
MATHEMATICS OF COMPUTATION
Volume 65, Number 213
January 1996, Pages 313–318

A CAPITULATION PROBLEM AND GREENBERG’S

CONJECTURE ON REAL QUADRATIC FIELDS

T. FUKUDA AND K. KOMATSU

Abstract. We give a sufficient condition in order that an ideal of a real
quadratic field F capitulates in the cyclotomic Z3-extension of F by using a
unit of an intermediate field. Moreover, we give new examples of F ’s for which
Greenberg’s conjecture holds by calculating units of fields of degree 6, 18, 54
and 162.

1. Introduction

Let p be a prime number, F a totally real number field, F∞ the cyclotomic Zp-
extension of F and Fn the nth layer of F∞/F . Let An be the p-part of the ideal
class group of Fn. In [1], Greenberg showed the following:

Proposition . Assume that only one prime of F lies over p and that this prime is
totally ramified in F∞/F . Then the following two statements are equivalent.

(1) Every ideal class of A0 becomes trivial in An for some n.
(2) The order of An is bounded as n→∞.

In this paper, we treat the case that F is a real quadratic field and p = 3. In §2
we give a sufficient condition for (1) by using a unit in Fn. In §3 we give a method
of finding the above unit.

2. Theorem

We put ζ3n = e2π
√
−1/3n for a positive integer n. Our main purpose of this

section is to prove the following theorem which plays a fundamental role in the
next section.

Theorem . Let F be a real quadratic field. Let Fn = F (ζ3n+1) ∩ R, G(Fn/Q) =
〈σ〉 the Galois group Fn over Q, ε a fundamental unit of F and An the 3-part of
the ideal class group of Fn. We assume that 3 divides the class number hF of F
and that 3 does not split in F/Q. If there exists a unit η of Fn such that η1+σ is a
cube of an element of Fn and that neither η nor ηε nor ηε2 is a cube of an element
of Fn, then the natural mapping of A0 to An is not injective.

Let F ∗n = F (ζ3n+1) and F ′ be the imaginary quadratic field contained in F ∗0
such that F ′ ∩ Q(

√
−3) = Q. Let M be the maximal abelian 3-extension of F ∗0

unramified outside 3, X = G(M/F ′) and ρ the complex conjugation. We put
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X+ = { x ∈ X | ρ−1xρ = x }. Let M− be the intermediate field between F ∗0
and M corresponding to X+. For a real number α, we denote by 3

√
α the real

number whose cube is α. Even though the following Lemma 2.1 is well known, for
completeness we give a proof.

Lemma 2.1. Let α be an element of F . If F ∗0 ( 3
√
α) ⊂M , then F ∗0 ( 3

√
α) ⊂M−.

Proof. Let σ be an element of X+ with 3
√
α
σ

= 3
√
αζ, where ζ is a cubic root of

unity. Then we have 3
√
α
ρσρ−1

= ( 3
√
αζ)ρ

−1

= 3
√
αζ−1 = 3

√
α
σ

= 3
√
αζ. Hence we

have ζ = 1. This shows 3
√
α ∈M−.

For an ideal A of F , we denote by Ā the ideal class of F which contains A. Let
Ā1, . . . , Ār be a basis of { a ∈ A0 | a3 = 1 }, A3

i = (αi) and k the intermediate
field between F ∗0 and M corresponding to X3 = { x3 | x ∈ X }. Then under the
assumption that 3 does not split in F/Q we have by Lemma 2.1 the following result.

Lemma 2.2 (cf. [1, p. 281]). Let k− be the field k ∩ M−. Then we have k− =
F ∗0 ( 3
√

3, 3
√
ε, 3
√
α1, . . . , 3

√
αr).

The following is well known (cf. [1, p. 280]):

Lemma 2.3. Let σ be a generator of the Galois group G(F ∗n/F
′) and α be a non-

zero element of F ∗n such that there exists an element β with ασ = α−1β3. Then
F ∗n( 3
√
α) is an abelian extension of F ′.

Proof of the Theorem. Since η1−σ2

= (η1+σ)1−σ, there exists an element β of Fn
with η1−σ2

= β3. Hence we have NFn/F0
(β3) = 1, which means NFn/F0

(β) = 1.

Hence there exists an element γ of Fn with β = γ1−σ2

, which shows ηγ−3 ∈ F0.
This shows F ∗n( 3

√
η) = F ∗n( 3

√
ηγ−3) = F ∗nF

∗
0 ( 3
√
ηγ−3). Since F ∗n( 3

√
η) is an abelian

3-extension of F ∗0 unramified outside 3 by Lemma 2.3 and since ηγ−3 ∈ F ∗0 , we

have F ∗0 ( 3
√
ηγ−3) ⊂ k− = F ∗0 ( 3

√
3, 3
√
ε, 3
√
α1, . . . , 3

√
αr) by Lemmas 2.1 and 2.2.

Hence there exist integers n1, n2, . . . , nr, n and an element δ of F0 with ηγ−3 =
αn1

1 · · ·αnrr εnδ3 by Lemma 2.2. This shows by the assumption on η that A
n1
1 · · ·Anrr

is not principal in F0 but principal in Fn.

3. Method of finding η

In this section, we explain how to compute and find a unit η in the theorem.
Let En be the unit group of Fn and r = 2 · 3n − 1. If a basis {ε1E

3
n, . . . , εrE

3
n }

of En/E
3
n is obtained, without loss of generality, η can be written in the form

η = εe11 · · · εerr with 0 ≤ ei ≤ 2. Therefore, we can decide whether or not such an η
exists by examining all the combinations of {e1, . . . , er}. If n = 1, we can obtain
fundamental units of F1 (cf. [3]) and can use this direct algorithm. But it is hard
to obtain a basis of En/E

3
n for n ≥ 2. So we proceed as follows.

For an element ξ of Fn, we denote ξσ
i

by ξi. Let Cn be the cyclotomic unit
group of Fn. First we assume that there exists an element ξ ∈ Cn such that Cn =
〈−1, ξ0, . . . , ξr−1〉. Moreover, we assume that the 3-Sylow subgroup (En/Cn)3 of
En/Cn is cyclic of order 3n. Under these assumptions, we determine the form of
α ∈ En which satisfies (En/Cn)3 = 〈αCn〉 and α1+σ ∈ E3

n. From the assumption
A0 6= 1, there exists γ ∈ E0 such that

γ3 =
3n−1∏
i=0

ξ2i .
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Assume that (En/Cn)3 = 〈αCn〉 and α1+σ = β3 for some β ∈ En. Since the order

of (En/Cn)3 is 3n, we see that α3n−1

= γu, β = αev for some u, v ∈ Cn and e ∈ N.
Then

u1+σ = ±(α3n−1

)1+σ = ±β3n = ±αe3nv3n ≡ (γu)3e =
3n−1∏
i=0

ξe2iu
3e (mod C3n

n ).

We write u = ξe00 · · · ξ
er−1

r−1 with ei ∈ Z and substitute this in both sides of the above

congruence relation. Since ξr = ±(ξ0 · · · ξr−1)−1, we obtain the following system of
simultaneous equations:

ei−1 + ei − er−1 ≡
{
e+ 3eei if i is even,

3eei if i is odd.

Here the congruence is modulo 3n and e−1 = 0. This equation is easily solved. In
fact, if we put x = er−1 and y = e, then we can represent all ei by x and y. Now,
we fix x to be 0 and vary y from 0 to 3n − 1. If we find that γu is contained in

E3n−1

n for some y, then we put η = (γu)1/3n−1

. It is easy to check whether η, ηε or
ηε2 is a cube in En.

A Galois generator ξ of Cn is hard to find. But we know the cyclotomic unit of
Hasse (cf. [2]) which generates a fairly large subgroup of Cn. So, we execute the
above procedure by letting ξ to be Hasse’s unit. We will be able to find η by this
method with some luck.

4. Examples

Let F = Q(
√
m) where m is a positive square-free integer congruent to 2 mod-

ulo 3. There are 207 m’s less than 10000 which satisfy |A0| = 3. We denote
Ker(A0 −→ An) by Hn. We used a computer to implement the above method for
these F ’s and fortunately found η and conclude that Hn 6= 1 for many F ’s. We
show the results of our computation in Table 1 (next page). The proposition in §1
implies that if m ≡ 2(mod 3), |A0| = 3, and Hn 6= 1 for some n ≥ 1, then the order
of An is bounded, namely, Greenberg’s conjecture is valid for F , and the Iwasawa
invariant λ3(F ) is zero. A question mark in the table means that we do not know
the value. For example, we got |H1| = 1 when m = 899 (cf. the remark below).
So we searched η ∈ F2 with the method of §3 but could not find it. We cannot
conclude whether |H2| is 1 or 3. Next we pursued a calculation in F3 and found
η ∈ F3. Therefore |H3| = 3 and λ3(F ) = 0.

Remark . Since |H1| = (E0 : NF1/F0
(E1)), we can obtain the exact value of |H1|

by computing E1 (cf. [3]). We note that |H1| = 1 for all m’s in Table 1 for which
we could not find η ∈ E1.



316 T. FUKUDA AND K. KOMATSU

Table 1. All m’s satisfying m ≡ 2 (mod 3) and |A0| = 3 (m < 10000)

m |H1| |H2| |H3| |H4| λ3(F ) m |H1| |H2| |H3| |H4| λ3(F )

254 1 ? ? ? ? 3221 3 3 3 3 0
257 3 3 3 3 0 3281 3 3 3 3 0
326 3 3 3 3 0 3287 3 3 3 3 0
359 3 3 3 3 0 3305 1 ? ? ? ?
443 1 3 3 3 0 3419 3 3 3 3 0
473 1 ? ? ? ? 3422 1 3 3 3 0
506 3 3 3 3 0 3482 3 3 3 3 0
659 3 3 3 3 0 3569 1 ? 3 3 0
761 3 3 3 3 0 3590 3 3 3 3 0
785 1 ? 3 3 0 3602 3 3 3 3 0
839 3 3 3 3 0 3803 3 3 3 3 0
842 3 3 3 3 0 3941 3 3 3 3 0
899 1 ? 3 3 0 3962 3 3 3 3 0

1091 3 3 3 3 0 4001 3 3 3 3 0
1211 3 3 3 3 0 4094 3 3 3 3 0
1223 3 3 3 3 0 4106 3 3 3 3 0
1229 3 3 3 3 0 4151 3 3 3 3 0
1367 3 3 3 3 0 4193 3 3 3 3 0
1373 3 3 3 3 0 4238 1 3 3 3 0
1406 3 3 3 3 0 4283 3 3 3 3 0
1478 3 3 3 3 0 4286 1 ? 3 3 0
1523 3 3 3 3 0 4355 3 3 3 3 0
1646 1 ? ? ? ? 4367 3 3 3 3 0
1787 3 3 3 3 0 4481 1 3 3 3 0
1811 1 3 3 3 0 4493 3 3 3 3 0
1847 3 3 3 3 0 4511 1 3 3 3 0
1901 3 3 3 3 0 4649 3 3 3 3 0
1907 3 3 3 3 0 4670 3 3 3 3 0
1937 1 ? ? ? ? 4706 3 3 3 3 0
2021 1 ? 3 3 0 4778 3 3 3 3 0
2099 1 3 3 3 0 4841 3 3 3 3 0
2177 3 3 3 3 0 4853 3 3 3 3 0
2207 3 3 3 3 0 4886 3 3 3 3 0
2213 3 3 3 3 0 4907 1 3 3 3 0
2429 1 ? 3 3 0 4910 3 3 3 3 0
2459 3 3 3 3 0 4934 3 3 3 3 0
2495 3 3 3 3 0 4970 3 3 3 3 0
2510 1 ? 3 3 0 4982 3 3 3 3 0
2543 3 3 3 3 0 4994 3 3 3 3 0
2666 1 ? ? 3 0 5042 3 3 3 3 0
2678 1 3 3 3 0 5063 1 ? ? ? ?
2711 3 3 3 3 0 5081 1 ? ? 3 0
2726 3 3 3 3 0 5099 3 3 3 3 0
2777 1 3 3 3 0 5102 3 3 3 3 0
2831 3 3 3 3 0 5255 3 3 3 3 0
2894 3 3 3 3 0 5261 3 3 3 3 0
2918 1 ? 3 3 0 5297 1 ? ? 3 0
2981 3 3 3 3 0 5303 3 3 3 3 0
2993 3 3 3 3 0 5327 3 3 3 3 0
3023 3 3 3 3 0 5333 3 3 3 3 0
3035 3 3 3 3 0 5369 3 3 3 3 0
3047 1 ? ? 3 0 5477 3 3 3 3 0
3062 3 3 3 3 0 5621 3 3 3 3 0
3071 3 3 3 3 0 5738 3 3 3 3 0
3158 1 ? 3 3 0 5741 3 3 3 3 0
3173 3 3 3 3 0 5798 3 3 3 3 0
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Table 1 (continued)

m |H1| |H2| |H3| |H4| λ3(F ) m |H1| |H2| |H3| |H4| λ3(F )

5903 3 3 3 3 0 8282 1 ? 3 3 0
5918 3 3 3 3 0 8285 3 3 3 3 0
5930 3 3 3 3 0 8306 3 3 3 3 0
5954 1 ? 3 3 0 8339 1 ? ? 3 0
6026 3 3 3 3 0 8363 1 3 3 3 0
6053 3 3 3 3 0 8399 3 3 3 3 0
6185 3 3 3 3 0 8426 3 3 3 3 0
6209 3 3 3 3 0 8438 3 3 3 3 0
6311 3 3 3 3 0 8447 3 3 3 3 0
6401 3 3 3 3 0 8519 3 3 3 3 0
6515 3 3 3 3 0 8543 3 3 3 3 0
6557 3 3 3 3 0 8597 3 3 3 3 0
6623 3 3 3 3 0 8603 3 3 3 3 0
6686 3 3 3 3 0 8711 1 ? ? ? ?
6770 3 3 3 3 0 8735 3 3 3 3 0
6782 3 3 3 3 0 8789 3 3 3 3 0
6791 1 3 3 3 0 8837 1 3 3 3 0
6806 1 ? ? ? ? 8909 3 3 3 3 0
6887 3 3 3 3 0 8930 3 3 3 3 0
6995 1 ? ? ? ? 8999 3 3 3 3 0
7019 3 3 3 3 0 9062 3 3 3 3 0
7055 3 3 3 3 0 9086 3 3 3 3 0
7058 3 3 3 3 0 9149 3 3 3 3 0
7235 3 3 3 3 0 9155 3 3 3 3 0
7259 3 3 3 3 0 9215 3 3 3 3 0
7262 3 3 3 3 0 9218 3 3 3 3 0
7310 3 3 3 3 0 9278 3 3 3 3 0
7319 3 3 3 3 0 9281 3 3 3 3 0
7415 3 3 3 3 0 9293 3 3 3 3 0
7481 3 3 3 3 0 9323 3 3 3 3 0
7598 1 ? 3 3 0 9413 3 3 3 3 0
7601 1 ? 3 3 0 9419 3 3 3 3 0
7643 1 3 3 3 0 9467 3 3 3 3 0
7655 3 3 3 3 0 9479 3 3 3 3 0
7658 1 ? ? 3 0 9551 3 3 3 3 0
7673 3 3 3 3 0 9578 1 3 3 3 0
7694 3 3 3 3 0 9590 1 ? ? 3 0
7709 1 3 3 3 0 9659 1 3 3 3 0
7721 3 3 3 3 0 9710 3 3 3 3 0
7745 3 3 3 3 0 9749 3 3 3 3 0
7883 1 3 3 3 0 9830 3 3 3 3 0
7994 3 3 3 3 0 9833 3 3 3 3 0
8051 3 3 3 3 0 9869 3 3 3 3 0
8057 3 3 3 3 0 9902 3 3 3 3 0
8069 1 3 3 3 0 9905 3 3 3 3 0
8255 3 3 3 3 0 9926 1 ? ? 3 0
8267 3 3 3 3 0 9995 1 ? 3 3 0
8279 1 3 3 3 0
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3. S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math., vol.
797, Springer–Verlag, Berlin, Heidelberg, New York, 1980. MR 82a:12004

Department of Mathematics, College of Industrial Technology, Nihon University,

2-11-1 Shin-ei, Narashino, Chiba, Japan

E-mail address: fukuda@math.cit.nihon-u.ac.jp

Department of Mathematics, Tokyo University of Agriculture and Technology,

Fuchu, Tokyo, Japan


