logarithmic derivative of Λ(s, χ)
we will also need a version of the Stirling formula for the digamma function.

Lemma 4.6. Let z ∈ C have positive real part. Then we have

(4.16)
Γ′

Γ
(z) = log(z)− 1

2z
+Θ

(

3

2|z|2

)

.

Proof. By the Stirling formula for lΓ,1 we have

Γ′

Γ
(z) = log(z)− 1

2z
+ µ′(z),

where µ(z) is holomorphic in C\(∞, 0] and satisfies
∣

∣µ(reiφ)
∣

∣ ≤ 1
12r cos(φ/2)2 [Rem90,

2.4.2]. From this we get the claimed bound for µ′(z) using the Cauchy formula,

integrating along the circle |ξ − z| = |z|
3 , where we have |ξ| ≥ 2

3 |z| and cos(φ/2)2 ≥
1
4 . �

We treat the Γ-factors at the real places first. We claim the bound

(4.17)
1

2
Re

Γ′

Γ

(

3

4
+

nj

2
+ i

X + ϕj

2

)

≤ log(|b|+A)

to hold for j ≤ r1. If
∣

∣

∣

3
4 +

nj

2 + i
X+ϕj

2

∣

∣

∣ ≤ 10, the Stirling formula (4.16) implies

that the left hand side of (4.17) is bounded by 1
2 (log(10) +

3
2 (

4
3 )

2) < 2.5 and the
right hand side is larger than 3.9, so the bound holds. Otherwise, the Θ-term in
(4.16) is < 0.02 and by (4.11) we have C(b) < |b|/2, so we get

log

∣

∣

∣

∣

3

4
+

nj

2
+ i

X + ϕj

2

∣

∣

∣

∣

≤ log
3/2 + nj + C(b) + |b|+A

2

≤ log
|b|+A

2
+

3/2 + nj + C(b)

|b| ≤ log(|b|+A)− 0.15,

An analogous calculation, considering first the case
∣

∣

∣

3
2 +

|nj |
2 + i(X + ϕj)

∣

∣

∣
< 10,

shows that we have

(4.18) Re
Γ′

Γ

(

3

2
+

|nj |
2

+ i(X + ϕj)

)

≤ log(|b|+A) + 0.57,

at the complex places.
So combining (4.15), (4.17) and (4.18), we see that the right hand side of (4.14)

is bounded by

2

π
e−C(b) (N(1.51 + log(|b|+A) + 0.57) + log(Q′) + 1)

≤ 2

πe3

(

1.51 + 0.57 + 1 + 1

log(50)
+ 1

)

≤ 0.07.

Since the conditions on a and b are symmetric, the same bound holds for the lower
part of the sum in (4.13) and thus the assertion follows. �
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4.3. L-series of elliptic curves over Q. Let E be an elliptic curve defined over
Q and let N be its conductor. Then the L-series attached to E is defined by the
Euler product

L(E, s) =
∏

p|N

(

1− ǫ(p)p−s
)−1∏

p∤N

(

1− app
−s + p1−2s

)−1
,

where ǫ(p) is 1, −1 or 0 according to whether E has split multiplicative, non-split
multiplicative or additive reduction at p and, ap is defined by

#E(Fp) = p+ 1− ap.

By the modularity theorem, the complete L-function

Λ(E, s) =

(√
N

2π

)s

Γ(s)L(E, s)

satisfies the functional equation

Λ(E, s) = ±Λ(E, 2− s)

of a weight 2 modular form. For L(E, s) we get the following result.

Theorem 4.7. Let E be an elliptic curve over Q, and let N be its conductor. Let

L = (1 + iγj)
m
j=1 be a list of non-trivial zeros of L(E, s) and let a, b ∈ R such that

we have b − a > 5 and such that for z ∈ {a, b} we have either |z| > 15 or z = 0.
We define

E(t) =
{

0 t = 0
5.57
|t| else.

Then, if the inequality

(4.19) − 1

π

∑

pm<30

c(pm)

pm
sin(bm log p)− sin(am log p)

m cosh(π2m log p)

+
b− a

2π
log

N

4π2
+

1

π
Im
[

lΓ,1(1 + ib)− lΓ,1(1 + ia)
]

+ E(a) + E(b)−
m
∑

j=1

f̂a,b,π(γj) ≤ 0.42

holds, where f̂a,b,π is the function defined in (3.2), L contains all non-trivial zeros

of L(E, s) with imaginary part in [a, b].
Conversely, if the Riemann Hypothesis for L(E, s) holds, if a and b additionally

satisfy the condition

(4.20) min{|a|, |b|} ≥ max{70, 3 log logN},
and if L contains all zeros with imaginary part in

[a− log log(Na2)− 3, b+ log log(Nb2) + 3],

then (4.19) holds.

Proof. We first bound the coefficients c(pm). For p | N we have |c(pm)| = |ε(pm)| ≤
1. Otherwise, there exists a quadratic integer αp by Hasse’s theorem, satisfying
ap = 2Re(αp) and αpαp = p. Consequently, the Euler factor at p factors into

(1− αpp
−s)−1(1 − αpp

−s)−1,
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and so we have |c(pm)| ≤ 2pm/2. Therefore, (L3) holds with σ1 = 3/2 and C = 2,
so by Lemma 3.4 the sum on the first line of (4.19) differs at most by

16

π

30
1−π
2

π − 1
< 0.07

from wf (fa,b,π).
With the choice Bk = 0.8, as for the complex places in the proof of Theorem

4.5, we see from Lemma 3.6 and Lemma 3.7 that the expression on the second line
of (4.19) differs at most by E(a) + E(b) from w∞(fa,b,π). Thus, the first assertion
concerning the completeness of the list L follows from Theorem 3.2.

For the proof of the second part let C(X) = log log(NX2) + 3. As in the proof
of Theorem 4.5, it is again sufficient to show that the inequality

(4.21)
∑

γ /∈[a−C(a),b+C(b)]

nρf̂a,b,π(γ) + 0.07 + 2(E(a) + E(b)) ≤ 0.42

holds. As in the proof of Theorem 4.5 we have

(4.22)
∑

γ>X

nρf̂a,b,π(γ) ≤
2

π
e−C(b)Re

Λ′

Λ
(E, 2 + iX).

For the finite part we use the bound
∣

∣

∣

L′

L (E, 2)
∣

∣

∣
≤ 2 ζ′

ζ (3/2) ≤ 3.02. For the gamma

factor we use the Stirling formula (4.16) again. From (4.20) we see that C(b) ≤ |b|/2,
so we have |X | ≥ 35 and hence obtain the bound

Re
Γ′

Γ
(2 + iX) ≤ log(|X |) + 0.06.

Therefore, the right hand side of (4.22) is bounded by

2

π

e−3

log(Nb2)

(

1

2
log(Nb2) +

C(b)

|b| + 0.06 + 3.03− log(2π)

)

< 0.03,

where we also used log(Nb2) ≥ 8. Again, the same bound holds for the lower part
of the sum, and since we have

0.03 + 0.03 + 0.07 + 2(E(a) + E(b)) ≤ 0.36,

the assertion follows from (4.21). �

5. Acknowledgements

I wish to thank the referee for many helpful comments, which led to a substantial
improvement of this paper. I also wish to thank Patricia Klotz for pointing out the
mistaken signs in [BFJK13] that were corrected in this paper.

References

[Bar81] Klaus Barner, On A. Weil’s explicit formula, J. Reine Angew. Math. 323 (1981), 139–
152.
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