A CAPITULATION PROBLEM AND GREENBERG'S CONJECTURE ON REAL QUADRATIC FIELDS

T. FUKUDA AND K. KOMATSU

Abstract

We give a sufficient condition in order that an ideal of a real quadratic field F capitulates in the cyclotomic \mathbb{Z}_{3}-extension of F by using a unit of an intermediate field. Moreover, we give new examples of F 's for which Greenberg's conjecture holds by calculating units of fields of degree $6,18,54$ and 162.

1. Introduction

Let p be a prime number, F a totally real number field, F_{∞} the cyclotomic $\mathbb{Z}_{p^{-}}$extension of F and F_{n} the nth layer of F_{∞} / F. Let A_{n} be the p-part of the ideal class group of F_{n}. In [1], Greenberg showed the following:

Proposition . Assume that only one prime of F lies over p and that this prime is totally ramified in F_{∞} / F. Then the following two statements are equivalent.
(1) Every ideal class of A_{0} becomes trivial in A_{n} for some n.
(2) The order of A_{n} is bounded as $n \rightarrow \infty$.

In this paper, we treat the case that F is a real quadratic field and $p=3$. In $\S 2$ we give a sufficient condition for (1) by using a unit in F_{n}. In $\S 3$ we give a method of finding the above unit.

2. Theorem

We put $\zeta_{3^{n}}=e^{2 \pi \sqrt{-1} / 3^{n}}$ for a positive integer n. Our main purpose of this section is to prove the following theorem which plays a fundamental role in the next section.

Theorem . Let F be a real quadratic field. Let $F_{n}=F\left(\zeta_{3^{n+1}}\right) \cap \mathbb{R}, G\left(F_{n} / \mathbb{Q}\right)=$ $\langle\sigma\rangle$ the Galois group F_{n} over \mathbb{Q}, ε a fundamental unit of F and A_{n} the 3-part of the ideal class group of F_{n}. We assume that 3 divides the class number h_{F} of F and that 3 does not split in F / \mathbb{Q}. If there exists a unit η of F_{n} such that $\eta^{1+\sigma}$ is a cube of an element of F_{n} and that neither η nor $\eta \varepsilon$ nor $\eta \varepsilon^{2}$ is a cube of an element of F_{n}, then the natural mapping of A_{0} to A_{n} is not injective.

Let $F_{n}^{*}=F\left(\zeta_{3^{n+1}}\right)$ and F^{\prime} be the imaginary quadratic field contained in F_{0}^{*} such that $F^{\prime} \cap \mathbb{Q}(\sqrt{-3})=\mathbb{Q}$. Let M be the maximal abelian 3-extension of F_{0}^{*} unramified outside $3, X=G\left(M / F^{\prime}\right)$ and ρ the complex conjugation. We put

[^0]$X^{+}=\left\{x \in X \mid \rho^{-1} x \rho=x\right\}$. Let M^{-}be the intermediate field between F_{0}^{*} and M corresponding to X^{+}. For a real number α, we denote by $\sqrt[3]{\alpha}$ the real number whose cube is α. Even though the following Lemma 2.1 is well known, for completeness we give a proof.
Lemma 2.1. Let α be an element of F. If $F_{0}^{*}(\sqrt[3]{\alpha}) \subset M$, then $F_{0}^{*}(\sqrt[3]{\alpha}) \subset M^{-}$.
Proof. Let σ be an element of X^{+}with $\sqrt[3]{\alpha}=\sqrt[3]{\alpha} \zeta$, where ζ is a cubic root of unity. Then we have $\sqrt[3]{\alpha}{ }^{\rho \sigma \rho^{-1}}=(\sqrt[3]{\alpha} \zeta)^{\rho^{-1}}=\sqrt[3]{\alpha} \zeta^{-1}=\sqrt[3]{\alpha}=\sqrt[3]{\alpha} \zeta$. Hence we have $\zeta=1$. This shows $\sqrt[3]{\alpha} \in M^{-}$.

For an ideal \mathfrak{A} of F, we denote by $\overline{\mathfrak{A}}$ the ideal class of F which contains \mathfrak{A}. Let $\overline{\mathfrak{A}}_{1}, \ldots, \overline{\mathfrak{A}}_{r}$ be a basis of $\left\{a \in A_{0} \mid a^{3}=1\right\}, \mathfrak{A}_{i}^{3}=\left(\alpha_{i}\right)$ and k the intermediate field between F_{0}^{*} and M corresponding to $X^{3}=\left\{x^{3} \mid x \in X\right\}$. Then under the assumption that 3 does not split in F / \mathbb{Q} we have by Lemma 2.1 the following result.
Lemma 2.2 (cf. [1, p. 281]). Let k^{-}be the field $k \cap M^{-}$. Then we have $k^{-}=$ $F_{0}^{*}\left(\sqrt[3]{3}, \sqrt[3]{\varepsilon}, \sqrt[3]{\alpha_{1}}, \ldots, \sqrt[3]{\alpha_{r}}\right)$.

The following is well known (cf. [1, p. 280]):
Lemma 2.3. Let σ be a generator of the Galois group $G\left(F_{n}^{*} / F^{\prime}\right)$ and α be a nonzero element of F_{n}^{*} such that there exists an element β with $\alpha^{\sigma}=\alpha^{-1} \beta^{3}$. Then $F_{n}^{*}(\sqrt[3]{\alpha})$ is an abelian extension of F^{\prime}.
Proof of the Theorem. Since $\eta^{1-\sigma^{2}}=\left(\eta^{1+\sigma}\right)^{1-\sigma}$, there exists an element β of F_{n} with $\eta^{1-\sigma^{2}}=\beta^{3}$. Hence we have $N_{F_{n} / F_{0}}\left(\beta^{3}\right)=1$, which means $N_{F_{n} / F_{0}}(\beta)=1$. Hence there exists an element γ of F_{n} with $\beta=\gamma^{1-\sigma^{2}}$, which shows $\eta \gamma^{-3} \in F_{0}$. This shows $F_{n}^{*}(\sqrt[3]{\eta})=F_{n}^{*}\left(\sqrt[3]{\eta \gamma^{-3}}\right)=F_{n}^{*} F_{0}^{*}\left(\sqrt[3]{\eta \gamma^{-3}}\right)$. Since $F_{n}^{*}(\sqrt[3]{\eta})$ is an abelian 3 -extension of F_{0}^{*} unramified outside 3 by Lemma 2.3 and since $\eta \gamma^{-3} \in F_{0}^{*}$, we have $F_{0}^{*}\left(\sqrt[3]{\eta \gamma^{-3}}\right) \subset k^{-}=F_{0}^{*}\left(\sqrt[3]{3}, \sqrt[3]{\varepsilon}, \sqrt[3]{\alpha_{1}}, \ldots, \sqrt[3]{\alpha_{r}}\right)$ by Lemmas 2.1 and 2.2. Hence there exist integers $n_{1}, n_{2}, \ldots, n_{r}, n$ and an element δ of F_{0} with $\eta \gamma^{-3}=$ $\alpha_{1}^{n_{1}} \cdots \alpha_{r}^{n_{r}} \varepsilon^{n} \delta^{3}$ by Lemma 2.2. This shows by the assumption on η that $\mathfrak{A}_{1}^{n_{1}} \cdots \mathfrak{A}_{r}^{n_{r}}$ is not principal in F_{0} but principal in F_{n}.

3. Method of finding η

In this section, we explain how to compute and find a unit η in the theorem. Let E_{n} be the unit group of F_{n} and $r=2 \cdot 3^{n}-1$. If a basis $\left\{\varepsilon_{1} E_{n}^{3}, \ldots, \varepsilon_{r} E_{n}^{3}\right\}$ of E_{n} / E_{n}^{3} is obtained, without loss of generality, η can be written in the form $\eta=\varepsilon_{1}^{e_{1}} \cdots \varepsilon_{r}^{e_{r}}$ with $0 \leq e_{i} \leq 2$. Therefore, we can decide whether or not such an η exists by examining all the combinations of $\left\{e_{1}, \ldots, e_{r}\right\}$. If $n=1$, we can obtain fundamental units of F_{1} (cf. [3]) and can use this direct algorithm. But it is hard to obtain a basis of E_{n} / E_{n}^{3} for $n \geq 2$. So we proceed as follows.

For an element ξ of F_{n}, we denote $\xi^{\sigma^{i}}$ by ξ_{i}. Let C_{n} be the cyclotomic unit group of F_{n}. First we assume that there exists an element $\xi \in C_{n}$ such that $C_{n}=$ $\left\langle-1, \xi_{0}, \ldots, \xi_{r-1}\right\rangle$. Moreover, we assume that the 3 -Sylow subgroup $\left(E_{n} / C_{n}\right)_{3}$ of E_{n} / C_{n} is cyclic of order 3^{n}. Under these assumptions, we determine the form of $\alpha \in E_{n}$ which satisfies $\left(E_{n} / C_{n}\right)_{3}=\left\langle\alpha C_{n}\right\rangle$ and $\alpha^{1+\sigma} \in E_{n}^{3}$. From the assumption $A_{0} \neq 1$, there exists $\gamma \in E_{0}$ such that

$$
\gamma^{3}=\prod_{i=0}^{3^{n}-1} \xi_{2 i}
$$

Assume that $\left(E_{n} / C_{n}\right)_{3}=\left\langle\alpha C_{n}\right\rangle$ and $\alpha^{1+\sigma}=\beta^{3}$ for some $\beta \in E_{n}$. Since the order of $\left(E_{n} / C_{n}\right)_{3}$ is 3^{n}, we see that $\alpha^{3^{n-1}}=\gamma u, \beta=\alpha^{e} v$ for some $u, v \in C_{n}$ and $e \in \mathbb{N}$. Then

$$
u^{1+\sigma}= \pm\left(\alpha^{3^{n-1}}\right)^{1+\sigma}= \pm \beta^{3^{n}}= \pm \alpha^{e 3^{n}} v^{3^{n}} \equiv(\gamma u)^{3 e}=\prod_{i=0}^{3^{n}-1} \xi_{2 i}^{e} u^{3 e} \quad\left(\bmod C_{n}^{3^{n}}\right)
$$

We write $u=\xi_{0}^{e_{0}} \cdots \xi_{r-1}^{e_{r-1}}$ with $e_{i} \in \mathbb{Z}$ and substitute this in both sides of the above congruence relation. Since $\xi_{r}= \pm\left(\xi_{0} \cdots \xi_{r-1}\right)^{-1}$, we obtain the following system of simultaneous equations:

$$
e_{i-1}+e_{i}-e_{r-1} \equiv \begin{cases}e+3 e e_{i} & \text { if } i \text { is even } \\ 3 e e_{i} & \text { if } i \text { is odd }\end{cases}
$$

Here the congruence is modulo 3^{n} and $e_{-1}=0$. This equation is easily solved. In fact, if we put $x=e_{r-1}$ and $y=e$, then we can represent all e_{i} by x and y. Now, we fix x to be 0 and vary y from 0 to $3^{n}-1$. If we find that γu is contained in $E_{n}^{3^{n-1}}$ for some y, then we put $\eta=(\gamma u)^{1 / 3^{n-1}}$. It is easy to check whether $\eta, \eta \varepsilon$ or $\eta \varepsilon^{2}$ is a cube in E_{n}.

A Galois generator ξ of C_{n} is hard to find. But we know the cyclotomic unit of Hasse (cf. [2]) which generates a fairly large subgroup of C_{n}. So, we execute the above procedure by letting ξ to be Hasse's unit. We will be able to find η by this method with some luck.

4. Examples

Let $F=\mathbb{Q}(\sqrt{m})$ where m is a positive square-free integer congruent to 2 modulo 3 . There are 207 m 's less than 10000 which satisfy $\left|A_{0}\right|=3$. We denote $\operatorname{Ker}\left(A_{0} \longrightarrow A_{n}\right)$ by H_{n}. We used a computer to implement the above method for these F 's and fortunately found η and conclude that $H_{n} \neq 1$ for many F 's. We show the results of our computation in Table 1 (next page). The proposition in $\S 1$ implies that if $m \equiv 2(\bmod 3),\left|A_{0}\right|=3$, and $H_{n} \neq 1$ for some $n \geq 1$, then the order of A_{n} is bounded, namely, Greenberg's conjecture is valid for F, and the Iwasawa invariant $\lambda_{3}(F)$ is zero. A question mark in the table means that we do not know the value. For example, we got $\left|H_{1}\right|=1$ when $m=899$ (cf. the remark below). So we searched $\eta \in F_{2}$ with the method of $\S 3$ but could not find it. We cannot conclude whether $\left|H_{2}\right|$ is 1 or 3 . Next we pursued a calculation in F_{3} and found $\eta \in F_{3}$. Therefore $\left|H_{3}\right|=3$ and $\lambda_{3}(F)=0$.
Remark. Since $\left|H_{1}\right|=\left(E_{0}: N_{F_{1} / F_{0}}\left(E_{1}\right)\right)$, we can obtain the exact value of $\left|H_{1}\right|$ by computing E_{1} (cf. [3]). We note that $\left|H_{1}\right|=1$ for all m 's in Table 1 for which we could not find $\eta \in E_{1}$.

TABLE 1. All m 's satisfying $m \equiv 2(\bmod 3)$ and $\left|A_{0}\right|=3(m<10000)$

m	$\left\|H_{1}\right\|$	\| $H_{2} \mid$	$\left\|H_{3}\right\|$	$\left\|H_{4}\right\|$	$\lambda_{3}(F)$	m	$\left\|H_{1}\right\|$	\| $H_{2} \mid$	$\left\|H_{3}\right\|$	$\left\|H_{4}\right\|$	$\lambda_{3}(F)$
254	1	?	?	?	?	3221	3	3	3	3	0
257	3	3	3	3	0	3281	3	3	3	3	0
326	3	3	3	3	0	3287	3	3	3	3	0
359	3	3	3	3	0	3305	1	?	?	?	?
443	1	3	3	3	0	3419	3	3	3	3	0
473	1	?	?	?	?	3422	1	3	3	3	0
506	3	3	3	3	0	3482	3	3	3	3	0
659	3	3	3	3	0	3569	1	?	3	3	0
761	3	3	3	3	0	3590	3	3	3	3	0
785	1	?	3	3	0	3602	3	3	3	3	0
839	3	3	3	3	0	3803	3	3	3	3	0
842	3	3	3	3	0	3941	3	3	3	3	0
899	1	?	3	3	0	3962	3	3	3	3	0
1091	3	3	3	3	0	4001	3	3	3	3	0
1211	3	3	3	3	0	4094	3	3	3	3	0
1223	3	3	3	3	0	4106	3	3	3	3	0
1229	3	3	3	3	0	4151	3	3	3	3	0
1367	3	3	3	3	0	4193	3	3	3	3	0
1373	3	3	3	3	0	4238	1	3	3	3	0
1406	3	3	3	3	0	4283	3	3	3	3	0
1478	3	3	3	3	0	4286	1	?	3	3	0
1523	3	3	3	3	0	4355	3	3	3	3	0
1646	1	?	?	?	?	4367	3	3	3	3	0
1787	3	3	3	3	0	4481	1	3	3	3	0
1811	1	3	3	3	0	4493	3	3	3	3	0
1847	3	3	3	3	0	4511	1	3	3	3	0
1901	3	3	3	3	0	4649	3	3	3	3	0
1907	3	3	3	3	0	4670	3	3	3	3	0
1937	1	?	?	?	?	4706	3	3	3	3	0
2021	1	?	3	3	0	4778	3	3	3	3	0
2099	1	3	3	3	0	4841	3	3	3	3	0
2177	3	3	3	3	0	4853	3	3	3	3	0
2207	3	3	3	3	0	4886	3	3	3	3	0
2213	3	3	3	3	0	4907	1	3	3	3	0
2429	1	?	3	3	0	4910	3	3	3	3	0
2459	3	3	3	3	0	4934	3	3	3	3	0
2495	3	3	3	3	0	4970	3	3	3	3	0
2510	1	?	3	3	0	4982	3	3	3	3	0
2543	3	3	3	3	0	4994	3	3	3	3	0
2666	1	?	?	3	0	5042	3	3	3	3	0
2678	1	3	3	3	0	5063	1	?	?	?	?
2711	3	3	3	3	0	5081	1	?	?	3	0
2726	3	3	3	3	0	5099	3	3	3	3	0
2777	1	3	3	3	0	5102	3	3	3	3	0
2831	3	3	3	3	0	5255	3	3	3	3	0
2894	3	3	3	3	0	5261	3	3	3	3	0
2918	1	?	3	3	0	5297	1	?	?	3	0
2981	3	3	3	3	0	5303	3	3	3	3	0
2993	3	3	3	3	0	5327	3	3	3	3	0
3023	3	3	3	3	0	5333	3	3	3	3	0
3035	3	3	3	3	0	5369	3	3	3	3	0
3047	1	?	?	3	0	5477	3	3	3	3	0
3062	3	3	3	3	0	5621	3	3	3	3	0
3071	3	3	3	3	0	5738	3	3	3	3	0
3158	1	?	3	3	0	5741	3	3	3	3	0
3173	3	3	3	3	0	5798	3	3	3	3	0

TABLE 1 (continued)

m	$\left\|H_{1}\right\|$	$\left\|H_{2}\right\|$	$\left\|H_{3}\right\|$	$\left\|H_{4}\right\|$	$\lambda_{3}(F)$	m	$\left\|H_{1}\right\|$	$\left\|H_{2}\right\|$	$\left\|H_{3}\right\|$	$\left\|H_{4}\right\|$	$\lambda_{3}(F)$
5903	3	3	3	3	0	8282	1	$?$	3	3	0
5918	3	3	3	3	0	8285	3	3	3	3	0
5930	3	3	3	3	0	8306	3	3	3	3	0
5954	1	$?$	3	3	0	8339	1	$?$	$?$	3	0
6026	3	3	3	3	0	8363	1	3	3	3	0
6053	3	3	3	3	0	8399	3	3	3	3	0
6185	3	3	3	3	0	8426	3	3	3	3	0
6209	3	3	3	3	0	8438	3	3	3	3	0
6311	3	3	3	3	0	8447	3	3	3	3	0
6401	3	3	3	3	0	8519	3	3	3	3	0
6515	3	3	3	3	0	8543	3	3	3	3	0
6557	3	3	3	3	0	8597	3	3	3	3	0
6623	3	3	3	3	0	8603	3	3	3	3	0
6686	3	3	3	3	0	8711	1	$?$	$?$	$?$	$?$
6770	3	3	3	3	0	8735	3	3	3	3	0
6782	3	3	3	3	0	8789	3	3	3	3	0
6791	1	3	3	3	0	8837	1	3	3	3	0
6806	1	$?$	$?$	$?$	$?$	8909	3	3	3	3	0
6887	3	3	3	3	0	8930	3	3	3	3	0
6995	1	$?$	$?$	$?$	$?$	8999	3	3	3	3	0
7019	3	3	3	3	0	9062	3	3	3	3	0
7055	3	3	3	3	0	9086	3	3	3	3	0
7058	3	3	3	3	0	9149	3	3	3	3	0
7235	3	3	3	3	0	9155	3	3	3	3	0
7259	3	3	3	3	0	9215	3	3	3	3	0
7262	3	3	3	3	0	9218	3	3	3	3	0
7310	3	3	3	3	0	9278	3	3	3	3	0
7319	3	3	3	3	0	9281	3	3	3	3	0
7415	3	3	3	3	0	9293	3	3	3	3	0
7481	3	3	3	3	0	9323	3	3	3	3	0
7598	1	$?$	3	3	0	9413	3	3	3	3	0
7601	1	$?$	3	3	0	9419	3	3	3	3	0
7643	1	3	3	3	0	9467	3	3	3	3	0
7655	3	3	3	3	0	9479	3	3	3	3	0
7658	1	$?$	$?$	3	0	9551	3	3	3	3	0
7673	3	3	3	3	0	9578	1	3	3	3	0
7694	3	3	3	3	0	9590	1	$?$	$?$	3	0
7709	1	3	3	3	0	9659	1	3	3	3	0
7721	3	3	3	3	0	9710	3	3	3	3	0
7745	3	3	3	3	0	9749	3	3	3	3	0
7883	1	3	3	3	0	9830	3	3	3	3	0
7994	3	3	3	3	0	9833	3	3	3	3	0
8051	3	3	3	3	0	9869	3	3	3	3	0
8057	3	3	3	3	0	9902	3	3	3	3	0
8069	1	3	3	3	0	9905	3	3	3	3	0
8255	3	3	3	3	0	9926	1	$?$	$?$	3	0
8267	3	3	3	3	0	9995	1	$?$	3	3	0
8279	1	3	3	3	0						
						0					

Acknowledgments

The authors express their gratitude to the referee who pointed out that the Theorem is not correct without the assumption that 3 does not split in F / \mathbb{Q}. We also express our gratitude to Mr. H. Sumida. We could correct some errors in Table 1 by comparing our data with his computational results.

References

1. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. MR 53:5529
2. H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952. MR 14:141
3. S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math., vol. 797, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 82a:12004

Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan

E-mail address: fukuda@math.cit.nihon-u.ac.jp
Department of Mathematics, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan

[^0]: Received by the editor September 26, 1994 and, in revised form, February 11, 1995.
 1991 Mathematics Subject Classification. Primary 11R30, 11R22, 11Y40.
 Key words and phrases. Iwasawa invariants, real quadratic fields, unit groups, computation.

