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ERROR BOUNDS FOR QUASI-MONTE CARLO
INTEGRATION WITH NETS

CHRISTIAN LÉCOT

Abstract. We analyze the error introduced by approximately calculating the
s-dimensional Lebesgue measure of a Jordan-measurable subset of Is = [0, 1)s.
We give an upper bound for the error of a method using a (t,m, s)-net, which
is a set with a very regular distribution behavior. When the subset of Is is
defined by some function of bounded variation on Īs−1, the error is estimated
by means of the variation of the function and the discrepancy of the point
set which is used. A sharper error bound is established when a (t, m, s)-net
is used. Finally a lower bound of the error is given, for a method using a
(0,m, s)-net. The special case of the 2-dimensional Hammersley point set is
discussed.

Introduction

Applications of quasi-Monte Carlo methods arise in problems of numerical anal-
ysis that can be reduced to numerical integration. For s ≥ 2 let Is = [0, 1)s be the
half-open s-dimensional unit cube, and λs be the s-dimensional Lebesgue measure.
If E is a Jordan-measurable subset of Is and P is a set of |P | points x1, . . . ,x|P |
evenly distributed over Is, the volume of E can be approximated by

A(E,P )

|P | ,

where A(E,P ) is the number of p’s, 1 ≤ p ≤ |P |, for which xp ∈ E. An analysis of
the error

(1)

∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣
was given in a paper of Niederreiter and Wills [5]. The error was bounded by means

of D(P )
1/s

. The discrepancy D(P ) of the point set P is defined by

D(P ) = sup
J

∣∣∣∣A(J, P )

|P | − λs(J)

∣∣∣∣ ,
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180 CHRISTIAN LÉCOT

where J runs through all subintervals of Is. We focus on special point sets P , which
are called nets. The following definitions were given by Niederreiter [3]. Let b ≥ 2
be an integer. An elementary interval in base b is an interval of the form

J =
s∏
i=1

[
ai
bdi

,
ai + 1

bdi

)
,

with integers di ≥ 0 and integers 0 ≤ ai < bdi for 1 ≤ i ≤ s. Let 0 ≤ t ≤ m be
integers. A point set P of bm points in Is is a (t,m, s)-net in base b ifA(J, P ) = bt for
every elementary interval J in base b with λs(J) = bt−m. Discrepancy bounds for
nets are given in the article of Niederreiter [3]. They can be used in conjunction with
the estimation of Niederreiter and Wills to obtain error bounds. It is much simpler
to estimate the error directly and an improved upper bound can be established.

The following case deserves special attention. Let f : Īs−1 → Ī be a function of
bounded variation in the sense of Hardy and Krause. We refer to the monograph
of Niederreiter [4] for the definition of the concept of variation. Define the set

Ef = {x = (x′, xs) ∈ Is : xs < f(x′)}.

For any set P of |P | points x1, . . . ,x|P | in Is, we have

(2)

∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ =

∣∣∣∣∣∣ 1

|P |

|P |∑
p=1

cEf (xp)−
∫
Is
cEfdλs

∣∣∣∣∣∣ ,
where cEf is the characteristic function of Ef . The Koksma-Hlawka inequality (see
below) cannot be used to derive an upper bound for the right-hand side of (2),
because the variation of cEf can be infinite for a very smooth f ( let for instance
f(x′) = x1). In an earlier communication [1], we give an estimate of the left-hand
side of (2) by means of the variation of f . The analysis used the estimation of
Niederreiter and Wills. An improved upper bound is directly established in the
present paper. In the case where P is a (t,m, s)-net, there is a different method of
proof which yields a better result.

Finally some lower bounds for the error (1) are established, which are not too
dissimilar to the upper bounds. The analysis is restricted to (0,m, s)-nets and uses
techniques of Schmidt [6]. For the 2-dimensional Hammersley point set (see [4]), a
better result is given.

An outline of the paper is as follows. In §1 we derive an upper bound for the
error (1) when the point set is a (t,m, s)-net in base b. In §2 we give an estimate
of the left-hand side of (2). A smaller bound is given when P is a net. In §3 we
establish some lower bounds for the error (1) when P is a (0,m, s)-net in base b.

1. Upper bounds for nets

We recall the result of Niederreiter and Wills, when the original Euclidean norm
is replaced by the maximum norm ‖x‖∞ = max1≤i≤s |xi|. For ε > 0 define

Eε = {x ∈ Is : ∃y ∈ E ‖x− y‖∞ < ε},
E−ε = {x ∈ Is : ∀y ∈ Is \E ‖x− y‖∞ ≥ ε}.
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If there exists a positive nondecreasing function σ defined for all ε > 0 such that

∀ε > 0 max (λs(Eε \E), λs(E \E−ε)) ≤ σ(ε),

then ∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≤ 3σ

⌊ 1

D(P )
1/s

⌋−1
+D(P )

1/s
.

If, in addition, {xs : (x′, xs) ∈ E} is a subinterval of I containing 0, for every
x′ ∈ Is−1, then∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≤ σ
⌊ 1

D(P )
1/s

⌋−1
+D(P )

1/s
.

Proposition 1. Let E be a Jordan-measurable subset of Is and P be a (t,m, s)-net
in base b. If there exists a positive nondecreasing function σ defined for all ε > 0
such that

∀ε > 0 max (λs(Eε \E), λs(E \E−ε)) ≤ σ(ε),

then ∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≤ σ (b−bm−ts c) .
Proof. Let d =

⌊
m−t
s

⌋
. For a = (a1, . . . , as) with integers ai, 0 ≤ ai < bd, define

Ia =
∏s
i=1

[
ai
bd ,

ai+1
bd

)
. Let

E− =
⋃
Ia⊂E

Ia and E+ =
⋃

Ia∩E 6=∅
Ia.

Then

A(E−, P )

|P | − λs(E−)− λs(E \E−) ≤ A(E,P )

|P | − λs(E),

A(E,P )

|P | − λs(E) ≤ A(E+, P )

|P | − λs(E+) + λs(E+ \E).

The subsets E− and E+ are disjoint unions of elementary intervals Ia, with λs(Ia) ≥
bt−m, hence A(E−,P )

|P | − λs(E−) = A(E+,P )
|P | − λs(E+) = 0. Furthermore, E \ E− ⊂

E \E− 1

bd
, hence λs(E \E−) ≤ σ

(
1
bd

)
and E+ \E ⊂ E 1

bd
\E, hence λs(E+ \E) ≤

σ
(

1
bd

)
. �

2. Upper bounds for special subsets

Let f : Īs−1 → Ī be a function of bounded variation V (f). Then define Ef by
Ef = {x = (x′, xs) ∈ Is : xs < f(x′)} and let cEf be the characteristic function

of Ef . If P ′ is a set of |P ′| points x′1, . . . ,x
′
|P ′| in Is−1 and P is a set of |P | points

x1, . . . ,x|P | in Is, the integral∫
Is−1

fdλs−1 =

∫
Is
cEfdλs
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can be approximated by

1

|P ′|

|P ′|∑
p=1

f(x′p) or by
1

|P |

|P |∑
p=1

cEf (xp).

The second approximation, where the numerator is an integer, can be useful for
numerical simulation (see [1, 2]). In the first case, an error bound is given by the
Koksma-Hlawka inequality∣∣∣∣∣∣ 1

|P ′|

|P ′|∑
p=1

f(x′p)−
∫
Is−1

fdλs−1

∣∣∣∣∣∣ ≤ V (f)D?(P ′).

The star discrepancy D?(P ′) of the point set P ′ is defined by

D?(P ′) = sup
J

∣∣∣∣A(J, P ′)

|P ′| − λs−1(J)

∣∣∣∣ ,
where J runs through all subintervals of Is−1 containing 0. In the second case, we
have the following error estimate.

Proposition 2. Let P be a point set of |P | points in Is and f : Īs−1 → Ī be of
bounded variation in the sense of Hardy and Krause. If D(P ) ≤ V (f), we have∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ sV (f)

⌊(
V (f)

D(P )

)1/s
⌋−1

.

Proof. We shall prove somewhat better but more complicated estimates. Let
n1, . . . , ns−1 be integers. For a′ = (a1, . . . , as−1) with integers ai, 0 ≤ ai < ni,

define Ia′ =
∏s−1
i=1

[
ai
ni
, ai+1
ni

)
and let

E =
⋃
a′

Ia′ × [0, inf
Ia′
f), E =

⋃
a′

Ia′ × [0, sup
Ia′

f), F =
⋃
a′

Ia′ × [inf
Ia′
f, sup

Ia′
f ].

Then

A(E,P )

|P | − λs(E)− λs(F ) ≤ A(Ef , P )

|P | − λs(Ef ) ≤ A(E,P )

|P | − λs(E) + λs(F ).

If V (f) ≤ D(P ), choose n1 = · · · = ns−1 = 1. Then∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ D?(P ) + sup
Īs−1

f − inf
Īs−1

f.

Suppose V (f) ≥ D(P ). The subsets E and E are disjoint unions of subintervals of
Is, hence∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≤ D(P )
s−1∏
i=1

ni and

∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≤ D(P )
s−1∏
i=1

ni.
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We have λs(F ) ≤ V (f)
∑s−1
i=1

1
ni

by Lemma 1 (see below). Therefore,∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ D(P )
s−1∏
i=1

ni + V (f)
s−1∑
i=1

1

ni
.

Put x =
(
V (f)
D(P )

)1/s

and r =
⌊
s log x−logbxc

log(bxc+1)−logbxc

⌋
− 1. If r = −1 or 0, let n1 = · · · =

ns−1 = bxc. Then∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ V (f)

⌊(
V (f)

D(P )

)1/s
⌋−1((

bxc
x

)s
+ s− 1

)
,

which yields the desired bound. If 0 < r < s − 1, let ni = bxc + 1, for 1 ≤ i ≤ r,
and ni = bxc, for r < i ≤ s− 1. Then∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ V (f)

⌊(
V (f)

D(P )

)1/s
⌋−1(

s− r + 1

bxc+ 1

)
,

which yields the desired estimate. �
Lemma 1. Let f be a function of bounded variation on Īs. Let n1, . . . , ns be inte-

gers. For a = (a1, . . . , as) with integers ai, 0 ≤ ai < ni, let Ia =
∏s
i=1

[
ai
ni
, ai+1
ni

)
and ya, za ∈ Īa. Then∑

a

|f(za)− f(ya)| ≤ V (f)
s∏
i=1

ni

s∑
i=1

1

ni
.

Proof. If y, z ∈ Īs, let T
(i)
y f be the restriction of f to the hyperplane xi = yi and

∆
(i)
(z,y)f = T

(i)
z f − T (i)

y f . If K = {i1, · · · , ik} ⊂ [1, s], we set

TKy f = T (i1)
y · · ·T (ik)

y f and ∆K
(z,y)f = ∆

(i1)
(z,y) · · ·∆

(ik)
(z,y)f.

We put Tyf = T
[1,s]
y f . Let 1 = (1, . . . , 1), a+ = (a1 + 1, . . . , as + 1) and xa =

( a1

n1
, . . . , asns ). The desired estimate is established by combining the following iden-

tities:

f(za)− f(ya) =
s∑
i=1

∆
(i)
(za,ya)T

[1,i−1]
ya

T [i+1,s]
za

f,

Twf =
s∑
k=0

(−1)
k
∑

K⊂[1,s]

#K=k

∆K
(xa+,w)T

Kc

xa+
f, for w ∈ Īa and

Txa+f =
s∑

k=0

(−1)k
∑

K⊂[1,s]

#K=k

∑
ai<bi<ni
i∈K

∆K
(xb+,xb)T

Kc

1 f. �

When P is a net, an improved estimate can be established. We shall use the
following lemma of Niederreiter [3, Lemma 3.4.(ii)].
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Lemma 2. Let P be a (t,m, s)-net in base b. For any elementary interval J ′ ⊂
Is−1 in base b and for any xs ∈ Ī one has∣∣∣∣A(J ′ × [0, xs), P )

|P | − λs(J ′ × [0, xs))

∣∣∣∣ ≤ bt−m.
Proposition 3. Let P be a (t,m, s)-net in base b and f : Īs−1 → Ī be of bounded
variation in the sense of Hardy and Krause. If bt−m ≤ V (f), we have∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ sV (f)b−b
m−t
s + log V (f)

s log b c.

Proof. Let d1, . . . , ds−1 be integers and replace ni by bdi in the proof of Proposition
2. If V (f) ≤ bt−m, choose d1 = · · · = ds−1 = 0. By Lemma 2, we have∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ bt−m + sup
Īs−1

f − inf
Īs−1

f.

Suppose V (f) ≥ bt−m. By Lemmas 1 and 2, we obtain∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ bt−m+d1+···+ds−1 + V (f)
s−1∑
i=1

1

bdi
.

Put x = m−t
s + logV (f)

s log b and r = bsxc − sbxc − 1. If r = −1 or 0, let d1 = · · · =

ds−1 = bxc. Then∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ V (f)b−b
m−t
s + log V (f)

s log b c
(
bs(bxc−x) + s− 1

)
,

which yields the desired estimate. If 0 < r < s− 1, let di = bxc+ 1, for 1 ≤ i ≤ r,
and di = bxc, for r < i ≤ s− 1. Then∣∣∣∣A(Ef , P )

|P | − λs(Ef )

∣∣∣∣ ≤ V (f)b−b
m−t
s + log V (f)

s log b c
(
bbsxc−sx−1 + s− r

(
1− 1

b

)
− 1

)
,

which yields the desired bound. �

3. Lower bounds for nets

We want to show that the order of magnitude of the bound in Proposition 1 is
best possible. We shall establish a lower bound for the error (1). We refer to the
lectures of Schmidt [6, Theorem 13.B] for a similar result. Since a (0,m, s)-net in
base b is also a (t,m, s)-net in base b, for any t ≤ m, it follows that an interesting
lower bound is only available for t = 0. We recall the following result of Niederreiter
[3, Corollary 5.11].

Lemma 3. For m ≥ 2 a (0,m, s)-net in base b can only exist if s ≤ b+ 1.

If x ≥ 0, let dxe be the smallest integer ≥ x.



ERROR BOUNDS FOR QUASI-MONTE CARLO INTEGRATION WITH NETS 185

Proposition 4. Let P be a (0,m, s)-net in base b. There exists a subset E of Is

with
∀ε > 0 max (λs(Eε \E), λs(E \E−ε)) ≤ (2s−1 + 1)ε

and ∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≥ 1

4(s− 1)!b
m
s
, if s divides m,∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ ≥ 1

4bs−1+bms c
, otherwise.

Proof. We shall prove sharper but more complicated bounds. Let d1, . . . , ds be
integers with d1 + · · ·+ ds = m. For a′ = (a1, . . . , as−1) with integers ai, 0 ≤ ai <
bdi , define Ia′ =

∏s−1
i=1

[
ai
bdi
, ai+1
bdi

)
and as(a

′) = a1 + · · ·+ as−1. Let

α(a′) =
1

bds

(
as(a

′) +
1

2
A

(
Ia′ ×

[
as(a

′) + 1/2

bds
,
as(a

′) + 1

bds

)
, P

))
,

if as(a
′) < bds ; otherwise α(a′) = 1. Let α(a′) = α(a′) + 1

2bds , if as(a
′) < bds ;

otherwise α(a′) = 1. Let

E =
⋃
a′

Ia′ × [0, α(a′)), E =
⋃
a′

Ia′ × [0, α(a′)).

Let ε > 0. We have Eε \E ⊂ F (ε) ∪G(ε), where

F (ε) =
⋃
a′

Ia′ × [α(a′), α(a′) + ε),

G(ε) =
s−1⋃
i=1

⋃
a′

i−1∏
j=1

[
aj
bdj

,
aj + 1

bdj

)
×
( ai
bdi
− ε, ai

bdi

)
×

s−1∏
j=i+1

(
aj
bdj
− ε, aj + 1

bdj

)
×[α(a′−i) + ε, α(a′) + ε),

a′−i = (a1, . . . , ai−1, ai − 1, ai+1, . . . , as−1).

Furthermore,

Eε \E ⊂
⋃
a′

Ia′ ×
[
α(a′), α(a′) +

1

bds

(
s−1∑
i=1

dεbdie+
1

2

)
+ ε

)
.

On the other hand, we have E \E−ε ⊂ F (−ε) ∪G(−ε), where

F (−ε) =
⋃

α(a′)<1

Ia′ × (α(a′)− ε, α(a′)),

G(−ε) =
s−1⋃
i=1

⋃
α(a′)<1

i−1∏
j=1

[
aj
bdj

,
aj + 1

bdj

)
×
[
ai + 1

bdi
,
ai + 1

bdi
+ ε

)

×
s−1∏
j=i+1

[
aj
bdj

,
aj + 1

bdj
+ ε

)
× (α(a′)− ε, β(a′+i)],

a′+i = (a1, . . . , ai−1, ai + 1, ai+1, . . . , as−1),

β(a′) = α(a′)− ε if α(a′) < 1; otherwise β(a′) = 1.
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Furthermore,

E \E−ε ⊂
⋃
a′

Ia′ ×
(
α(a′)− 1

bds

(
s−1∑
i=1

dεbdie+
1

2

)
− ε, α(a′)

)
.

Similar results are available for E. By the definition of E and E, we have∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣+

∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣
=

1

2bm
#{a′ ∈Ns−1 : 0 ≤ ai < bdi for 1 ≤ i < s and as(a

′) < bds}.

If s divides m, let d1 = · · · = ds = d = m
s . Then

∀ε > 0 max
(
λs(Eε \E), λs(E \E−ε), λs(Eε \E), λs(E \E−ε)

)
≤ σ(ε),

where

σ(ε) = min

(bd+s−2
s−1

)
ε

b(s−1)d
+

(
bd+s−3
s−2

) (
(1 + εbd)

s−1 − 1
)

b(s−1)d
, ε+

(s− 1)dεbde+ 1/2

bd

 .

On the other hand, we have

max

(∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ , ∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣) ≥
(
bd+s−2
s−1

)
4bm

,

which yields the desired result. If s does not divide m, let d1 = · · · = ds−1 = d =
bms c and ds = m− (s− 1)d. By Lemma 3, we have

∀ε > 0 max
(
λs(Eε \E), λs(E \E−ε), λs(Eε \E), λs(E \E−ε)

)
≤ σ̃(ε),

where

σ̃(ε) = min

(
ε+

(1 + εbd)
s−1 − 1

bd
, ε+

(s− 1)dεbde+ 1/2

bds

)
.

On the other hand, we have

max

(∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣ , ∣∣∣∣A(E,P )

|P | − λs(E)

∣∣∣∣) ≥ b(s−1)d

4bm
,

which yields the desired result. �
In the 2-dimensional case, a sharper estimate is available for the Hammersley

point set in base b,

P = {
(
pb−m, φb(p)

)
: 0 ≤ p < bm},

where φb is the radical inverse function in base b (see [4]). It is easily seen that P
is a (0,m, 2)-net in base b.
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Proposition 5. Let P be the two-dimensional Hammersley point set in base b and
let T = {(x1, x2) ∈ I2 : x2 < x1}. Then

∀ε > 0 max (λ2(Tε \ T ), λ2(T \ T−ε)) ≤ 2ε

and ∣∣∣∣A(T, P )

|P | − λ2(T )

∣∣∣∣ =
1

2bb
m
2 c
.

Proof. A point (x1, x2) ∈ P if and only if (x2, x1) ∈ P . Moreover, bb
m+1

2 c points of
P lie on the line x1 = x2. Hence the result of the proposition follows. �

Beside the class of (t,m, s)-nets, a class of sequences, called (t, s)-sequences was
introduced by Niederreiter [3]. By his techniques, error estimates for (t, s)-sequences
can be obtained from error estimates for (t,m, s)-nets.
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Jordanscher Mengen, Math. Z. 144 (1975), 125–134; Berichtigung, ibid. 148 (1976), 99. MR
51:12763; MR 53:7996

6. W. M. Schmidt, Lectures on irregularities of distribution, Tata Institute of Fundamental
Research, Bombay, 1977. MR 81d:10047
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