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THE ZEROS OF FABER POLYNOMIALS

GENERATED BY AN m-STAR

ARNO B. J. KUIJLAARS

Abstract. It is shown that the zeros of the Faber polynomials generated by
a regular m-star are located on the m-star. This proves a recent conjecture
of J. Bartolomeo and M. He. The proof uses the connection between zeros of
Faber polynomials and Chebyshev quadrature formulas.

1. Introduction

Let C denote the complex plane, C = C ∪ {∞}, and let E be a compact set in
the complex plane (not a single point) such that C \E is simply connected. Let φ
denote the conformal mapping from C\E onto |w| > ρ such that in a neighborhood
of ∞,

φ(z) = z + a0 +
a1

z
+
a2

z2
+ · · · .

Here, ρ = ρE is the logarithmic capacity of E. The polynomial part of φ(z)n is
called the Faber polynomial of degree n generated by E.

Bartolomeo and He [1] studied the Faber polynomials generated by the regular
m-star

Sm := {z ∈ C | zm ∈ [0, 4]}, m = 2, 3, . . . .

They obtained several properties of these Faber polynomials and they formulated
a conjecture on their zeros. Here we will prove this conjecture.

Theorem 1. Let m ≥ 2, n ≥ 1, and let Fn be the Faber polynomial of degree n
generated by Sm. Then all the zeros of Fn are located on Sm.

The proof of Theorem 1 is based on the connection between zeros of Faber poly-
nomials and quadrature formulas with equal weights (so-called Chebyshev quad-
rature formulas), see Lemma 3 below. This connection was used before to obtain
results on Chebyshev quadrature from properties of Faber polynomials, see [4, 5, 7].
Here we use this connection in the opposite direction. We will obtain Theorem 1
from the following quadrature result.
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Theorem 2. Let p ∈ N and α ∈ [0, 1/(p+ 1)]. Then there exist nodes t1, . . . , tp
in [0, 1] such that ∫ 1

0

f(t)
dt

π
√
t− t2

= αf(0) +
1− α
p

p∑
j=1

f(tj)(1.1)

for all polynomials f of degree ≤ p.

Note that for α = 0 the p-point Gauss formula with respect to dt/(π
√
t− t2) can

be used in (1.1). This formula is exact for all polynomials up to degree 2p− 1. A
quadrature formula (1.1) for some α ≥ 0 in which all the nodes are distinct can be
perturbed a little to give a quadrature formula for slightly larger α. So our main
concern in proving Theorem 2 will be to show that for α < 1/(p+ 1) the nodes do
not coincide.

2. Proof that Theorem 2 implies Theorem 1

Let E be a compact set whose complement is simply connected with respect to
the extended complex plane. Let ρ be the logarithmic capacity of E and φ the
conformal mapping from C \E onto |w| > ρ such that φ(∞) =∞ and φ′(∞) = 1.
We denote by µE the equilibrium measure on E. This is the unique probability
measure on E satisfying∫

log |z − ζ|dµE(ζ) =

{
log ρE quasi-everywhere on E,
log |φ(z)| on C \E.

(2.1)

Lemma 3. Let n ≥ 1, and let ζ1, . . . , ζn ∈ C. Then ζ1, . . . , ζn are the zeros of the
Faber polynomial of degree n generated by E if and only if∫

ζkdµE =
1

n

n∑
j=1

ζkj , k = 1, . . . , n.(2.2)

Proof. The function φ(z)/z is analytic in C \E (including ∞), and from (2.1) it is
easy to see that

log

(
φ(z)

z

)
=

∫
log

(
1− ζ

z

)
dµE(ζ) = −

∞∑
k=1

1

k

∫
ζkdµEz

−k.

Here we take the branch of the logarithm that vanishes at ∞. Also, if Fn(z) =∏n
j=1(z − ζj), then

log

(
Fn(z)

zn

)
=

n∑
j=1

log

(
1− ζj

z

)
= −

∞∑
k=1

1

k

n∑
j=1

ζkj z
−k.

It follows that (2.2) holds if and only if

log

(
Fn(z)

zn

)
= n log

(
φ(z)

z

)
+O(z−n−1), z →∞,

and this holds if and only if

Fn(z) = φ(z)n +O(z−1), z →∞,

that is, Fn(z) is the Faber polynomial of degree n generated by E.



ZEROS OF FABER POLYNOMIALS 153

Let Fn(z) be the Faber polynomial of degree n generated by Sm. Write n =
pm+ r with 0 ≤ r < m. From the symmetry of Sm it easily follows that

Fn(z) = zrGp(z
m/4),

where Gp is a polynomial of degree p. The zeros of Fn are on Sm if and only if the
zeros of Gp are in the interval [0, 1].

Lemma 4. The zeros t1, . . . , tp of Gp satisfy∫ 1

0

tk
dt

π
√
t− t2

=
m

n

p∑
j=1

tkj , k = 1, . . . , p.(2.3)

Conversely, if t1, . . . , tp are such that (2.3) holds, then t1, . . . , tp are the zeros of
Gp.

Proof. Let t1, . . . , tp be the zeros of Gp. Then (4tj)
1/m exp(2πil/m), j = 1, . . . , p,

l = 1, . . . ,m, are the zeros of Fn, together with an r-fold zero at the origin. Thus,
if ζ1, . . . , ζn are the zeros of Fn, then for every k

1

n

n∑
j=1

ζkmj = 4k
m

n

p∑
j=1

tkj .(2.4)

Then by Lemma 3,

m

n

p∑
j=1

tkj = 4−k
∫
ζkmdµSm(ζ), k = 1, . . . , p.(2.5)

The moments of µSm were computed in [1]:∫
ζkmdµSm(ζ)=

m

π

∫ 41/m

0

skm
s(m−2)/2

√
4− sm

ds=
4k

π

∫ 1

0

tk
dt√
t− t2

,(2.6)

where we have put sm = 4t. Now (2.3) follows from (2.5) and (2.6).
For the converse, suppose t1, . . . , tp satisfy (2.3). Let ζ1, . . . , ζn be the zeros of

zr
∏p
j=1(zm/4− tj). Then it is easy to see that (2.4) holds. From (2.3), (2.4) and

(2.6) it follows that

1

n

n∑
j=1

ζkmj =

∫
ζkmdµSm , k = 1, . . . , p,

i.e., (2.2) holds if k ≤ n is a multiple of m. By the symmetry of Sm and the points
ζ1, . . . , ζn both sides of (2.2) are zero if k is not a multiple of m. Hence, (2.2) holds
and it follows from Lemma 3 that ζ1, . . . , ζn are the zeros of Fn. Then t1, . . . , tp
are the zeros of Gp.

Corollary 5. Theorem 2 implies Theorem 1.

Proof. Let m ≥ 2, n ≥ 1 and write n = pm + r with 0 ≤ r < m. Let Fn(z) =
zrGp(z

m/4) be the Faber polynomial of degree n generated by Sm. Let α := r/n <
1/(p+ 1). By Theorem 2 there are nodes t1, . . . , tp in [0, 1] such that (1.1) holds
for polynomials of degree ≤ p. Since (1 − α)/p = m/n, it follows that (2.3) holds
and therefore, by Lemma 4, t1, . . . , tp are the zeros of Gp. Thus, the zeros of Gp
are in [0, 1], and therefore the zeros of Fn are on Sm.
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3. Proof of Theorem 2

We first discuss the maximal mass function λp(t) with respect to the measure

dt/(π
√
t− t2) on [0, 1], cf. [3, §IV.3].

Let p ∈N be fixed. Consider all quadrature formulas∫ 1

0

f(t)
dt

π
√
t− t2

≈
N∑
j=1

cjf(tj)

that are exact for polynomials f of degree ≤ p and are such that

cj ≥ 0, tj ∈ [0, 1], j = 1, . . . , N.

We call cj the mass at tj .

Definition 6. For t ∈ [0, 1], the number λp(t) is defined as the maximal mass at t
among all such quadrature formulas.

We need the following result.

Lemma 7. The following estimate holds

λp(t) ≤
2

p+ 1
, t ∈ [0, 1].(3.1)

In addition we have

λp(0) = λp(1) =
1

p+ 1
.(3.2)

Proof. First, let p = 2q−1. There exist two principal quadrature formulas (cf. [3]),
namely the familiar q-point Gauss formula∫ 1

0

f(t)
dt

π
√
t− t2

≈ 2

p+ 1

q∑
j=1

f(t∗j )

and the Lobatto formula (or Bouzitat formula of second kind), cf. [2, pp. 106-108],∫ 1

0

f(t)
dt

π
√
t− t2

≈ 1

p+ 1
f(0) +

1

p+ 1
f(1) +

2

p+ 1

q−1∑
j=1

f(s∗j ).

The nodes t∗j are the zeros of Tq(2t − 1), where Tq is the Chebyshev polynomial
of the first kind of degree q and the nodes s∗j are the zeros of Uq−1(2t− 1), where
Uq−1 is the Chebyshev polynomial of the second kind of degree q− 1. We note the
separation property

0 < t∗1 < s∗1 < t∗2 < · · · < s∗q−1 < t∗q < 1.

The Gauss and Lobatto formulas are exact for polynomials of degree ≤ p and have
maximal mass at all of their nodes, i.e.,

λp(0) = λp(−1) =
1

p+ 1
,

λp(t
∗
1) = · · · = λp(t

∗
q) = λp(s

∗
1) = · · · = λp(s

∗
q−1) =

2

p+ 1
.

Next, by a result of Schoenberg and Szegő [6],

1

λp(t)
= max{P (t), Q(t)},
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where P and Q are two polynomials of degree p. These polynomials have the
common value (p+1)/2 in the points t∗1, . . . , t

∗
q , s
∗
1, . . . , s

∗
q−1, and at the end points

we have

P (0) = p+ 1, Q(0) = 0, P (1) = 0, Q(1) = p+ 1.

See [3] or [6] for the precise form of P and Q.
It follows that P (t) > (p + 1)/2 on the intervals (0, t∗1) and (s∗j , t

∗
j+1), j =

1, . . . , q−1, while Q(t) > (p+1)/2 on the remaining intervals (t∗j , s
∗
j ), j = 1, . . . , q−

1, and (t∗q , 1). Hence, for every t ∈ [0, 1],

1

λp(t)
= max{P (t), Q(t)} ≥ p+ 1

2
.

This proves the lemma in case p is odd.
For p = 2q one has to proceed in a similar way, but the details are slightly

different. The two principal quadrature formulas are Radau formulas (or Bouzitat
formulas of first kind), cf. [2, pp. 101-103],∫ 1

0

f(t)
dt

π
√
t− t2

≈ 1

p+ 1
f(0) +

2

p+ 1

q∑
j=1

f(t∗j )

and ∫ 1

0

f(t)
dt

π
√
t− t2

≈ 1

p+ 1
f(1) +

2

p+ 1

q∑
j=1

f(s∗j ),

with separation property

0 < s∗1 < t∗1 < · · · < s∗q < t∗q < 1.

The nodes t∗j and s∗j are the zeros of P
(−1/2,1/2)
q (2t − 1) and P

(1/2,−1/2)
q (2t − 1),

respectively, where P
(α,β)
q denotes a Jacobi polynomial. Again, these formulas are

exact for polynomials of degree ≤ p and have maximal mass at all of their nodes.
Hence,

λp(0) = λp(−1) =
1

p+ 1
,

λp(t
∗
1) = · · · = λp(t

∗
q) = λp(s

∗
1) = · · · = λp(s

∗
q) =

2

p+ 1
.

The rest of the proof is the same as in the case of odd p.

Proof of Theorem 2. Let p ∈N. We observe first that for α = 0 the p-point Gauss
formula gives a quadrature formula (1.1) with nodes in (0, 1).

Next, we note that the statement that (1.1) holds for every polynomial of degree
≤ p is equivalent to

p∑
j=1

tkj =
p

1− α

∫ 1

0

tk
dt

π
√
t− t2

, k = 1, . . . , p.(3.3)

It is easy to see that the mapping (t1, . . . , tp) 7→ (s1, . . . , sp), where sk =
∑p
j=1 t

k
j ,

is locally surjective if the points t1, . . . , tp are distinct. Since for α = 0 we have
distinct nodes in (0, 1), it follows that for α > 0 sufficiently small, there exist nodes
t1, . . . , tp in (0, 1) satisfying (3.3) and hence (1.1). In fact, we can continue this
process until for some α, we find a solution of (1.1) in which either two nodes
coincide or one of the nodes coincides with one of the end points.
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Thus, we shall be finished if we can show that if the points t1, . . . , tp satisfy (1.1)
with α < 1/(p+ 1) and

0 ≤ t1 ≤ t2 ≤ · · · ≤ tp ≤ 1,(3.4)

then we must have strict inequalities everywhere in (3.4).
This follows, however, quite easily from Lemma 7. Indeed, suppose for example

that tj = tj+1. Then the quadrature formula (1.1) has total mass 2(1− α)/p at tj .
Then (3.1) implies that 2(1−α)/p ≤ 2/(p+ 1), which cannot hold if α < 1/(p+ 1).
Similarly, if we suppose that 0 = t1 or tp = 1, then we find a contradiction with
(3.2).

Remark . From the proof of Theorem 2 we see that for α < 1/(p + 1) the nodes
t1, . . . , tp are mutually distinct and distinct from the end points. This implies that
the zeros of the Faber polynomial Fn generated by the m-star are also mutually
distinct (except for the zero at the origin).

References

1. J. Bartolomeo and M. He, On Faber polynomials generated by an m-star, Math. Comp. 62
(1994), 277–287. MR 94c:30006

2. A. Ghizzetti and A. Ossicini, Quadrature formulae, Birkhäuser, Basel, 1970. MR 42:4012
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