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TRIANGULAR CANONICAL FORMS FOR LATTICE
RULES OF PRIME-POWER ORDER

J. N. LYNESS AND S. JOE

Abstract. In this paper we develop a theory of t-cycle D−Z representations
for s-dimensional lattice rules of prime-power order. Of particular interest
are canonical forms which, by definition, have a D-matrix consisting of the
nontrivial invariants. Among these is a family of triangular forms, which,
besides being canonical, have the defining property that their Z-matrix is a
column permuted version of a unit upper triangular matrix. Triangular forms
may be obtained constructively using sequences of elementary transformations
based on elementary matrix algebra. Our main result is to define a unique
canonical form for prime-power rules. This ultratriangular form is a triangular
form, is easy to recognize, and may be derived in a straightforward manner.

1. Introduction

Let Λ0 be the unit lattice. This is the set of all s-dimensional points x =
(x1, x2, . . . , xs), all of whose components xi are integers.

Definition 1.1. An s-dimensional lattice rule Q is an equal-weight quadrature
rule on [0, 1)s which may be expressed in the form

(1.2) Qf =
1

d1d2 · · ·dt

d1∑
j1=1

d2∑
j2=1

· · ·
dt∑
jt=1

f

({
t∑
i=1

ji
zi
di

})
,

where t and the di are positive integers, zi ∈ Λ0, and {x} ∈ [0, 1)s denotes the
vector whose components are the fractional parts of those of x.

This form is known as a t-cycle D − Z form of an s-dimensional lattice rule
[LK95]. It is abbreviated to

Q[t,D, Z, s],

where D denotes the t×t diagonal integer matrix having positive diagonal elements
di, and Z denotes the t× s integer matrix having rows zi.

The precursor of the lattice rule is the number-theoretic rule, introduced by
Korobov [K59] and Hlawka [H62]. This is also defined by (1.2) above with t = 1.
For an expository account of these rules we refer to Niederreiter [N78], [N88], and
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Hua and Wang [HW81]. A full history and a detailed account of the current state
of the theory of lattice rules appears in the monograph [SJ94].

The D − Z form (1.2) has been used to derive many interesting results about
lattice rules (see, for example, [SL89] or [SL90]). It suffers from two drawbacks.
First, there are many different D − Z forms for the same rule. For example, it is
easy to verify that the simple two-dimensional seven-point lattice rule

(1.3) Qf =
1

7

7∑
j=1

f

({
j

7
(1, 2)

})

may be expressed as

Qf =
1

7

7∑
j=1

f

({
j

7
(k, 2k)

})
,

with k any integer relatively prime to 7. Other forms of the same rule include
(1.4)

Qf =
1

14

14∑
j=1

f

({
j

14
(2, 4)

})
and Qf =

1

49

7∑
j2=1

7∑
j1=1

f

({
j1
7

(1, 2) +
j2
7

(5, 3)

})
.

All these are equivalent to (1.3). The second drawback to this form is that it may
be repetitive. This is illustrated in the final two forms; each quadrature point occurs
twice in the second form and seven times in the third form. Much of the theory is
concerned with avoiding difficulties which arise because of this.

To return to the general D − Z form (1.2) we note that it specifies detD =
d1d2 · · ·dt abscissae, namely the set

(1.5) A(Q) =

{{
t∑
i=1

ji
zi
di

}
: j` ∈ [1, d`], ` ∈ [1, t]

}
.

As we have just seen, the elements need not be distinct. The number of distinct
abscissae required by Q is referred to as the order of Q and written ν(Q). It is the
number of distinct elements belonging to the set given in (1.5).

Definition 1.6. Let Q[t,D, Z, s] be a D−Z form of Q. It is termed nonrepetitive
if

ν(Q) = detD = d1d2 · · ·dt.

Forms (1.4) above are repetitive. It is simple to show that for all forms

(1.7) ν(Q) = detD/k = d1d2 · · ·dt/k,

where k is a positive integer satisfying k | detD. When k = 1 the form is nonrepet-
itive. Incidentally, when t > s and ν(Q) is a power of some prime, an inequality
stronger than the one implied in (1.7) is valid. Under these circumstances, ν(Q)
cannot exceed the product of the s largest elements di (see Theorem 3.10 below).

The proliferation of different D−Z forms for the same rule presents a challenge
to find a special unique D−Z representation. However, except for the special case
of projection-regular rules (see [SL90]), no unique D − Z form representation has
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appeared before. In [SL89] a general partial solution is given. For every rule Q one
can find a canonical form Q[r,D,Z, s] in which r ≤ s, the diagonal elements of D
satisfy di+1 | di and dr > 1, and Z is of full rank. It turns out that for a given Q
only one value of r and one matrix D satisfy these specifications. The integer r is
known as the rank and the elements d1, . . . , dr as the invariants of Q. However,
many possibilities for Z remain.

In this paper we shall show that it is possible to obtain a unique D − Z rep-
resentation for a prime-power rule, that is, a rule Q for which ν(Q) is a positive
power of some prime (greater than 1). In this unique triangular form, Z is a
column-permuted unit upper triangular matrix. The proofs are constructive, so it
is straightforward to develop an algorithm which produces this form for a prime-
power rule.

Some further background material which applies to all rules is covered in the
next section, and the unique triangular form is developed in the remaining sections,
which are devoted to prime-power rules.

2. Background material

A vast number of different D−Z forms are available to describe the same lattice
rule Q. However, these may be related using a sequence of simple transformations
to t, D, and Z which leave the rule Q invariant. We list some of these below.

Theorem 2.1. The rule Q[t,D, Z, s] is unchanged if t, D, and Z are modified by
applying one of the following transformations, or a sequence of them.

(i) Replace zi by `zi for ` an integer satisfying gcd(`, di) = 1.
(ii) Replace zi by zi + dix for x ∈ Λ0.

(iii) Replace zi by zi + (mdi/dj)zj for j 6= i, m an integer, and dj | mdi.
(iv) (Row interchange) Interchange di and dj with a corresponding interchange of

zi and zj.
(v) (Removal of overall common factor) If λ is an integer for which di/λ is an

integer and zi/λ ∈ Λ0, then replace di by di/λ and zi by zi/λ.
(vi) (Redundant row removal) If dt = 1 or zt = 0, remove dt from D and remove

zt from Z. Then decrease the current value of t by 1.

Proofs or demonstrations of the validity of each of these transformations are very
simple. The first three, given explicitly in [SL90], are the ones which retain t and
D and alter rows of Z only. The remaining three, interchange of rows, elementary
scaling, and redundant row removal, are trivial.

In view of the large number of D − Z forms available ab initio which describe
the same lattice rule, the rest of this section is devoted to a few minor definitions,
which have the effect of reducing the number of essentially trivial variants that we
need to consider.

The reader will have noticed that in any D−Z form, one may arbitrarily reorder
the rows Z, making a corresponding change in the order of the elements di. And,
unless this is the only element of D, one may remove di and zi when di = 1. It is
convenient to define the following.

Definition 2.2. D is sequential or a D − Z representation is sequential if

d1 ≥ d2 ≥ · · · ≥ dt > 1.
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To “reduce” anyD−Z representation to a sequential representation is, in general,
a trivial task.

There are many ways of representing an individual point z/d.

Definition 2.3. The vector z/d, where z ∈ Λ0 and d is a positive integer, is said
to be in proper form if at least one of the components of z is relatively prime with
d and z/d ∈ [0, 1)s. (Colloquially, z/d is in its lowest terms and the point is in the
integration region.)

Definition 2.4. A t-cycle D − Z form is proper nontrivial if every element zi/di,
i ∈ [1, t], is in proper form and if elements di = 1 or zi = 0 do not occur.

Pedagogically, the final phrase is not necessary since there is no proper form for
the origin 0. This point occurs in all lattice rules. The D − Z form includes this
point, as may be seen in (1.2) by setting ji = di for i ∈ [1, t]. The s-dimensional
lattice rule

Qf = f(0)

is represented by (1.2) if, for all i ∈ [1, t], either di = 1 or zi = 0. We refer to this
as the unit rule. This leads to an inconvenient but trivial exception.

Theorem 2.5. All lattice rules, with the single exception of the unit rule, may be
expressed in a sequential, proper nontrivial D − Z form.

The reader will readily confirm that any D−Z form may be reduced to this form
by using the transformations of Theorem 2.1. Note that all but one of the three
forms in (1.3) and (1.4) are proper nontrivial. This form, which can be obtained so
easily, does have one interesting useful property.

Theorem 2.6. Let Q[t,D, Z, s] be a proper nontrivial form of Q. Then ν(Q) has
a factor di for all i ∈ [1, t].

Proof. A simple argument, based on the structure of (1.2), yields this almost self-
evident result. �
Corollary 2.7. When Q is a prime-power rule, that is, ν(Q) = pγ for some prime
p and positive integer γ, then the elements of D in any proper nontrivial form of
Q have di = pγi .

3. A triangular form for prime-power lattice rules

In the remaining sections we restrict our attention to prime-power rules. The
prime p is the same prime throughout these sections. This section is devoted to
developing what we shall term (Definition 3.5 below) a triangular D−Z form. We
shall see that such a triangular form is always available for prime-power rules. In
§4 we shall show that it is a canonical form; and in §5 we shall specify a unique
triangular form.

The following extension of the conventional unit upper triangular (uut) matrix
plays a central role in our theory.

Definition 3.1. The t× s matrix Z is termed column permuted unit upper trian-
gular (cpuut) if and only if there exist distinct column indices {ζ1, ζ2, . . . , ζmin(t,s)},
where ζj ∈ [1, s], and

(3.2) Zk,ζm =

{
1, when k = m,

0, when k > m,
m ∈ [1,min(t, s)].
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When the column indices are {1, 2, . . . ,min(t, s)}, this is the conventional uut
matrix. As an example we illustrate a 7 × 10 cpuut matrix with column indices
given by {1, 2, 8, 6, 4, 5, 9}. In this illustration, X and W represent integers. Note
that there are elements, denoted here by W , which are to the left (or west) of the
pivot, but need not be zero. Their significance will become apparent in §5.

(3.3)



1 X X X X X X X X X
0 1 X X X X X X X X
0 0 W W W W W 1 X X
0 0 W W W 1 X 0 X X
0 0 W 1 X 0 X 0 X X
0 0 W 0 1 0 X 0 X X
0 0 W 0 0 0 W 0 1 X


Theorem 3.4. Any D − Z form in which t ≤ s and Z is cpuut is nonrepetitive.

Proof. The abscissa set comprises all points of the form{
t∑
i=1

ji
zi
di

}
, j` ∈ [0, d`), ` ∈ [1, t].

(Note that in these summations each parameter j` could have been permitted to
take any d` consecutive integer values. Here it is more convenient to use the limits
0 and d`−1 rather than the usual ones of 1 and d`.) The condition that two distinct
parameter choices j′1, j

′
2, . . . , j

′
t and j′′1 , j

′′
2 , . . . , j

′′
t should describe the identical point

implies that the point parameterized by their difference j′1− j′′1 , j′2− j′′2 , . . . , j′t− j′′t
is the origin. Thus if this form is repetitive, there exist qi ∈ [0, di), not all zero,
such that {

t∑
i=1

qi
zi
di

}
= 0.

Taking the ζmth component of this and applying (3.2) above yields{
m−1∑
i=1

qi
Zi,ζm
di

+
qm
dm

}
= 0.

Setting m = 1 gives q1 = 0; when q1 = q2 = · · · = qj−1 = 0, setting m = j yields
qj = 0. It follows by induction that all coefficients qi are zero, and so the form
cannot be repetitive. �
Definition 3.5. A triangular form is a proper nontrivial form in which D is se-
quential and Z is cpuut.

We recall from Definitions 2.2 and 2.4 that when D is sequential, all elements di
exceed 1, and that in a proper nontrivial form, none of the zi are 0. Because Z is
cpuut, it follows that in a triangular form the value of t cannot be greater than s.
(If t were to exceed s, then all the elements of Z in rows s+ 1, . . . , t would be zero
and Z would then not be proper nontrivial.) A useful corollary of Theorem 3.4 is:

Corollary 3.6. A triangular D − Z form is nonrepetitive.

It was shown in §2 (see Theorem 2.5) that with one exception, any lattice rule
could readily be expressed as described in the hypothesis of the next theorem.
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Theorem 3.7. Let Q = Q[t,D, Z, s] be a prime-power rule expressed in proper
nontrivial D−Z form with D sequential. Then it may be re-expressed in triangular
form.

Note that in view of Corollary 2.7, all elements of D are powers of the prime p.
The proof of Theorem 3.7 is by induction. The key lemma is:

Lemma 3.8. Let j be an integer belonging to [1, s]. Suppose the prime-power
rule Q[t,D, Z, s] is a proper nontrivial D − Z form in which D is sequential and
Z satisfies some of the cpuut conditions, namely, that there exist distinct column
indices {ζ1, . . . , ζj−1}, each belonging to [1, s], such that for m ∈ [1, j − 1]

(3.9) Zm,ζm = 1, Zk,ζm = 0, k ∈ [m+ 1, t].

Then there exists a D − Z form of the same rule, whose elements satisfy all of the
above as written with j replaced by j′ = j + 1 and t replaced by t′ ≤ t.
Proof. Let zj = (θ1, θ2, . . . , θs). Since zj/dj is proper, at least one component of
zj , say θ`, has no factor p. In view of Theorem 2.1(i), we may replace zj by λzj
(mod dj), where λ is such that λθ` ≡ 1 (mod dj), and set column index ζj = `.
This leaves Zj,ζj = 1; note that zj/dj is still proper; elements of zj which were
previously zero remain zero; and elements having a factor p retain this factor p.

In light of Theorem 2.1(iii), we may subtract any integer multiple of zj from zk
when dk ≤ dj , j 6= k, that is, when k > j. Thus we may replace zk by zk − Zk,`zj
and it is easy to check that, after doing this,

Zk,ζm = 0, k ∈ [m+ 1, t], m ∈ [1, j].

Finally, since we have altered zk, k > j, it may be that now some elements zk/dk
are not proper. If necessary, we must apply the “housekeeping” transformations
(ii), (v), and (vi) of Theorem 2.1 to reduce these to their lowest terms and to
remove any row in which dk = 1 or zk = 0. Then we reorder these rows to make D
sequential. The resulting form is as stated in the lemma. �
Proof of Theorem 3.7. The proof follows by induction by noting that, when j = 1,
the hypothesis of the induction step coincides with the hypothesis of Theorem 3.7.
And when j = t′, the conclusion of the induction step coincides with the conclusion
of the theorem, that is, the form is a triangular form. �

We close this section with a somewhat unsophisticated result, which is convenient
later in defining a canonical form and placing bounds on invariants.

Theorem 3.10. Let Q[t̃, D̃, Z̃, s] be any D − Z representation of a prime-power

rule Q in which d̃1 ≥ d̃2 ≥ · · · ≥ d̃t̃ ≥ 1 and Q[t,D, Z, s] be a triangular form. Then

di ≤ d̃i for i ∈ [1, t], and

(3.11) ν(Q) ≤ d̃1d̃2 · · · d̃T , T = min(t̃, s).

Note that the non-unit elements of D̃ are sequential, but in addition d̃i = 1 and
z̃i = 0 may occur.

Proof of Theorem 3.10. The proof is straightforward. Following Theorems 2.5 and
3.7, the first form may be reduced to triangular form by using only the elementary
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transformations of Theorem 2.1. Each transformation either leaves all diagonal
elements unchanged; or reduces one of them; or removes one of them; or alters
their order. However, if members of an ordered sequence are individually changed,
but not increased, and then the sequence is put in order again, the value of the new
ith member does not exceed the value of the original ith member. (This simple

result is a specialization of Lemma 2 of [N73].) This leads directly to di ≤ d̃i for
i ∈ [1, t], and these inequalities applied to (1.7) yield (3.11). �

4. Canonical D − Z forms for prime-power rules

In [SL89] the celebrated Kronecker group representation theory was applied to
the group formed from the abscissa set of a rule Q to establish the following:

Each lattice rule may be expressed in a nonrepetitive t-cycle D−Z form in which
di+1 | di, i ∈ [1, t − 1] and dt > 1. Moreover, in such a representation, the values
of t and of the di are unique to the rule Q, and are termed the rank of Q and the
invariants of Q. Such a form is termed a canonical form.

The above was established in [SL89] for all lattice rules. In the context of prime-
power rules, clearly any triangular form as defined in the previous section satisfies
these conditions to be a canonical form.

Theorem 4.1. Any triangular form Q[t,D, Z, s] of a prime-power lattice rule Q is
a canonical form, that is, t is the rank of Q and the di, i ∈ [1, t], are the invariants.

The reader who is already familiar with this theory may omit the first part of
this section.

A nonabstract interpretation of an invariant as the order of some subgroup has
been exploited by Lyness [L93]. In order to make this paper self-contained, we wish
to establish Theorem 4.1 without recourse to group theory. To this end, we need to
construct an independent definition of the invariants of an s-dimensional rule Q.

To do this, we first introduce the projections of an s-dimensional lattice rule. A
w-dimensional projection of a lattice rule is obtained by removing the same set of
s− w components from each abscissa. There are many w-dimensional projections
of Q, depending on which set of components is removed, or equivalently which set
is retained. We denote by Q{i1,i2,... ,iw}s the w-dimensional rule obtained from Q
by retaining only the specified components. Here, i1, . . . , iw are w distinct integers
lying in [1, s]. It is trivial to show that any such projection of a lattice rule is
another lattice rule. Moreover, we have the following readily-verified result.

Lemma 4.2. The w-dimensional projection Q{i1,i2,... ,iw}s of a rule Q having rep-
resentation Q[t,D, Z, s] has representation Q[t,D, Z,w], where Z is obtained from
Z by retaining only columns i1, i2, . . . , iw.

Definition 4.3. The invariants of a prime-power lattice rule Q are defined as

n1 = σ1(Q), nw = σw(Q)/σw−1(Q), w ∈ [2, t],

where
σw(Q) = max

i1,... ,iw∈[1,s]
ν
(
Q{i1,i2,... ,iw}s

)
.

Each of the distinct w-dimensional projections of the s-dimensional rule Q has
its own order, some integer between 1 and ν(Q). We have defined entities σw(Q)
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as the maximum of these orders, and the invariants ni as the ratio of successive
values of σw(Q).

It is clear that the invariants ni(Q) defined above are uniquely defined in terms
of Q. They are independent of any D − Z representation which we might employ.
This is all that is needed pro tem. Later, their more familiar properties will appear.

Lemma 4.4. Let Q[t,D, Z, s] be a triangular form of a prime-power lattice rule
Q. For w ∈ [1, t], let Q{i1,i2,... ,iw}s be one of the w-dimensional projections of Q.
Then

(4.5) ν
(
Q{i1,i2,... ,iw}s

)
≤ d1d2 · · · dw,

and equality prevails for at least one w-dimensional projection.

Proof. Lemma 4.2 shows that Q{i1,i2,... ,iw}s = Q[t,D, Z,w], where Z is obtained
from Z by retaining columns i1, . . . , iw. A direct application of Theorem 3.10 yields
the inequality (4.5).

To show that we can obtain equality, let {ζ1, . . . , ζt} be the column indices of
the triangular form. If we take ik = ζk, k ∈ [1, w], then the second part of (3.2)
shows that rows w + 1, . . . , t of Z contain only zeros. Retaining only the first w
rows of Z, one may verify that the resulting w-cycle D − Z form is triangular. It
then follows from Corollary 3.6 that ν

(
Q{ζ1,ζ2,... ,ζw}s

)
= d1d2 · · ·dw. �

This lemma shows that σw(Q) in Definition 4.3 coincides with d1d2 · · · dw ob-
tained from any triangular form of Q. It follows that ni in this definition coincides
with di, so establishing Theorem 4.1. The key point here is that the D-matrix
in a triangular form is unique to Q. That is, a different reduction of a different
representation of Q cannot lead to a different sequential D-matrix. This justifies
our use of the term invariant without any recourse to the underlying group theory
required in [SL89]. We now restate Theorem 3.10 in a trivially modified form.

Theorem 4.6. Let Q be a prime-power rule, having rank r and invariants n1,
n2, . . . , nr. Let Q[t,D, Z, s] be any D − Z form representing Q. Then

ni ≤ δi, i ∈ [1, r],

where δ1 ≥ δ2 ≥ · · · ≥ δr are the r largest elements of D.

For a prime-power rule we have now defined a canonical form as any form
Q[r,D,Z, s] which represents Q and in which r is the rank and D contains the
invariants in order. We have demonstrated one canonical form, the triangular form
of the previous section. The rest of this section is concerned with the conditions
which have to be satisfied by Z for Q[r,D,Z, s] to be a canonical form.

Definition 4.7. When t ≤ s, a t × s matrix Z is rank-deficient modulo p if and
only if there exist integers λi, i ∈ [1, t], not all zero (modulo p) such that

(4.8)
t∑
i=1

λizi = 0 (mod p).
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Corollary 4.9. When t ≤ s, a t × s matrix Z is rank-deficient modulo p if for
some zi all elements have a factor p, that is, zi ∈ pΛ0.

These are standard definitions adjusted in an obvious way to a special situation.

Theorem 4.10. A necessary and sufficient condition that Q[t,D, Z, s] should be a
canonical form of a prime-power rule Q is that D is sequential and Z is full rank
modulo p.

Proof. Examination of Theorems 2.5 and 3.7, which justify the reduction of any
prime-power rule to triangular form reveals that the first four operations, (i)–(iv),
of Theorem 2.1 do not alter detD. In fact, they do not alter any individual di,
but (iv) alters their order. Thus, if D is sequential, only two transformations of
Theorem 2.1 alter the elements di; these are (v) and (vi) (in the case zi = 0).
However, these can be applied only if either some zi and di have an overall factor
(which must be a multiple of p), or if zi = 0. In either case, in light of Corollary 4.9,
Z is rank-deficient modulo p. Thus, in the process of reduction from a generalD−Z
form to a triangular form, if one encounters a situation in which D is sequential
and Z is of full rank modulo p, the rest of the reduction does not alter D. This
establishes the condition is sufficient.

On the other hand, if Z is not of full rank, a relation of form (4.8) above exists.
This may be expressed in the form

zk −
k−1∑
i=1

µizi = 0 (mod p),

where k is the largest index j for which λj 6= 0 (mod p). Then successive use of
transformation (iii) of Theorem 2.1 leads to zk = 0 (mod p). Since D is sequential,
applying Theorem 2.1(v) or (vi) reduces t and reduces or removes some value of di.
Thus t is not the rank and the form is not a canonical form. �

We conclude this section with the following result.

Theorem 4.11. A necessary and sufficient condition for a D−Z form of a prime-
power rule to be canonical is that it be nonrepetitive with sequential D.

Proof. This follows from the circumstances that all canonical forms have the same
matrix D; and for one form (Theorem 3.4) ν(Q) = detD, the condition for the
form to be nonrepetitive. On the other hand, for a repetitive form ν(Q) < detD,
invalidating the possibility that D contains only the invariants. �

5. Prime-power rules: a unique canonical form

We look for a unique canonical form for prime-power rules which is recognizable.
For example, the triangular form is readily recognizable. To check that Z is cpuut
and that D is sequential is the work of a moment. Up to now we have shown that
D is unique. But there are still many possibilities, all cpuut, for Z. To obtain
a different matrix Z we might have chosen a different ζj at the jth stage of the
reduction of Lemma 3.8. When dk ≥ dj , we may subtract any multiple of (dk/dj)zj
from zk without altering the rule. And when dj = dj+1 we may simply interchange
zj and zj+1. In this section we proceed to place various additional conditions on
Z with a view to making it unique. (Some of these may appear to be arbitrary.)
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We deal first with the possibility of altering zk by adding or subtracting a multi-
ple of zj . When k > j, this will destroy the cpuut property of Z. But, when k < j,
one may apply transformation (iii) of Theorem 2.1 to replace zk by zk−λ(dk/dj)zj
for any integer λ. Since zj has zeros in positions ζ1, ζ2, . . . , ζj−1, this leaves the
corresponding components of zk unaltered. Because Zj,ζj = 1, we may compel the
values of Zk,ζj to lie in the interval [0, dk/dj) simply by setting λ to be the integer
part of (dj/dk)Zk,ζj . Thus in addition to (3.2) we now impose the restriction

(5.1) Zk,ζm ∈ [0, dk/dm), k ∈ [1,m− 1].

We have made this part of our specification (Definition 5.6 below) of an ultra-
triangular form which will be unique. We may think of restriction (5.1) being
applied separately after the triangular form of Theorem 3.7 has been obtained.
However, it may be inserted into the algorithm implicit in the proof of Lemma 3.8.
This induction step lemma then requires (5.1) for m ∈ [1, j− 1] in addition to (3.9)
This may be combined with the second part of (3.2) to yield

(5.2) Zk,ζm ∈ [0, dk/dm), k 6= m.

A consequence of imposing (5.1) is that when dk = dj , we find

(5.3) Zk,ζj = Zj,ζk = 0.

One of these follows from the cpuut nature of Z (the first if k > j). The other
follows because the only integer element of [0, 1) is 0.

We now impose a second condition. This restricts the choice of indices {ζ1,
ζ2, . . . , ζt}. We recall that in the proof of Lemma 3.8, ζj is chosen to be any value
` for which the `th component of zj has no factor p. We now remove this choice.
The index ζj is to be the smallest value of ` for which the `th component of zj has
no factor p. Thus, we choose the indices in a deterministic manner. This restriction
is equivalent to

(5.4) Zm,k/p is an integer for k ∈ [1, ζm − 1].

Note that this does not clash with the condition that m−1 of these integers (namely
the ones in positions ζ1, ζ2, . . . , ζm−1) are zero as a result of Z being cpuut. This
is illustrated in the Z-matrix (3.3) above. The elements denoted by W are those
which have a factor p. One desirable feature of this restriction is that it goes nearly
all the way to ensuring, that if a unit upper triangular Z is possible, it will be
the unique form. Indeed, if all the di are distinct, this is already the case. It still
appears that when dk = dk+1, one may find ζk+1 < ζk. However, in view of (5.3)
above, these rows of Z may be interchanged without violating earlier restrictions.
Our final restriction is

(5.5) dk = dk+1 ⇒ ζk < ζk+1.

We conclude this section with a definition which embraces restrictions (5.1),
(5.4), and (5.5); and with the major theorem of this section.
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Definition 5.6. An ultratriangular D − Z form for a prime-power rule is one in
which

(i) D is sequential,
(ii) zi/di is proper,

(iii) Z is cpuut with column indices {ζ1, ζ2, . . . , ζt},
(iv) Zm,k/p is an integer for k ∈ [1, ζm − 1],
(v) if dm = dm+1, then ζm < ζm+1,
(vi) Zk,ζm ∈ [0, dk/dm), k 6= m.

Clearly, (i), (ii), and (iii) simply assert that this is a triangular form. The
conditions of (vi) for which k > m are already included in (iii). It will appear later
that (iv) and (v) may be replaced by the condition on {ζ1, ζ2, . . . , ζt} of Theorem
5.10 below. The rest of this section is devoted to proving the following:

Theorem 5.7. All prime-power rules Q have a unique ultratriangular D−Z form.

We know already that t (the rank) and D (containing the invariants) are unique.
To prove this theorem, we then need to show that Z is unique. In general, different
triangular forms of the same rule may be based on different column indices. We
now show that the column indices {ζ1, ζ2, . . . , ζt} in an ultratriangular form are
unique. It turns out that the t-tuple {ζ1, ζ2, . . . , ζt} is the smallest of the various
possibilities in the sense of the following standard lexicographic ordering.

Definition 5.8. Let {ζ1, ζ2, . . . , ζt} and {ζ′1, ζ′2, . . . , ζ′t} both be t-tuples containing
a permutation of a subset of the integers 1, 2, . . . , s. This standard ordering is
defined by

{ζ1, ζ2, . . . , ζt} < {ζ′1, ζ′2, . . . , ζ′t}

when there is an ` such that ζk = ζ′k for k ∈ [1, `− 1] and ζ` < ζ′`.

According to this ordering, the “smallest” t-tuple possible is {1, 2, . . . , t}, while
the “largest” one possible is {s, s− 1, . . . , s− t+ 1}. If s ≤ 9 the ordering coincides
with the natural ordering of the s-digit integers (base 10). For example, with s = 9
we have {6, 4, 3} < {7, 1, 2} simply because 643 < 712.

Definition 5.9. A triangular D − Z form is termed to have a minimal t-tuple of
column indices if there is no other triangular D − Z form of the same rule Q with
a smaller t-tuple (in the sense of Definition 5.8).

Theorem 5.10. For a prime-power lattice rule, a triangular D − Z form which
satisfies items (i) through (v) of Definition 5.6 has a minimal t-tuple of column
indices.

Proof. To establish this result we shall show first that for k < ζ` the kth component
of each abscissa of Q which has zeros in positions ζ1, . . . , ζ`−1 is of the form λp/d`
for some integer λ. To prove this latter result, let

c =

{
t∑
i=1

ji
zi
di

}
, ji ∈ [0, di),

be such an abscissa. Since c has zeros in positions ζ1, . . . , ζ`−1, then an argument
similar to that used in the proof of Theorem 3.4 shows that ji = 0 for i ∈ [1, `− 1].
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Suppose d` = d`+1 = · · · = d`+m > d`+m+1. Then application of item (v) of
Definition 5.6 gives ζ` < ζ`+1 < · · · < ζ`+m. Since we are treating ck with k < ζ`,
it follows that k < ζi for all i ∈ [`, `+m]. Thus m+ 1 applications of item (iv) of
Definition 5.6 reveal that Zi,k/p is an integer for i ∈ [`, `+m]; so the contribution
to ck from these m+ 1 terms is a multiple of p/d`.

Finally for i ≥ `+m+1, we have di < d` so that di = d`/(µp) for some µ ≥ 1. It
then follows that each contribution to the abscissa c has a kth component which is a
multiple of p/d` (including possibly a zero multiple), and so c has a kth component
of the form λp/d`.

To prove the desired result, suppose there was a smaller t-tuple, say {ζ′1, ζ′2, . . . ,
ζ′t}. Let ` be the first index for which ζ′` < ζ`. Then we see that Q has an abscissa c′

which has a component 1/d` in position ζ′` and zeros in positions ζ1, . . . , ζ`−1. How-
ever, since ζ′` < ζ` and c′ has zeros in positions ζ1, . . . , ζ`−1, then we have already
shown above that the ζ′`th component of c′ is of the form λp/d`. This is a con-
tradiction. Thus there cannot be an index t-tuple smaller than the {ζ1, ζ2, . . . , ζt}
t-tuple for the D − Z form satisfying items (i) through (v) of Definition 5.6. �

This is a great help. Given any rule, the invariants and the rank are fixed. It
goes without saying that of all possible triangular forms, there must be one having
a minimal t-tuple of column indices. And, of possibly many choices of Z, we have
shown that our choice of ultratriangular form is one that employs such a minimal
t-tuple.

Lemma 5.11. A triangular form in which the t-tuple of column indices is minimal
and in which condition (vi) of Definition 5.6 is satisfied is unique to the prime-power
rule Q.

Proof. As has already been pointed out, we need only prove that Z is unique. We
first use induction to prove that columns ζ1, . . . , ζt of Z are unique. Suppose Z and
W are two alternative forms of a Z-matrix having all the properties of Definition
5.6. Since both zk/dk and wk/dk are abscissae of Q, we define

ck =
zk −wk

dk
,

and this is also a lattice element. As such, it may be expressed in the form

(5.12) ck =
t∑
i=1

jk,i
zi
di
.

Theorem 5.10 shows that both Z and W have the same indices ζ1, . . . , ζt. Also,
since both Z and W are cpuut, then they have the same ζ1th column (all elements
being zero except for the first element which is 1).

Let us suppose columns ζ1, . . . , ζm−1 of Z coincide with the corresponding col-
umn of W , but that for some k, Zk,ζm 6= Wk,ζm . (Note that such a value of k must
be less than m.) Taking components ζ1, ζ2, . . . , ζm−1 of (5.12) in turn, we find
successively jk,1 = jk,2 = · · · = jk,m−1 = 0. Specializing to component ζm gives

Ck,ζm =
Zk,ζm −Wk,ζm

dk
=

t∑
i=m

jk,i
Zi,ζm
di

=
jk,m
dm

,
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with the final equality following because Zi,ζm = 0 for all i ∈ [m+ 1, t]. Thus,

(5.13) Zk,ζm −Wk,ζm = jk,m
dk
dm

.

Since both Zk,ζm and Wk,ζm satisfy condition (vi), that is, they are both in the
interval [0, dk/dm), it follows that (5.13) can be satisfied only if jk,m = 0.

It follows from (5.13) that, contrary to the hypothesis, Zk,ζm = Wk,ζm for all k,
and so column ζm of Z and W also coincide. Thus the hypothesis that columns
ζ1, ζ2, . . . , ζm−1 of Z and W coincide leads to the same being true of column ζm
and to jk,m = 0 for k ∈ [1,m].

An elementary inductive process leads to

jk,m = 0 ∀k,m ∈ [1, t].

This establishes that wk = zk, k ∈ [1, t], and so Z = W , from which we conclude
that Z is unique. �

6. Concluding remarks

The principal result of this paper is the derivation of a unique canonical form for a
fundamental class of lattice rules, namely rules of prime-power order. Particularly
encouraging is that this form is easy to recognize. Moreover, since the various
proofs are constructive in nature, it is not difficult to construct an algorithm based
on these proofs, which reduces any D − Z form for a prime-power rule into an
ultratriangular form.

An interesting feature of this paper is that no use has been made of group theory,
as in [SL89]; of lattice theory (in the form of generator matrices), as in [LSø93] or
[LK95]; or even of the order property of individual lattice points, as in [L93]. The
entire theory is developed independently, starting from an elementary definition
(1.1) and employing only elementary transformations of integer matrices D and Z.
The bibliography is composed of related papers. None are needed to understand
this paper.

Naturally, both authors are in favor of exploiting all advanced theory when
applicable. But it appeared in our development that elementary matrix theory
is generally sufficient. The single point when a minor improvement might have
resulted is in the definition of the invariants. These essentially group-theoretic
concepts turn out, in the case of prime-power rules, to have a concrete interpretation
in terms of the orders of the set of projections of the rules. This property is of
interest in its own right, but we would have preferred some more elegant property
to define the term invariant.

The principal result (the unique canonical form) of this paper is confined to
prime-power rules. In [SJ94] section 3.3, it is noted that any lattice rule may be
expressed as a direct sum of prime-power rules. Our hope is that the present work
will pave the way for results of wider generality, perhaps by exploitation of that
direct sum.
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