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ANALYSIS AND CONVERGENCE OF THE MAC SCHEME.

II. NAVIER-STOKES EQUATIONS

R. A. NICOLAIDES AND X. WU

Abstract. The MAC discretization scheme for the incompressible Navier-
Stokes equations is interpreted as a covolume approximation to the equations.
Using some results from earlier papers dealing with covolume error estimates
for div-curl equation systems, and under certain conditions on the data and the
solutions of the Navier-Stokes equations, we obtain first-order error estimates
for both the vorticity and the pressure.

1. Introduction

In a previous paper [4], the classical MAC scheme for viscous fluid flows was
analyzed. It was proved that the scheme is first-order accurate in a discrete H1

norm when applied to the stationary Stokes equations. To our knowledge, this
is the first such analysis for the stationary problem. Earlier, Porsching [7] had
considered the (nonlinear) evolution problem and obtained certain estimates. These
estimates contain factors which are exponentially increasing with time and so are
not immediately relevant to the stationary case. In this paper we extend the results
of [4] to the stationary Navier-Stokes equations in two dimensions under hypotheses
which ensure that the equations have a unique solution.

The analysis which is presented below follows the general lines of [4] with al-
lowance being made for the new difficulties caused by the nonlinear terms. Gen-
erally, this paper is written so as to be independent of [4]. The MAC method is
derived as a special case of the covolume formulation in [3].

In writing out the Navier-Stokes equations there are several possibilities for the
form of the nonlinear term. The main ones are the standard u·∇u form, the con-
servative form div u×u and the total pressure form which in two space dimensions
is u′ω. We have chosen to present the analysis for the latter form. Our choice of
the total pressure form is motivated in part by some recent numerical results [1],
which show that at least in some cases it produces markedly superior results to the
other two possibilities. The work in [6] contains some additional numerical results.

2. Mesh notations

Let Ω be a bounded rectangular domain in R2 with boundary Γ. We will use
a Cartesian mesh with x- and y-spacing equal to h and h′. To avoid unnecessary
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complications, we will assume that h = h′. It is easy to modify the results to cover
the contrary case. A staggered mesh is formed by connecting the centers of the
rectangles (cells) to adjacent cell centers and to the midpoints of the boundary
edges. The N nodes of the primal mesh are numbered 1, 2, . . . , N in some suitable
way, and the T nodes of the dual mesh are similarly numbered 1, 2, . . . , T . The E
edges (both primal and dual) are labeled 1, 2, . . . , E in some convenient way. The
cells, edges and nodes of the primal mesh are denoted by τi, σj and νk, respectively.
Those of the dual mesh are similarly denoted by primed quantities such as σ′j . A
direction is assigned to each primal edge according to the rule that positive is from
low to high node number. The dual edges are directed by the convention that
(σ′j , σj) are oriented like the (x, y) axes of the coordinate system.

Let n denote the normal direction of σj directed along σ′j . The discrete equations
use the normal velocity components defined at the midpoint of σj as unknowns
denoted by uj . The set of normal velocity components defined on edges can be
identified with RE . We introduce an inner product into RE by

(u, v)W :=
∑
σj∈Ω̄

ujvjhh
′
j ,

where h′j is the length of σ′j , where h′j = h if σ′j is an interior edge and h/2 if σ′j is
on the boundary. The associated norm is denoted by ‖·‖W . Clearly, it is twice a
discrete L2 norm. This inner product space is denoted by U . We denote by U0 the
space

U0 := {u ∈ U ;u|Γ = 0}.

We will also use a discrete Lp norm; for u ∈ RE it is defined by

‖u‖W,p :=

∑
σj∈Ω̄

|uj |phh′j

1/p

.

Scalar fields defined at the dual nodes ν′i can be identified with elements of RT .
An inner product on RT is defined by

(φ, θ)A :=
∑
τi∈Ω̄

φiθiAi,

where Ai denotes the area of the ith cell. The associated norm is denoted by ‖·‖A.
This inner product space is denoted by P . Similarly, scalar fields defined on the
primal nodes νk can be identified with elements of RN , and an inner product defined
by

(ψ, χ)A′ :=
∑
τ ′
k
∈Ω̄

ψkχkA
′
k,

where A′k denotes the area of the kth dual cell. The norm is denoted by ‖·‖A′ , and
the inner product space by S, or by S0 if the boundary values are all zero.

For each primal cell τi, discrete flux and divergence operators are defined on U
by

(D̂u)i :=
∑

σj∈∂τi

uj h̃
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and

(Du)i := (D̂u)i/Ai.

By h̃ we mean h negatively signed if the corresponding velocity component is di-
rected towards the inside of τi, and positively signed otherwise.

For each interior dual cell τ ′k discrete circulation and curl operators are defined
by

(Ĉu)k :=
∑

σ′
j
∈∂τ ′

k

uj h̃
′
j

and

(Cu)k := (Ĉu)k/A
′
k.

The tilde here on h′j means a negative sign if the dual edge is directed against the
positive sense of description of ∂τ ′k and a positive sign otherwise.

Extensions of C and Ĉ to the boundary are denoted by Cb and Ĉb. In this case,
the velocity components along the boundary segments defined by the intersections
of consecutive dual mesh edges with Γ must be specified.

We also introduce an operator R such that

Rψ ∈ RE , (Rψ)j :=
ψk2 − ψk1

h
∀ψ ∈ Rn,

where the positive direction of σj is from νk1 to νk2 . An operator G is defined such
that

Gφ ∈ RE , (Gφ)j :=
φi2 − φi1

h′j
∀φ ∈ RT ,

where the positive direction of σ′j is from ν′i1 to ν′i2 .
When we deal with the approximations for certain items, we need to map the

cell, edge, or kite (the parallelogram with σj and σ′j as diagonals) to a standard
one. We will use B to denote the mappings and a hat to denote the standard cell,
edge, or kite. For example, τ̂ ′ (−1/2 ≤ x̂ ≤ 1/2,−1/2 ≤ ŷ ≤ 1/2) is the image of
τ ′k.

3. Discretization of Navier-Stokes equations

We consider the incompressible Navier-Stokes equations,

−ν∆u + (u·∇)u +∇p = f in Ω,(1)

div u = 0 in Ω,(2)

u|Γ = 0.(3)

We will discretize (1) in the form

−ν∆u− u′ω +∇
(
p+
|u|2

2

)
= f ,(4)

where ω = curl u and u′ = (−u2, u1); u1 and u2 are the two velocity components of
u. This form is often used in practice, and there is evidence that it can give better
results than (1) or its momentum conservation form (div u× u).
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Figure 1

Figure 1 shows two adjacent mesh cells, sharing the common edge σj(AB) and
with dual edge σ′j(CD). Let n denote the positive direction of the σ′j . Taking the
dot product with n on both sides of (4), we get by a calculation

ν
∂

∂t
(curl u)− ν ∂

∂n
(div u)− u·tω +

∂p̂

∂n
= f ·n,(5)

where t is the positive direction of σj(AB) as shown in Figure 1 and p̂ = p+ |u|2/2.
For convenience, we will denote the total pressure p̂ by p from now on. We have left
the divergence term in (5), even though according to (2) it is zero. There are two
reasons why we feel that allowing this term to remain is significant. First, it reveals
an important symmetry between the circulation and flux operator, in that they
are seen to be analogous to the real and imaginary parts of a complex derivative.
Second, by carrying the flux term through the analysis we are able to show how it
may be estimated. Such estimates would be necessary if a nonzero divergence was
prescribed or in circumstances when the divergence constraint is not met exactly.

Integrating (5) over the primal edge σj , we get

ν
ω(B)− ω(A)

h
− 1

h

∫
σj

ν
∂(div u)

∂n
ds

− 1

h

∫
σj

u·tω ds+
1

h

∫
σj

∂p

∂n
ds =

1

h

∫
σj

f ·n ds,
(6)

where the positive direction is from A to B. For the discretization of this equation
we replace ω(A) and ω(B) by the discrete curls ω′A and ω′B at the nodes, approx-
imate the normal derivative of div u by the finite difference of the discrete divs
(Du)C and (Du)D at the centers C and D and use the average of ω′A and ω′B to
approximate the vorticity in the integral. Then we have

ν
ω′B − ω′A

h
− ν (Du)D − (Du)C

h
− utj

(ω′B + ω′A)

2
+
p′D − p′C

h
= fj ,(7)

where p′C and p′D are the discrete pressure defined at the centers of the primal cells,
fj is the right-hand side of (6) and utj is the tangential component computed as

utj :=
1

4
(ũja + ũjb + ũjc + ũjd).(8)
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The tilde here means a positive sign if the corresponding dual edge (σ′ja , . . . , σ
′
jd

)
has the same direction as σj and a negative sign otherwise. Note that

‖ut‖W,p ≤ ‖u‖W,p for 2 ≤ p <∞,(9)

where ut ∈ RE is the tangential vector with utj as components.
The discretization of the incompressibility condition and the boundary condition

are similar; we have

Du = 0,(10)

u|Γ = ut|Γ = 0.(11)

Equation (7) contains a term ω′B + ω′A for each primal edge. Regarded as an
element of RE , the W norm of this vector can be estimated by

‖ω′B + ω′A‖W ≤ ‖ω′B‖W + ‖ω′A‖W .

The following lemma gives a relation between the W norm and A′ norm of this
vector.

Lemma 1. Let ω′B and ω′A denote the RE vectors which take the values of ω′ at the
nodes corresponding to the positive and negative direction of the edges, respectively.
Then

‖ω′B‖2W + ‖ω′A‖2W = 4‖ω′‖2A′ .(12)

Proof. Let Ej(B) and Ej(A) denote the sets of primal edges with node νk as their
high and low node numbers respectively. Then

ω′2k
∑
Ej(B)

hh′j + ω′2k
∑
Ej(A)

hh′j = ω′2k
∑
Ej

hh′j = 4ω′2k A
′
k,

where Ej is the set of primal edges connected to node νk. Taking the summation
over all nodes, we get (12).

Lemma 2. Assume u ∈ U0 satisfies the equations

Cu = ω′,

Du = g,
∑
i

giAi = 0,

u|Γ = 0

and 2 ≤ p <∞. Then there exists a constant σ independent of h such that

‖u‖W,p ≤ σ(‖ω′‖A′ + ‖g‖A).

Proof. Define a piecewise constant function with values ω′k in interior dual cells τ ′k
and zero in the boundary dual cells. We will use the same notation ω′ for this
function as for its values. Define a piecewise constant function which is a constant
gi in cell τi and also denote this function by g. Consider the following problem:

curl u∗ = ω′,

div u∗ = g,

∫
Ω

g dxdy = 0,

u∗·n|Γ = 0.
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Define u∗ by

u∗j =
1

h

∫
σj

u∗·n ds.

Then by [5, Theorem 6.1] we have

‖u− u∗‖W ≤ Kh|u∗|1,Ω.

Here and below, K denotes a generic constant. It follows that

‖u− u∗‖pW,p =
∑
σj∈Ω̄

(uj − u∗j )phh′j

≤ K

∑
σj∈Ω̄

(uj − u∗j )2hh′jh
4/p−2

p/2

= Kh2−p‖u− u∗‖pW .

Thus,

‖u− u∗‖W,p ≤ h2/p−1‖u− u∗‖W
≤ Kh2/p|u∗|1,Ω.

(13)

Define ū∗ ∈ U by

ū∗j :=
1

|κj |

∫
κj

u∗·n dxdy,

where κj is the kite area associated with σj and σ′j . By mapping κj to a standard

kite κ̂, we can see that ū∗j − u∗j is bounded on H1(κ̂) and vanishes for constant
functions. Then from standard approximation theory we have the estimate

‖ū∗ − u∗‖W ≤ Kh|u∗|1,Ω
and therefore

‖ū∗ − u∗‖W,p ≤ Kh2/p|u∗|1,Ω.(14)

On the other hand, ∣∣∣∣∣ 1

|κj|

∫
κj

u∗·n dxdy
∣∣∣∣∣ =

∣∣∣∣ 1

|κ̂|

∫
κ̂

û∗·n̂ dx̂dŷ
∣∣∣∣

≤ K
(∫

κ̂

|û∗|p
)1/p

≤ Kh−2/p‖u∗‖0,p,κj
and then

‖ū∗‖W,p ≤ K

∑
j

h−2‖u∗‖p0,p,κjh
2

1/p

≤ K‖u∗‖0,p,Ω
≤ K‖u∗‖1,Ω.

(15)
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Combining (13), (14) and (15), we get

‖u‖W,p ≤ ‖u− u∗‖W,p + ‖u∗ − ū∗‖W,p + ‖ū∗‖W,p
≤ K‖u∗‖1,Ω.

Since u∗ · n vanishes on the boundary, ‖curl u∗‖0,Ω + ‖div u∗‖0,Ω is a norm for
H1(Ω) and is equivalent to norm ‖u∗‖1,Ω (see e.g. [2]). Therefore

‖u‖W,p ≤ K(‖curl u∗‖0,Ω + ‖div u∗‖0,Ω)

≤ σ(‖ω′‖A′ + ‖g‖A),

where σ is a constant independent of h.

Theorem 1. Let σ̃ = max{1, σ2}, and assume that the function f and the viscosity
ν are such that

16σσ̃‖f ‖W
ν2

≤ 1.

Then the discrete Navier-Stokes equations (7), (10) and (11) have a solution (u, p′).
Here, u is unique and p′ is unique apart from an additive constant.

Proof. Introduce a space V defined by

V := {v ∈ U0;Dv = 0}
and a trilinear form a1(u; v, w) defined by

a1(u; v, w) :=
∑
σj∈Ω̄

ujvjwjhh
′
j.

Taking the inner product of v ∈ V with equation (7) and using summation by parts,
we have

ν(v,Rω′)W − a1(ut; v,Mω′) = (v, f )W ∀v ∈ V ,
where the operator M is defined by (Mω′)j := (ω′B + ω′A)/2.

For the existence of the discrete velocity u, let um ∈ V be given; we look for
um+1 ∈ V satisfying the iteration scheme

ν(v,Rω′,m+1)W − a1(ut,m; v,Mω′,m+1) = (v, f )W ∀v ∈ V .
It is easy to show that there is a unique um+1 satisfying this iteration scheme. Take
v = um+1; we have

ν(um+1, Rω′,m+1)W − a1(ut,m;um+1,Mω′,m+1) = (um+1, f )W

and from Lemmas 1 and 2 we get

ν‖ω′,m+1‖2A′ ≤ ‖Mω′,m+1‖W‖um+1ut,m‖W + ‖um+1‖W‖f ‖W
≤ 2‖ω′,m+1‖A′‖um+1ut,m‖W + σ‖ω′,m+1‖A′‖f ‖W .

By (9) and Lemma 2 with p = 4 this leads to

ν‖ω′,m+1‖A′ ≤ 2‖um+1ut,m‖W + σ‖f ‖W
≤ 2‖um+1‖W,4‖ut,m‖W,4 + σ‖f ‖W
≤ 2‖um+1‖W,4‖um‖W,4 + σ‖f ‖W
≤ 2σ‖ω′,m+1‖A′‖ω′,m‖A′ + σ‖f ‖W
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or

‖ω′,m+1‖A′ ≤
σ‖f ‖W

ν − 2σ‖ω′,m‖A′
.(16)

Taking ω′,0 such that ‖ω′,0‖A′ ≤ 2σ‖f ‖W/ν we conclude that

‖ω′,m+1‖A′ ≤
2σ‖f ‖W

ν
.(17)

Since ω′,m is bounded, by Lemma 2 with p = 2 we know that the sequence {um}
is also bounded. Since {um} is a sequence in RE , we may extract a subsequence
{ums} which converges to u in RE . Therefore ω′,m converges to ω′ = Cbu and u
satisfies

ν(Cbv, Cbu)W − a1(ut; v,Mω′) = (v, f )W ∀v ∈ V .(18)

By taking the limit in (17) we get a bound for ω′:

‖ω′‖A′ ≤
2σ‖f ‖W

ν
.(19)

To prove the uniqueness, let ũ be another solution satisfying (18) and (19) and
define ε := u− ũ. By taking the difference of the two equations and setting v = ε,
we have

ν(Cbε, Cbε)W − a1(ut; ε,Mω′) + a1(ũt; ε,Mω̃′) = 0.

Then using Lemmas 1 and 2, we get

ν‖Cbε‖2A′ ≤ a1(ut; ε,M(ω′ − ω̃′)) + a1(ut − ũt; ε,Mω̃′)

≤ 2‖ω′ − ω̃′‖A′‖utε‖W + 2‖ω̃′‖A′‖ε(ut − ũt)‖W
≤ 2‖Cbε‖A′‖ε‖W,4‖ut‖W,4 + 2‖ω̃′‖A′‖ε‖W,4‖ut − ũt‖W,4
≤ 2σ‖Cbε‖2A′‖u‖W,4 + 2σ‖ω̃′‖A′‖Cbε‖A′‖u− ũ‖W,4
≤ 2σ2‖Cbε‖2A′(‖ω′‖A′ + ‖ω̃′‖A′)

≤ ν

2
‖Cbε‖2A′ ,

which implies ‖Cbε‖A′ = 0 and therefore Cbε = 0. Since Dε = 0, by [5, Theorem
5.3] we have u = ũ.

We now prove the existence of the discrete pressure p′. Let

rj := ν(Rω′)j − utj(Mω′)j − fj , j = 1, . . . , E.

Since (r, v)W = 0 for v ∈ V , we have that r is orthogonal to V . By [5, Theorem
5.3] we have

U0 = V ⊕W,

where W = {u ∈ U0, Cu = 0}. Thus, r ∈ W, and there exists a p′ ∈ RT such that
r = Gp′ ([5, Theorem 5.1]). Here, p′ is unique up to a constant.
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4. Vorticity error estimate

We will need the following lemma for estimating the vorticity error.

Lemma 3. Assume that u ∈ H2(Ω) and ω ∈ H2(Ω). Let ωa and ωb denote the
values of ω defined at arbitrary points Pk, Qk ∈ τ ′k (or κj). Then for h small enough
we have

‖ωa − ωb‖A′ ≤ Kh|u|2,Ω
and

‖ωa − ωb‖W ≤ Kh|u|2,Ω.

Proof. Let sk denote the unit vector in the direction of the segment rk = PkQk,
and let r̂ denote the image of rk in τ̂ ′. Then we have

|ω(Qk)− ω(Pk)| =
∣∣∣∣∣
∫ Qk

Pk

∂ω

∂sk
ds

∣∣∣∣∣
≤ (2h)1/2

∥∥∥∥ ∂ω∂sk
∥∥∥∥

0,rk

≤ K
∥∥∥∥ ∂ω̂∂ŝk

∥∥∥∥
0,r̂

≤ K
∥∥∥∥ ∂ω̂∂ŝk

∥∥∥∥
1,τ̂ ′

≤ K(|ω|1,τ ′
k

+ h|ω|2,τ ′
k
).

It follows that ∑
τ ′
k
∈Ω̄

|ω(Qk)− ω(Pk)|2h2 ≤ Kh2(|ω|21,Ω + h2|ω|22,Ω).

Now choose h such that h|ω|2,Ω ≤ |ω|1,Ω to obtain∑
τ ′
k
∈Ω̄

|ω(Qk)− ω(Pk)|2A′k

1/2

≤ Kh|u|2,Ω,

where K is a constant independent of h. The other estimate is similar.

Theorem 2. Under the hypotheses of Theorem 1, and assuming that u ∈ H2(Ω),
ω ∈ H2(Ω) and

σ̄ =
4σ3

ν2
‖f ‖W +

2σ‖u‖C(Ω)

ν
< 1,

the following estimate holds :

‖ω′ − ω̄‖A′ ≤ K(u, p, f , ν)h,

where ω̄ ∈ RN is the average of the vorticity over the dual cells, ‖·‖C(Ω) is the usual
sup norm and the constant K depends on ‖u‖2,Ω, |p|2,Ω, ‖f ‖W , and ν but not
on h.



38 R. A. NICOLAIDES AND X. WU

Proof. The exact solution of the Navier-Stokes equations satisfies

curl u = ω,

div u = 0,

u·n|Γ = 0.

The discrete covolume solutions of the Navier-Stokes equations satisfy

Cbu = ω′,

Du = 0,

u|Γ = 0.

Let u(1) be defined by

u
(1)
j :=

1

h

∫
σj

u·n ds.

For convenience, we use the following notations:

µ

(
∂p

∂n

)
∈ RE ,

(
µ

(
∂p

∂n

))
j

:=
1

h

∫
σj

∂p

∂n
ds,

Z ∈ RE , Zj :=
1

h

∫
σj

u·tω ds,

Z ′ ∈ RE , Z ′j := utj(Mω′)j .

Taking the difference of equation (6) and equation (7), we get

ν(R(ω − ω′))j − (Zj − Z ′j) +

(
µ

(
∂p

∂n

))
j

− (Gp′)j = 0.

Let ε := u(1) − u and assume that u(1) has zero tangential components on Γ. We
have

νRCbε = Z − Z ′ − µ
(
∂p

∂n

)
+Gp′ − νR(ω − Cbu(1)),

and taking the inner product with ε, we conclude that

ν(ε,RCbε)W = (ε, Z − Z ′)W + (ε,Gp′)W −
(
ε, µ

(
∂p

∂n

))
W

− ν(ε,R(ω − Cbu(1)))W .

Using summation by parts, and since Dε = 0, we have

ν‖Cbε‖2A′ = (ε, Z − Z ′)W −
(
ε, µ

(
∂p

∂n

)
−Gp̄

)
W

− ν(Cbε, ω − Cbu(1))A′

≤ |(ε, Z − Z ′)W |+ ‖ε‖W
∥∥∥∥µ( ∂p∂n

)
−Gp̄

∥∥∥∥
W

+ ν‖Cbε‖A′‖ω − Cbu(1)‖A′

≤ |(ε, Z − Z ′)W |+ ‖Cbε‖A′
(
σ

∥∥∥∥µ( ∂p∂n
)
−Gp̄

∥∥∥∥
W

+ ν‖ω − Cbu(1)‖A′
)
,

where p̄ is the average of p over the primal cells defined by

p̄|τi :=
1

Ai

∫
τi

p dxdy.
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For the nonlinear term, we have

(ε, Z − Z ′)W =
∑
σj∈Ω̄

εj

(
1

h

∫
σj

u·tω ds− utj(Mω′)j

)
hh′j

=
∑
σj∈Ω̄

εj
1

h

∫
σj

u·t(ω − (Mω′)j) dshh
′
j

+
∑
σj∈Ω̄

εj
1

h

∫
σj

(u·t− utj)(Mω′)j dshh
′
j

=: I1 + I2.

For the first term we have

I1 =
∑
σj∈Ω̄

εj
1

h

∫
σj

u·t(ω − (Mω′)j) dshh
′
j

≤ ‖ε‖W

∑
σj∈Ω̄

(
1

h

∫
σj

u·t(ω − (Mω′)j) ds

)2

hh′j

1/2

≤ ‖ε‖W‖u‖C(Ω)

∑
σj∈Ω̄

(
1

h

∫
σj

|ω − (Mω′)j | ds
)2

hh′j

1/2

≤ ‖ε‖W‖u‖C(Ω)


∑
σj∈Ω̄

(
1

h

∫
σj

|ω − (Mω)j | ds
)2

hh′j

1/2

+

∑
σj∈Ω̄

(
1

h

∫
σj

|(Mω −MCbu
(1))j | ds

)2

hh′j

1/2

+

∑
σj∈Ω̄

(
1

h

∫
σj

|(MCbu
(1) −Mω′)j | ds

)2

hh′j

1/2


= ‖ε‖W‖u‖C(Ω)

∑
σj∈Ω̄

(
1

h

∫
σj

|ω − (Mω)j | ds
)2

hh′j

1/2

+ ‖ε‖W‖u‖C(Ω)(‖M(ω − Cbu(1))‖W + ‖M(Cbu
(1) − ω′)‖W ),

where ‖·‖C(Ω) is the usual sup norm. Since ω ∈ H2(Ω), there exists a point Pj ∈ σj
such that

(Mω)j = ω(Pj),

and therefore there exists another point Qj ∈ σj such that

1

h

∫
σj

|ω − (Mω)j | ds = |ω(Qj)− ω(Pj)|.
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Then from Lemma 3 we get∑
σj∈Ω̄

(
1

h

∫
σj

|ω − (Mω)j| ds
)2

hh′j

1/2

≤ Kh|u|2,Ω,

where K is a constant independent of h. Hence, we have the estimate for I1:

I1 ≤ ‖ε‖W‖u‖C(Ω)(Kh|u|2,Ω + ‖M(ω − Cbu(1))‖W + ‖M(Cbu
(1) − ω′)‖W )

≤ σ‖Cbε‖A′‖u‖C(Ω)(Kh|u|2,Ω + 2‖ω − Cbu(1)‖A′ + 2‖Cbε‖A′).

For the second term we have

|I2| =

∣∣∣∣∣∣
∑
σj∈Ω̄

εj
1

h

∫
σj

(u·t− utj)(Mω′)j dshh
′
j

∣∣∣∣∣∣
≤ ‖Mω′‖W‖ε‖W,4

∑
σj∈Ω̄

(
1

h

∫
σj

(u·t− utj) ds
)4

hh′j

1/4

.

Referring to the tangential components as defined by (8), we introduce

ūtj :=
1

4
(ũ

(1)
ja

+ ũ
(1)
jb

+ ũ
(1)
jc

+ ũ
(1)
jd

),

where the tilde has the same meaning as in (8). Then we have∑
σj∈Ω̄

(
1

h

∫
σj

(u·t− utj) ds
)4

hh′j

1/4

≤

∑
σj∈Ω̄

(
1

h

∫
σj

(u·t− ūtj) ds
)4

hh′j

1/4

+

∑
σj∈Ω̄

(
1

h

∫
σj

(ūtj − utj) ds
)4

hh′j

1/4

.

It follows from standard approximation theory that∑
σj∈Ω̄

(
1

h

∫
σj

(u·t− ūtj) ds
)4

hh′j

1/4

≤ Kh‖u‖2,Ω,

where K is a constant independent of h. From (9) we have∑
σj∈Ω̄

(
1

h

∫
σj

(ūtj − utj) ds
)4

hh′j

1/4

= ‖ūt − ut‖W,4

≤ ‖u(1) − u‖W,4
≤ σ‖Cbε‖A′ .

We now have the estimate for I2:

|I2| ≤ ‖Mω′‖W‖ε‖W,4(Kh‖u‖2,Ω + σ‖Cbε‖A′)
≤ 2σ‖ω′‖A′‖Cbε‖A′(Kh‖u‖2,Ω + σ‖Cbε‖A′),
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and the estimate for the nonlinear term becomes

|(ε, Z − Z ′)| ≤ σ‖Cbε‖A′‖u‖C(Ω)(Kh|u|2,Ω + 2‖ω − Cbu(1)‖A′ + 2‖Cbε‖A′)
+ 2σ‖Cbε‖A′‖ω′‖A′(Kh‖u‖2,Ω + σ‖Cbε‖A′)

= 2σ‖Cbε‖2A′(‖u‖C(Ω) + σ‖ω′‖A′) +Kh‖Cbε‖A′‖u‖2,Ω‖ω′‖A′

+Kh‖Cbε‖A′‖u‖2,Ω‖u‖C(Ω) + 2σ‖Cbε‖A′‖u‖C(Ω)‖ω − Cbu(1)‖A′ .

Hence,

ν‖Cbε‖A′ ≤ ‖Cbε‖A′(2σ‖u‖C(Ω) + 2σ2‖ω′‖A′) + σ

∥∥∥∥µ( ∂p∂n
)
−Gp̄

∥∥∥∥
W

+ (ν + 2σ‖u‖C(Ω)‖ω − Cbu(1)‖A′ +Kh‖u‖2,Ω(‖u‖C(Ω) + ‖ω′‖A′),

which leads to

‖Cbε‖A′ ≤
Kh

ν(1− σ̄)
+

K

ν(1− σ̄)

(
‖ω − Cbu(1)‖A′ +

∥∥∥∥µ( ∂p∂n
)
−Gp̄

∥∥∥∥
W

)
,(20)

where

σ̄ =
4σ3

ν2
‖f ‖W +

2σ‖u‖C(Ω)

ν
< 1.

By standard approximation theory, we have∥∥∥∥µ( ∂p∂n
)
−Gp̄

∥∥∥∥
W

≤ Kh|p|2,Ω.

Define u(2) and ω̄ by

u
(2)
j :=

1

h

∫
σ′
j

u·n ds, ω̄k :=
1

A′k

∫
τ ′
k

ω, νk ∈ Ω,

and follow the remark after [5, Theorem 6.1]; we have

‖ω̄ − Cbu(1)‖A′ ≤ Kh−1‖u(2) − u(1)‖W
≤ Kh‖u‖2,Ω.

Therefore, by standard approximation theory, we get

‖ω − Cbu(1)‖A′ ≤ ‖ω − ω̄‖A′ + ‖ω̄ − Cbu(1)‖A′
≤ Kh|u|2,Ω.

Finally, we have the vorticity error estimate

‖ω′ − ω̄‖A′ ≤ ‖Cbε‖A′ + ‖ω̄ − Cbu(1)‖A′
≤ K(u, p, f , ν)h,

where K depends on ‖u‖2,Ω, |p|2,Ω, ‖f ‖W and ν but not on h. This finishes the
proof of Theorem 2.
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5. Pressure error estimate

We begin by recalling the following standard result:

Lemma 4. The equation

div v = f ∈ L2
0(Ω)

has a solution v ∈H1
0(Ω) satisfying

‖v‖1,Ω ≤ K‖f ‖0,Ω.

Proof. The proof of this lemma may be found in [2, p. 22].

We will apply this result with

f := p̄− p′ ∈ L2
0(Ω),

where the right side denotes the piecewise constant function with these values in
each cell. Clearly,

‖p̄− p′‖0,Ω = ‖p̄− p′‖A,

so that

‖v‖1,Ω ≤ K‖p̄− p′‖A.

Next, we introduce v(1) and v∗ defined as follows:

v(1)|σj :=
1

h

∫
σj

v·n ds, σj ∈ Ω̄,

v∗|σ′
j

:=
1

h

∫
σ′
j

v·n ds, σ′j ∈ Ω̄.

Use of the divergence theorem shows that

Dv(1) = p̄− p′.
In addition, we have

‖v(1)‖W ≤ K‖v‖1,Ω ≤ K‖p̄− p′‖A.

Only the first inequality is new. To prove it, consider the linear functional

Bv :=
1

h

∫
σj

v·n ds.

By mapping κj to a standard kite κ̂, we have that Bv is bounded on H1(κ̂). Then
mapping κ̂ back to κj gives the result.

Now we have

(Cbv
∗)k =

1

A′k

∫
∂A′

k

v·t ds =
1

τ ′k

∫
τ ′
k

curl v dxdy,

from which it follows that

‖Cbv∗‖2A′ ≤ ‖curl v‖20,Ω ≤ ‖v‖21,Ω ≤ K‖p̄− p′‖2A.(21)

We will need an estimate for ‖Cbv(1)‖A′ . To obtain it, we first note the estimate

‖v∗ − v(1)‖W ≤ Kh‖v‖1,Ω.
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The proof of this is given in [5]. Then

‖Cbv(1)‖A′ ≤ ‖Cb(v∗ − v(1))‖A′ + ‖Cbv∗‖A′

≤ K

h
‖v∗ − v(1)‖W + ‖Cbv∗‖A′

≤ K‖p̄− p′‖A,

where (21) was used.

Theorem 3. Under the assumptions of Theorems 1 and 2, we have the following
estimate:

‖p′ − p̄‖A ≤ K(u, p, f , ν)h,

where K depends on ‖u‖2,Ω, |p|2,Ω, ‖f ‖W and ν but not on h.

Proof. Taking the inner product of v(1) with the basic error equation gives

(v(1), νR(ω − ω′))W − (v(1), Z − Z ′)W + (v(1), G(p̄− p′))W

=

(
v(1), Gp̄− µ

(
∂p

∂n

))
W

.

Using summation by parts, we obtain

‖p̄− p′‖2A ≤ ν‖Cbv(1)‖A′‖ω − ω′‖A′ + ‖v(1)‖W
∥∥∥∥Gp̄− µ( ∂p∂n

)∥∥∥∥
W

+ |(v(1), Z − Z ′)W |.
For the nonlinear term, similarly to the estimates of I1 and I2, we get

|(v(1), Z − Z ′)| ≤ ‖v(1)‖W‖u‖C(Ω)(Kh|u|2,Ω + 2‖ω − Cbu(1)‖A′ + 2‖Cbε‖A′)
+ 2‖v(1)‖W,4‖ω′‖A′(Kh‖u‖2,Ω + σ‖Cbε‖A′).

Using (20) and the approximation error estimates, we have

|(v(1), Z − Z ′)| ≤ K(u, p, f , ν)h(‖v(1)‖W + ‖v(1)‖W,4).

To get a bound for ‖v(1)‖W,4, we introduce v̄ ∈ U defined on each κj by

v̄|κj :=
1

|κj|

∫
κj

v·n dxdy.

Clearly, v
(1)
j − v̄j is bounded on H1(κ̂) and vanishes for constant functions. Then

|v(1)
j − v̄j | ≤ K|v|1,κj ,

and therefore

‖v(1) − v̄‖W,4 ≤ K

∑
j

|v|41,κjhh
′
j

1/4

≤ Kh1/2

∑
j

|v|41,κj

1/4

≤ Kh1/2|v|1,Ω.
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On the other hand,

|v̄j | =
∣∣∣∣ 1

|κ̂|

∫
κ̂

v̂·n̂ dx̂dŷ
∣∣∣∣ ≤ K|v̂|0,4,κ̂,

and therefore

‖v̄‖W,4 ≤ Kh−1/2

∑
j

|v|40,4,κjhh
′
j

1/4

≤ K|v|0,4,Ω
≤ K‖v‖1,Ω.

Hence, we have

‖v(1)‖W,4 ≤ ‖v(1) − v̄‖W,4 + ‖v̄‖W,4
≤ K‖v‖1,Ω
≤ K‖p̄− p′‖A.

Then for the nonlinear term, we get

|(v(1), Z − Z ′)| ≤ K(u, p, f , ν)h‖p̄− p′‖A.
Using the estimate for the vorticity and the approximation error estimates, we

get the estimate for pressure,

‖p′ − p̄‖A ≤ K(u, p, f , ν)h,

where K depends on ‖u‖2,Ω, |p|2,Ω, ‖f ‖W and ν but not on h.
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