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A METHOD FOR PROVING THE COMPLETENESS OF A LIST
OF ZEROS OF CERTAIN L-FUNCTIONS

JAN BUTHE

ABSTRACT. When it comes to partial numerical verification of the Riemann
Hypothesis, one crucial part is to verify the completeness of a list of pre-
computed zeros. Turing developed such a method, based on an explicit version
of a theorem of Littlewood on the average of the argument of the Riemann zeta
function. In a previous paper we suggested an alternative method
based on the Weil-Barner explicit formula. This method asymptotically sac-
rifices fewer zeros in order to prove the completeness of a list of zeros with
imaginary part in a given interval. In this paper, we prove a general version
of this method for an extension of the Selberg class including Hecke and Artin
L-series, L-functions of modular forms, and, at least in the unramified case,
automorphic L-functions. As an example, we further specify this method for
Hecke L-series and L-functions of elliptic curves over the rational numbers.

1. INTRODUCTION

In this paper we develop a general method to prove that a list of zeros of an
L-function contains all zeros with imaginary part in a given interval [a,b]. The
method is proved for all L-functions in an extension of the Selberg class.

The method is an alternative to the Turing method [Tur53| [Leh70], of which a
similar generic version has been developed in [Boo06]. The methods are similar
in that only the zeros in a neighbourhood of a and b have to be known within
a higher accuracy, but they differ with respect to the required number of addi-
tional zeros with imaginary part outside of [a,b]. While the Turing method re-
quires O(log(a)?) additional zeros below a and O(log(b)?) additional zeros above b,
the method described in this paper requires only O(log(a)loglog(a)), respectively,
O(log(b) loglog(b)) such zeros.

In the special case of the Riemann zeta function the implied constant for the
Turing method is small due to sophisticated explicit estimates of the Riemann zeta
function in the critical strip [Trulla]. This led to the assumption in [BFJKT3] that
the implied cross-over for the two methods would not occur before 103°. However,
numerical tests suggest that the new method generally requires fewer additional
zeros. Furthermore, we will provide improved estimates in this paper which show
that at the moderate height of 10% the Turing method already needs about twice
as many additional zeros.

A second advantage of this method is, that the proof of completeness only de-
pends on the correctness of the Weil-Barner explicit formula and very few explicit
estimates of the test function to which the Weil-Barner formula is applied. Only
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the specification of the implied constant in the aforementioned O-terms requires
longer calculations.

We will first formulate the explicit formula for the class of L-functions in consid-
eration, and then prove the general version of the method. Then, we further spec-
ify the method for the Riemann zeta function, improving the results in [BEJK13],
Hecke L-series and elliptic curves over Q. As far as the author knows, the Turing
method has not been adapted to the latter families of L-functions before.

2. THE WEIL-BARNER EXPLICIT FORMULA

The method is based on Barner’s version [Bar81] of Weil’s explicit formula
[Wei52]. Barner proves this explicit formula for Hecke L-series only, so we take
the very general work of Jorgenson and Lang [JL94] as a reference. The explicit
formula in [JL94] covers exotic L-functions as the Selberg zeta function, which
makes its proof long and complicated. Therefore, it should be pointed out, that the
explicit formula for the L-functions considered in this paper can be proved more
quickly by straightforward modifications of Barner’s proof.

We will consider all L-functions L : C — C U {oo} satisfying the following
properties:

(L1) There are numbers a(n) € C and a constant K € R such that we have

L(s) = Z a(n)n™*
n=1
for Re(s) > K where the sum converges absolutely.
(L2) There is a polynomial P € C[z] such that the function P(s)L(s) continues to
an entire function of finite (power) order.
(L3) There exist ¢(p™) for all prime powers p™, a o1 € R, and a C' > 0 such that
we have
le(p™)| < Cplr=Dm,
and

L(s) = exp (Z C(pm)p*ms)

for Re(s) > o;.

(L4) There exists a 09 < 201, a k1 € N, Q, A1,..., A € (0,00), p1,...,ux € C
with Re(ur) > —Aroo/2, and a w € C with |w| = 1, such that the complete
L-function

k1
A(s) = Q° ] T(\es + pk) L(s)

k=1
satisfies the functional equation

A(s) = wA(og —3).

Compared to the Selberg class [Sel92], we essentially gave up the Ramanujan-
Petersson conjecture, which for most automorphic L-functions is still an open prob-
lem, and we allow a finite number of poles (not only at s = 1). We also do not
assume the L-function to be normalized, i.e. we allow g # 1.
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We use the convention pi = ug + vy, with ug and vy real, and define

k1
=Q° H T(Ags + )

and
k1
= Q° [] T es + u).
k=1

Furthermore, we denote by N (A) the set of zeros of A, which we also refer to as
the non-trivial zeros of L, and by P(A) the set of poles.

Given the parameters o¢p and o1, we define the Barner class of test functions
(which actually only depends on o7 — %) to be the class of functions f : R — C
satisfying the following properties:

(Bal) There exists a ¢ > o1 — %, such that
f(#)exp(clt]) € BV(R) N L' (R).

(Ba2) The function f is normalized, i.e., for every ¢ € R we have
£(0) = 5 Jim (£G4 )+ 7= ).

(Ba3) There exists an € > 0 such that we have

2£(0) = f(t) + f(=t) + O(|t[")
for t — 0.
Now let f be a member of the Barner class. We define the Fourier transform by
fo=[ e

Then we have a pointwise Fourier inversion formula given by
1 (% s
=5 [ e
ﬂ- — 00
With this we define the functionals
ws(f) = Z npf(___): lim Z npf(?")_%)v

T—o0
’ I (p)|<T

where the sum is taken over all zeros and poles of the function A(s) according to
their multiplicities n, (poles being counted with negative multiplicity),

Z % (™) f(m1ogp) + ™) f(~mlogp) ),

and
G/
—(Akoo/2+ug)t ) .
- Z Ak / 7( ¢TI F(\t) + R f(—Agt) — 2£(0)) dt

Then, the Well—Barner formula takes the form

ws(f) = ws (f) + woo (f)-
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3. THE METHOD

Since the L-functions in consideration may have multiple zeros, we begin with
the following definition.

Definition 3.1. By a list of zeros of a function f we shall mean a sequence (p;)jer
of zeros of f, such that every zero p with multiplicity n, occurs at most n, times
in the sequence. If Z is a set of zeros of f, we say that a list contains all zeros in
Z if every p € Z occurs exactly n, times.

We aim to verify that a list of zeros of an L-function contains all zeros with
imaginary part in [a,b] by applying the Weil-Barner explicit formula to the test
function

1 e—ait _ e—bit 1

(3.1) fa,b,h(t) = —

2m it cosh(% )

which belongs to the Barner class for h > o1 — 3.

For |Im(z)| < 2 its Fourier transform is given by

(3.2) Fawn(z) = % {arctan(exp[% (z —a)]) — arctan(exp[ % (z — b)] )} ,

where arctan(z) is holomorphically extended to {z € C | iz ¢ [1,00) U (—o0, —1]}.

The function fa,b,h is the convolution of X[a,b] and 1( ) from which it inherits

h cosh(f z
the property of having positive real part in this strip. }Slo if the zeros in the list
are used to approximate ws( fmb) 1), the Weil-Barner explicit formula thus gives an
upper bound for contribution of the zeros not contained in the list.

The additional parameter h controls a trade-off between the zeros being sacrificed
and the number of summands which are needed to approximate w¢(fq,p,5) Within
sufficient accuracy.

The general method is based on the following theorem.

Theorem 3.2. Let (00/2 + iv;)jL, be a list of non-trivial zeros of L. Let h >
209 — o1 and assume that b —a > 5% holds. Then, if the inequality

m

(3:3) w(fabn) + Woo(fan) = Y fann(y) + D Inplfapn(s— %) <049

Jj=1 PEP(A)

holds, the list contains all non-trivial zeros of L(s) with imaginary part in [a,b].
Conversely, under the assumption of the Riemann Hypothesis for L(s), for every
€ > 0 there exists a B: > 0 such that

C.(X) = %bglog(e(Q +1)(|X|+1)) + B

satisfies the property that if the list contains all zeros with imaginary part in
[a — C:(a),b+ C.(D)], then the left hand side of [B.3) is smaller than .

The second part of the theorem also holds without the assumption of the Rie-
mann Hypothesis, but the proof is much shorter this way.
First, we prove some bounds for the functions fq 5 and fq 4.
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Lemma 3.3. Let a < b, h > 0 and let |Tm(2)| < &. Then the following inequalities

2
hold:
(3.4)  Refapn(z)>0
~ 4 -
(35) 0<1—Refapn(z) < —e nmin{Re(z)—ab-Re(x)} for Re(z) € [a, b],
™
A 2

(3.6)  Refapn(z) < Ze nmax{Re(z)=ba=Re(2)} for Re(z) ¢ (a,b).

™
If we additionally assume b —a > 5%, we have

(3.7) Re fapn(z) > 0.49
for Re(z) € [a, b).

Furthermore, we have

2 e 51t
(3-8) | fapn()] < T
for |t| > 1 and arbitrary a,b € R.
Proof. Since we have
Re(z) gt
2arctane® = /_Oo cosh(t +iTm(2))’

s

the bound in (34) follows from #h(z) having positive real part in [Im(z)| < 3.
Furthermore, since for Re(z) < 0 and [Im(z)| < % the functions Im F}ll(z) and Im z
have the same sign, we get

oo _1 n
(39) 0 < Rearctan e? < arctan eRc(z) _ ngo 2(71—_216(2n+1) Re(z) < eRC(Z)
for such z.
Now let Re(z) € [a,b]. Since the chosen branch for arctan(z) satisfies
T

arctan(z) + arctan(l/z) = B

in Re(z) > 0, we get
. 2 x P
Re fopn(z)=1—— (Re arctane® (“~?) 4+ Rearctan eﬂz*b)) .
T

This together with ([B9) gives the bound in ([BH]). For BX) we also use the fact
that the function = — Re f, .5 (z + iy) has a global maximum at x = “TH’
otherwise monotonic. Thus we have

and is

A ~ 1 2 ™
Re fap,n(2) > Re fopn(a+ilmy) > 3~ Zem7(0=9) 5 .49,

3

since b — a > 5%.
The bound in ([B.6]) follows similarly, e.g., for Re(z) > b we have
- 2 ™ = 2
Re fapn(z) == (Re arctane® (=% — Re arctaneﬁ(a*'z)) < ZeR(b-Rez)
7T T
The remaining inequality in B8] follows directly from (BI]). O



6 JAN BUTHE

Proof of Theorem[Z2. Let (p;)52, be the list of zeros that are missing in £. Then,
if the inequality in B3] is satlsﬁed we have

Re fopn(4 ~ 5) ZRefabh &L~ 90) < 0.49

for every [ € N, where the first 1nequahty follows from ([B4]) and the second follows
from the explicit formula. Consequently, there is no p with Im(p) € [a,b] among
the pj, since by [B.1) every such zero would contribute an amount > 0.49.

It remains to prove the second part. Assuming the Riemann Hypothesis, we
have p = % + iy with v € R for all p € N'(A). We apply the Weil-Barner explicit
formula to the Fourier transform pair

1 o4 R 1
gr,X(t) = e Tl Xt7 gr,X(g) = (

2 E—X)2 412
(taking r > 01 — 09 /2), and obtain the identity
(3.10)
ST I s
— X242 (%0 _ ) — X)2 & 2’
priiny (Y= X2 AN2 opiyy UG —p) = X)2 47

the right hand side of which is O(log[(Q + 2)(]X| + 2)]) by Stirling’s formula and
the uniform boundedness of the sum over poles. We take X = b + C.(b). Then, in
view of ([B.0), we have

: o~ ECe()

R )

Since there occur only positive summands on the left hand side of (BI0), this
implies

Fawn(y) < 1.3~ F(C=@+7=X

> mpfapn(y) en e PO og[(Q +2)(1X| +2)] g e R,
pEN(A)
Y>b+Ce 5 (b)
which is < /2 for B, sufficiently large. The considerations for v < a — C.(a) are
exactly the same, so the assertion follows. (|

The remaining part of this section will be devoted to the evaluation of ws(fapn),
Woo (fab,n), and the sum over zeros.

3.1. Evaluation of wy(fs.n). The value ws(fq,,1) is approximated by evaluating
(a usually small) part of the sum over prime powers. We give a simple estimate for
the remainder.

Lemma 3.4. Let M € Nsg, and let C be the constant in (L3]). Then we have
(3.11)

htog
pl

logp . 8C M7~
E 1y 1 + a S5
<M \/W (e(P™) fapn(mlogp)) +ws (fapn) 7w oo+ h—20;

Proof. By (8.8), the left hand side of (BI1) is bounded by

tr T dt =

[e'e) 0o o _ogth
10§ e AC [T g, 80 M
T Ju T o9+ h— 201

n=M+1
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O

3.2. Evaluation of we(fap.n). The term weo(fap,n) gives an approximation to
the number of zeros with imaginary part in [a,b], which is closely related to the
imaginary part of a branch of log G. To avoid ambiguity the following notation will
be used.

Definition 3.5. Let U C C be open and convex and let f: U — C be holomorphic
and non-vanishing. Then, for any w € U we define

z f/
) = [ L©de
w [
We will need the obvious properties {744 = lfw + Iy and
Law(2) = L (2) = Ly (2) = L (21)-

In particular we will use

00 et o=t _ ot
! = N L
ra(z) /0 (z-1)—+ e

for Re(z) > 0. This is the branch of logI'(z) for which we have the Stirling formula
1 1
Ira(2) = (= = 5 ) log(=) — =+ 5 log(2m) + O(1/|2]),

where log(z) denotes the principle value logarithm.

Lemma 3.6. We have

(3.12)  Woo(fapn) = %Im {zcm (00/2 +ib) — L. (00/2 + m)]

(2x20

kzl l /oo e~ (T Fug)t sin((/\kb—l—vk)t) - sin((/\;ga—i—vk)t) ( 1 1) dt
1™ Jo l1—et t cosh(25"¢) '

Proof. From B we get

b—aG!
wf(fa,b,h) = = G_§(00/2)

ks _(ARoo . :
1 0o ( +ug)t b t) — A ¢
- _/ e (7 - (sm(( kb + vi)t) /\5121(( kQ+0R)t) Ak(b — a)) dt.
1; 1: 7 Jo 1—¢ tcosh(=k"t)

Using

o0

FI b—a 00 e—t 6_( 5 +ug)t
rven/2 ) = w7 (= )

b_
Ap—2

and

Tl (A (%2 + ib) + ) — Ira (%2 + i) + )]

oo 67()\)@2"’0 Jruk)t dt
- / (ﬁ(sin((/\kb + vp)t) — sin((Apa + vg)t) + A (b — a)e*t) @
o —
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we get

(313) l /Ooo e ( E70 4ug)t (sm((/\kb + ’Uk)t) - sin((/\ka + Uk)t) . /\k(b B a)) dt

= Aeh
ﬂ' l—et t cosh(2571)
!

al
F(/\kao/2+Uk)

1 . oo | -
= ; Im[lp)l(/\k(a—; +’Lb) +Mk) - lp)l()\k(TO + m) + /L]g)] — /\k

oo

1 /°° e~ (T Fudt gin(Ab + vg)t) — sin((Apa + v )t) ( 1
0 1—et t cosh(25"¢)

— 1) dt.

™

If we take into account that

b—a 1 g0 | . %0 , .
=z tmflea (G ) ~lou (G )]
- log @ —Im lo 1 5 +ib) —lga 5 +ia

the assertion follows by summing (313) over k and adjusting the base points. O

Next, we will estimate the integrals in ([BI2). They turn out to be of small
modulus when |[Aga + vg| and |Agb + vi| are sufficiently large.

Lemma 3.7. Let R € R\ {0},
0< B < min{2ﬂ', L}
Axh
and let

o o )
k(1 — cos(By)) cos( =5 By)

Then we have
2k%0

EVLNR Y 1
/ e (73 - sm(R)( - —1)dt <
0 lL—e t cosh(25%1)

(3.14)

Proof. Let A = ’\"—200 + uy and let

1 1
9(2) = z(1—e™?) <cosh()"§—h2) B 1) '

Then g(z) is holomorphic in [Im(z)| < min{27, 57} and since we have

|cosh(z)| > |cos(Im(z))|

and
[1— e "> =1 - 2cos(Im(2))e™ ReE) 4 ¢ 2Re) > (1 — cos(Im(z))e™ Re))2,
the Phragmén-Lindel6f principle gives

1 1
(3.15) lg(2)] < By (1 — cos(By)) (COS(ALQ}IBk) " 1) -G

for |Im(z)| < By. Since we have
oo ) By, )
/ eFR=Atg(1) dt = :I:i/ e~ B+ (Lit) dt
0 0

+/ e(:‘:iR*A)(iin+t)g(t + ZBk) dt,
0
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where by [BI5]) the first integral is bounded by

< C
Ck/o ethtsz

and the second integral is bounded by

oo
CkefB’“R/ e Atdt =
0

the assertion follows. O

If either a or b is close but not equal to —vy/Ak, these bounds are insufficient in
order to apply the method. In such (rare) cases one could use numerical integration
to evaluate the critical integrals in (3:12).

3.3. Evaluation of the sum over zeros. It is not actually necessary to evaluate
fabn(7;) in the form B2) for all j in B3) (which would make this method inef-
ficient compared to the Turing method). If we take e.g. R = %(logm + 5), where
m is the number of zeros in the list, and use the approximation fa,b,h(%‘) ~ 1 for
v; € [a + R,b— R], this results in a total error < 100 Therefore, as in the case
of the Turing method, only the zeros with imaginary part in a neighbourhood of
a and b are needed within an accuracy of O(1/log|a|) resp. O(1/log |b|), which is
well in the range of the average spacing between consecutive zeros.

4. EXAMPLES

We further specify this method to some well-known families of L-functions, for
which we also give an explicit converse statement.

4.1. The Riemann zeta function. The case of the Riemann zeta function has
already been carried out in [BJ10] and [BEJKI3|. Unfortunately, in [BEJK13] there
is a mistake concerning the sign of the terms % log m and bz_ﬂ % Jog m in equations
(4.21) and (4.25).

We restate the results in a more general form and give an improved estimate for
the length of the cut-off interval.

Theorem 4.1. Let R > 15, let h € (1,7], and let « = 251, Let £ = (3 +it,))_,
be a list of the zeros of the Riemann zeta function. Then, if the inequality

41) - 1 sin(leogp)
< (501 /e TP El cosh( mlogp)
+ lIm[lp 1(1 —l—zE)] — E10g7r—i—
T \4 2 R
N
Z ) < —0.56

holds, where fO,R,h is the function defined in (B2), the list contains all zeros with
imaginary part in (0, R].

Conwversely, if R > 10 holds in addition to the previous assumptions, and if
L contains all zeros with imaginary part in (0 R+ 2 (log log R + 0. 4)], then the
inequality in [@I) holds.
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Proof. Let a be as in the theorem. Then, by Lemma B4 the sum on the first line

of (A1) differs at most by
4 2
— M™% =—<0.043
e 157 <

from wy(fo,r,n)-
In Lemma BT we take By = %2, Then Cy = Ci(h) takes its maximum on [1, ]
at h = m, which is < 2.6. Therefore, the oscillatory integral in (3.12) is bounded by

26(2 ) 7%) < 1.6
— (= e —
T \R R

Consequently, by Lemma [B.0] woo(fo,r,n) does not exceed the value on the second

line of (@.1]).
Finally, from (39) we get

~ 4 s
2Re fopn>1——e v >1-107°,
™

so the first assertion, concerning the completeness of the list of zeros, follows from
Theorem

For the second part of the theorem, we will also need the following lemma, whose
proof we postpone to the end of this section.

Lemma 4.2. Let a € {0} U (14, 00), let b > max{a, 14} and let h € (1,7]. Then,
for Ty, > b we have
(4.2)

~ 1 ™
3 npfa,bﬁ(g—ﬂ) < eFO-T) [(0.143+0.o33h) logTb+0.35410glogTb+3.3}.
Im(p)>Ty

Also, we have
A 1) 1 e~ ha
43 ’ (— — _) <&
(4.3) 2 molesn(7 = 57) < Too09
Im(p)<0

and for 14 < T, < a we have
(4.4)

. 1 .
) npfa,b,h(g—g) < ef(Tama) [(0.143+0.033h) log a+0.354 log log a+3.3].
0<Im(p)<Tq

Now, assuming R > 105, let (pj)52; be the list of zeros not contained in L.
Then, by [@2]) and [@3) we have

o p 1 1 e 04
: > =)< . :
(4.5) 2 fo.r,n (l ) + [(0 143 + 0.033h) log(R)

2i/ — 10000  log(R)
+ 0.3541oglog R + 3.31| < 0.38,

where we also used loglog(R+ C) < loglog R+ ﬁ(ﬁi) and log(R+ C) < log(R) +
C/R. Hence, the left hand side of (41 is smaller than

1.6
0.043 + = 14+107%40.38 < —0.57.
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For general subintervals [a, b] of the positive real numbers, we get the following
theorem.

Theorem 4.3. Let h € (1,7], let 15 < a < b — 5% and let a = % Let

L = (3 +ity))_y be a list of the zeros of the Riemann zeta function. Then, if

the inequality
(16) - 2 Z sin(25%m log p) cos(%Femlogp)
' mp™/2 cosh(Zmlogp)

p<(8)1/e

+1I {l (1+_b) ; (1+,a)] b_alo +3.2
oz Ty Ty Ty o BT,

N ~
=" fapn(tn) <0.44
n=1

holds, where fa,b,h is the function defined in [B2)), the list L contains all zeros of
the zeta function with imaginary part in [a, b].

Conversely, if a > 108 in addition to the previous assumptions on a and b, and
if L contains all zeros with imaginary part in [a — C(a)),b+ C(b)], where

h
(loglogT +1.1),

™

c(T)
then (@) holds.

Proof. As in the proof of Theorem 1] we see that the expression on the first line of
(@8] exceeds wy(fap,rn) by at most 0.043, and the expression on the second line is
larger than weo (fa,p,n). In a similar way, we see that the pole contribution is now
bounded by —1075, so the first assertion follows from Theorem (3.2).

Now let (pj);?‘;l denote again the list of zeros not contained in £. Then, by
Lemma we have

>© P 1 e—%lOG

E fa,b,h(_. - 5) < 0000 +2¢7110.143 + 0.033Ah
VA 1

j=1

+ 0.3541T§g1?§)a i;’ﬂ <037,
and since we have
0.043 + f—('; +107%40.37 < 0.42,
the second assertion follows. O

It remains to prove the lemma.

Proof of Lemma[{.2 Let

and let (T') = N(T) — g(T), where N is the function that counts the zeros (ac-
cording to their multiplicity) of the Riemann zeta function with imaginary part in
(0,T]. Then we have

(4.7) |r(T)| < ri(T) = 0.1121og T + 0.278 loglog T + 2.584
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for T > e [Truld]. From (B6) we get

Z npfa,b,h(g - %) < %/Ooe%(b_t) dN(t)

Im(p)>Th, T

Here we use ¢/(t) = 5= log 5=, the bound in (@) and the obvious inequalities

/T e n'log(at) dt < ;e‘ﬁT(log(aT) + ﬁ)

and

~Ftloglogt dt < — —WT(I log T 7)
/T € roplogtar = e oglo8 e T
which give the inequality in (£2)).
For the inequality in (3] we use the well-known fact, that we have N(T) = 0
for 0 < T < 14 and that the zeros of the Riemann zeta function are symmetric

about the real axis, which gives

; P 1) 2/00 —F(t+a)
“ - =) <= N(t)dt.
> ”pf,b,h(i S (t)

Im(p)<0

Here we use the bound

T
2w

which for ¢t > 30 follows from (7)) and for 14 < ¢ < 30 from well-known numeric
results (e.g. [Bre79]), and the fact that 1 < h < m. A simple calculation then
confirms the bound in (Z3).

In order to prove (@) we proceed in a similar way as in the proof of ([4.2). We
have

; p 1 2 [T cia
F_ V< Z
> mdun(f-g) <2 [ eFant
0<Im(p)<Ty,
2 ™ Ta 2 Ta ™
< [—eﬁ(tfa)r(t)} + —/ eh (=) g/ (1) dt
™ e ™ Je
2 [T
+ = / eh =Dy (t) dt.
h e
Here we have
2 ™ Ta 2 ™ ™
—eﬁ(t‘“)r(t)} < Zeh(Ta—a) (7‘1 (T,) + efe=Ta)p, (e)>
™ e ™

and the integrals can be estimated using the the monotony of ¢'(t) and r1(¢). O
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Remark 4.4. We would like to compare these results to the Turing method, which
is based on the following identities:

(4.8)
T _I 1 T+y 1 T4y
NT)=- 3 an+—/ 9(t)dt+—/ S(t) dt
T<Tm( Yy YyJr YyJr
m(p)<T+y
I -7 1 (7 1 [T
- ¥ anJr—/ oty dt+— [ S,
T—y<Im(p)<T Y YJT—y YJIr—y
where

1 1 ¢ t
0(t) = ;Imlr,l(z +z§> - %logw—i—l

and S(T) = N(T) —0(T). From this one derives upper and lower bounds for N (T')
using approximations to the zeros with imaginary part in (T, T+y) resp. (T, T —vy),
where the integral is bounded by

to

(4.9) S(t) dt| < 2.067 + 0.059 log t

t1

for to > t; > 1687 [Trulla]. So for y sufficiently large, the number of zeros is
determined exactly by (&38)) if all zeros with imaginary part in (T — y,T), resp.
(T, T + y) are known.

For a comparison we choose h = 2.5 in Theorem .I]and Theorem[4.3] evaluating
the sum over all prime powers < 140. If we take R > 10° in Theorem FEI] (resp.
a > 10% in Theorem 3] it follows from (@), that for a safe application of these
methods the minimal length of the cut-off interval has to be 2.5 times (resp. 2
times) as large for the Turing method. Nevertheless, all these methods usually
succeed with smaller cut-off intervals. E.g. some numerical tests with a,b, R and
T close to 10'9 suggest, that for the Turing method a cut-off interval of length 4.5,
for the method in Theorem (4.3 one of length of 1.8 and for the method in Theorem
[T one of length of 1 is sufficient.

With the methods as stated above, the Turing method has a slight advantage
with respect to the minimal required precision of the zeros in the list. For the
method in Theorem this precision is about four times as high as for the Turing
method and for the method in Theorem [£.1]it is about twice as high. This should
not impose practical restrictions, especially when fast evaluation techniques on
grids are applied, but if one would like to apply the new methods with very coarse
approximations to the zeros, the minimal required precision could be cut in half at
the expense of doubling the minimal length of the cut-off interval.

There also exists a variant of Turing’s method due to Lehmer, for which it suffices
to find a certain number of successive gram blocks satisfying the Rosser rule [Leh70].
This has been left out of the comparison, because very little can be said about the
length of the cut-off interval (the Rosser rule eventually fails a positive proportion
of the time [Trullb]) or the accuracy which is required to separate the zeros.

4.2. Hecke L-series. Let K be an algebraic number field of degree N over Q with
absolute discriminant dx. We denote the number of real archimedian places by ry
and the number of complex places by r2. By x we denote a Hecke gréfSencharacter
and by f its conductor. For Re(s) > 1 the Hecke L-function for the character x is
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given by

-1
x(a) x(p)
L = = 1 e
(8:%) . Ne* 1;[( Npe)
where the sum is taken over all ideals in Ok and the product is taken over all prime
ideals. We take

|di|NF\ /2 £ s+ipj+n;\ Y , In;]|
G(Sax):(m HF J / Hll" s—i—zgoj—i—T] ;
j=ri+

where the numbers ¢; € R and n; € Z uniquely determine x at the archimedian
places. Then the complete L-function

A(s,x) = G(s, x)L(s, x)
satisfies the functional equation

where W () is the root number of x, a complex number of modulus 1.
For L(s, x) we have the following result.

Theorem 4.5. Let £ = (1 +it; )7_1 be a list of non-trivial zeros of L(s,x), and let
b—a > 5 such that for z € {a, b} and j =1,...,m1 + 12 we have either z+ p; =0
or |z+ ¢;| > 20N. Let eg = 1 if x is the prmcipal character and else let g = 0.

Furthermore, let
0 t=0,
Eo(t) = {L

T else,
and let
r1+72
E(a,b) = 1. 652 [Eola+ ;) + Eo(b+ ¢;)] + 5.57 Z [Eola+ ;) + Eo(b+ p))].
j=1 Jj=ri1+1

Then, if the inequality

log N
(410) —2Re| > Ngm/ﬂx(pm)fa,b,ﬂ(mmgm)
Npm<20N p

1 1 1
+ —Im [lG,l <— +ib,x) —lga (— —I—ia,xﬂ + &(a,b)
us 2 2
—Zfaz”r ) + 260 Re(fapx(i/2)) < 0.44

holds, where fq b+ and fmb,ﬂ are the functions defined in B1) and B2), L contains
all zeros with imaginary part in [a,b].
Conwversely, let

d 1/2
@ = (BB e A maxtlegl) + maxingl/2),

4raqN
and let
C(X) =loglog(|X|+ A) + loglog Q" + log(N) + 3.
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We also assume that for z € {a,b} we have
(4.11) |z| > 10loglog(A + 10) + 10loglog(Q" + 10) + 101log(N) + 50

and |z + @;| > 100N whenever z + ¢; # 0. Then, under the assumption of the

Riemann Hypothesis for L(s,x), if L contains all zeros with imaginary part in
[a — C(a),b+ C(b)], the inequality in [EIQ) holds.

This result can be simplified a little for larger values of a and b. For example, if
we assumed |z + ;| > 2000N, the term &(a,b) in @I0) could be omitted.

Proof. Since p splits in at most N prime ideals in O, the coefficients c(p™) satisfy
the bound

k
(4.12) oM =| 3 Xy

k
Npk:pm
Therefore, by Lemma [B:4] the first line of (AI0]) differs at most by

8N (20N)*="

™ T—1

< 0.05

from wy(fabr)-
Next, we investigate Weo (fa,b,x). For the real places we take By, = 1.6 in Lemma

B Then we have Cj, < 2.58 and for R € {22 H%} the left hand side of ([B.14)

is bounded by
1 e LOIE 2.59
2.58 (— + 7,1) < -
® Ty ) S A
where we used |R| > 10. For the complex places we choose By = 0.8. Then we
have Cy < 17.46 and the left hand side of (3.14)) is bounded by 17.47/|R|. Since
2-2.58/m < 1.65 and 17.47/7 < 5.56, it follows from Lemma B0l that weo(fa,p.x)
is bounded by the expression on the second line of ({@I0). Thus, the statement
concerning the completeness of the list £ follows from Theorem [3.21
For the converse statement, we assume that all non-trivial zeros are given in the
form p = % + 4. We then have to show that

(4.13) > N fap () +0.05 + 28 (a, b) < 0.44
v¢la—C(a),b+C(b)]

holds. Under the conditions imposed on a and b we have 2€(a, b) < 0.06, and it is

therefore sufficient to show that the sum over zeros is < 0.33.

We treat the upper part of the sum, where v > X = b+ C(b), first, following
the idea in the proof of Theorem Using the bound in (B.6), we see that

: 2 2 e 0
< 2o COHX—y 2 =
Japr(v) < 7Te Tal4+ (X —7)?
holds for such v, and consequently we get

5 2 A (3
(4.14) Z Npfapx(y) < —e c®) (Re n <§ + X, X) + 60)

>X
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from BI0). In order to estimate the contribution of the finite primes to the loga-
rithmic derivative of A(s, x) we use the bound (4.26) in [BEJKI3]|, which together

with ([@I2) gives
L/
(4.15) —(3/2)

!

< —NZ(3/2) < 1.51N.

For the contribution of the infinite primes to the logarithmic derivative of A(s, x)
we will also need a version of the Stirling formula for the digamma function.

Lemma 4.6. Let z € C have positive real part. Then we have

r 1 3
4.16 —(z)=1 -—4+0|—=].
(4.16) = (2) = log(s) — o + (w)
Proof. By the Stirling formula for ir; we have

/

() = log(2) — -+ (2),

where 4i(z) is holomorphic in C\ (oo, 0] and satisfies |p(re'?)| < W [Rem90,

2.4.2]. From this we get the claimed bound for u/(z) using the Cauchy formula,
integrating along the circle | — z| = Ig—l, where we have [¢| > 2|z| and cos(¢/2)? >

1
L 0

We treat the I'-factors at the real places first. We claim the bound

1. I (3 n; X+g
(4.17) 5Re— (— +4 +z’ﬂ> < log([b| + A)

4 2 2

to hold for j < ry. If ‘% + 3+ i# < 10, the Stirling formula ([@I6]) implies

that the left hand side of (@IT) is bounded by 3(log(10) + 3(3)?) < 2.5 and the
right hand side is larger than 3.9, so the bound holds. Otherwise, the ©-term in
(#I0) is < 0.02 and by [@II) we have C(b) < |b|/2, so we get

3 i X i 3/2 i +C(b bl + A
log——i—ﬁ—i—i + @y Slog/+nj+ (b) + |6 +
4 2 2 2
bl+A 3/2 i+ C(b
Slogl L+ + [24m ()Slog(|b|+A)—O.15,

2 0]

An analogous calculation, considering first the case ’% + I"Q—”I +i(X + ;)| < 10,

shows that we have
I’ /3 |7’LJ| .
(4.18) Re TlaT 5 T (X 4+ ¢;) | <log(]b] + A) +0.57,

at the complex places.

So combining (£10), (@I7) and (@IF), we see that the right hand side of ([@I4)
is bounded by

2
;e_c(b) (N(1.51 + log(|b| + A) + 0.57) + log(Q') + 1)
2 (151+057+1+1
log(50)
Since the conditions on a and b are symmetric, the same bound holds for the lower
part of the sum in ([@I3]) and thus the assertion follows. O

+ 1) < 0.07.

~ med



PROVING THE COMPLETENESS OF A LIST OF ZEROS 17

4.3. L-series of elliptic curves over Q. Let F be an elliptic curve defined over
Q and let N be its conductor. Then the L-series attached to F is defined by the
Euler product

L(E,s) = [[Q—e@p) " [T —app +p2) ",
p|IN ptN

where ¢(p) is 1, —1 or 0 according to whether E has split multiplicative, non-split
multiplicative or additive reduction at p and, a,, is defined by

#EFp) =p+1-—ap.
By the modularity theorem, the complete L-function

A(E,s) = (g) T'(s)L(E, s)
satisfies the functional equation
A(E,s) = £A(E,2 —s)
of a weight 2 modular form. For L(FE, s) we get the following result.

Theorem 4.7. Let E be an elliptic curve over Q, and let N be its conductor. Let
L= (1+ivy;)7, be a list of non-trivial zeros of L(E,s) and let a,b € R such that
we have b —a > 5 and such that for z € {a,b} we have either |z| > 15 or z = 0.

We define
0 t=0
E(t) =
®) {5T5|7 else.

Then, if the inequality

(4.19) — 1 Z c(p:) sin(bm 1ng}3 ; Silll(am log p)
T omn<sg P m cosh(Zmlogp)
b—a N 1 . .
+ 5 log 5 + — Tmlr,y (14 b) — Ina (14 m)}

+E(a) +EB) = fapa(y;) <042

j=1
holds, where fa,b,w is the function defined in B2), L contains all non-trivial zeros
of L(E, s) with imaginary part in [a,b].
Conversely, if the Riemann Hypothesis for L(E, s) holds, if a and b additionally
satisfy the condition

(4.20) min{|al, [b|} > max{70,3loglog N},
and if L contains all zeros with imaginary part in

[a —loglog(Na?) — 3,b+ loglog(Nb?) + 3],
then (EI9) holds.

Proof. We first bound the coefficients ¢(p™). For p | N we have |c(p™)| = [e(p™)] <
1. Otherwise, there exists a quadratic integer oy, by Hasse’s theorem, satisfying
ap = 2Re(oyp) and apa, = p. Consequently, the Euler factor at p factors into

(I—app™*) " A —ap )",
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and so we have |¢(p™)| < 2p™/2. Therefore, (L3) holds with o = 3/2 and C = 2,
so by Lemma B.4] the sum on the first line of (£19) differs at most by

1—m
18302 407
T r—1

from wy(fa,br)-

With the choice By = 0.8, as for the complex places in the proof of Theorem
A3 we see from Lemma and Lemma [3.7] that the expression on the second line
of (A19) differs at most by £(a) + £(b) from weo(fa,p,x). Thus, the first assertion
concerning the completeness of the list £ follows from Theorem

For the proof of the second part let C(X) = loglog(NX?) + 3. As in the proof
of Theorem (5] it is again sufficient to show that the inequality

(4.21) > Npfabx(7) +0.07 + 2(E(a) + £(b)) < 0.42
Y¢la—C(a),b+C(b)]
holds. As in the proof of Theorem we have
» 2 _ A .
(4.22) ;(npfmbm(v) < —e C® Re K(E,Q—i—zX).
v

For the finite part we use the bound ‘%(E, 2)‘ < 2%(3/2) < 3.02. For the gamma

factor we use the Stirling formula (£.16) again. From (£.20) we see that C'(b) < |b|/2,
so we have | X| > 35 and hence obtain the bound

1'\/
Re F(Q +iX) <log(|]X|) + 0.06.

Therefore, the right hand side of (£22) is bounded by

2 e3 1 C(b)

Z——— [ S log(Nb*) + ——= + 0.06 + 3.03 — log(2 0.03

2 i (g 1osvi2) + S 40,004 3.03 - og(am) ) < 003,

where we also used log(Nb?) > 8. Again, the same bound holds for the lower part
of the sum, and since we have

0.03 + 0.03 + 0.07 4+ 2(E(a) + £(b)) < 0.36,
the assertion follows from ({21). O

5. ACKNOWLEDGEMENTS

I wish to thank the referee for many helpful comments, which led to a substantial
improvement of this paper. I also wish to thank Patricia Klotz for pointing out the
mistaken signs in [BEJKT3] that were corrected in this paper.

REFERENCES

[Bar81]  Klaus Barner, On A. Weil’s explicit formula, J. Reine Angew. Math. 323 (1981), 139-
152.

[BFJK13] J. Biithe, J. Franke, A. Jost, and T. Kleinjung, Some applications of the Weil-Barner
explicit formula, Math. Nachr. 286 (2013), 536-549.

[BJ10] J. Biithe and A. Jost, Algorithmic Applications of Weil’s explicit Formula, 2010, Diplo-
marbeit.

[Boo06]  A. Booker, Artin’s Conjecture, Turing’s Method and the Riemann Hypothesis, Exper-
imantal Mathematics 15 (2006), no. 4, 358-407.

[Bre79] R. P. Brent, On the Zeros of the Riemann Zeta Function in the Critical Strip, Math.
Comp. 33 (1979), pp. 1361-1372.



[JL94]
[Leh70]
[Mor77]
[Rem90]
[Rum93]

[Sel92]

[Tol97)
[Trulla]
[Trullb]
[Truld]
[Tur53]

[Wei52]

[Wei72]

PROVING THE COMPLETENESS OF A LIST OF ZEROS 19

J. Jorgenson and S. Lang, Explicit formulas for regularized products and series, Explicit
Formulas, Springer-Verlag Berlin Heidelberg, 1994.

R. S. Lehman, On the Distribution of Zeros of the Riemann Zeta-Function, Proc. Lond.
Math. Soc., no. 3, 1970, pp. 303-320.

C. J. Moreno, Ezplicit formulas in the theory of automorphic forms, Number Theory
Day (Proc. Conf., Rockefeller Univ., New York, 1976), Springer, Berlin, 1977, pp. 73—
216. Lecture Notes in Math., Vol. 626.

R. Remmert, Funktionentheorie 2, Springer, 1990, first edition.

R. Rumley, Numerical computations concerning the ERH, Mathematics of Computa-
tion 61 (1993), no. 203, 415-440.

Atle Selberg, Old and new conjectures and results about a class of Dirichlet series.,
Proceedings of the Amalfi conference on analytic number theory, held at Maiori, Amalfi,
Italy, from 25 to 29 September, 1989, Salerno: Universita di Salerno, 1992, pp. 367—-385.
E. Tollis, Zeros of Dedekind zeta functions in the critical strip, Mathematics of Com-
putation 66 (1997), no. 219, 1295-1321.

T. Trudgian, Improvements to Turing’s method, Math. Comp. 82 (2011), no. 278,
pp.1053-1061.

, On the success and failure of Gram’s Law and the Rosser Rule, Acta Arith-
metica 148 (2011), no. 3, 225-256.

, An tmproved upper bound for the argument of the Riemann zeta-function on
the critical line II, J. Number Theory 134 (2014), 280-292.

A. M. Turing, Some calculations of the Riemann zeta-function, Proceedings of the
Royal Society of London. Third Series 3 (1953), 99-117.

André Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm.
Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Sup-
plementaire, 252-265.

, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR
Ser. Mat. 36 (1972), 3-18.

MATHEMATISCHES INSTITUT, BONN UNIVERSITY, ENDENICHER ALLEE 60, 53115 BONN, GER-

MANY

E-mail address: jbuethe@math.uni-bonn.de



	1. Introduction
	2. The Weil-Barner explicit formula
	3. The Method
	3.1. Evaluation of wf(fa,b,h)
	3.2. Evaluation of w(fa,b,h)
	3.3. Evaluation of the sum over zeros

	4. Examples
	4.1. The Riemann zeta function
	4.2. Hecke L-series
	4.3. L-series of elliptic curves over Q

	5. Acknowledgements
	References

