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COMPUTING ALL POWER INTEGRAL BASES IN ORDERS OF
TOTALLY REAL CYCLIC SEXTIC NUMBER FIELDS

ISTVÁN GAÁL

Abstract. An algorithm is given for determining all power integral bases
in orders of totally real cyclic sextic number fields. The orders considered
are in most cases the maximal orders of the fields. The corresponding index
form equation is reduced to a relative Thue equation of degree 3 over the
quadratic subfield and to some inhomogeneous Thue equations of degree 3
over the rationals. At the end of the paper, numerical examples are given.

1. Introduction

Let K be a number field of degree n with ring of integers ZK . To decide whether
K admits a power integer basis, that is an integer basis of the form {1, γ, . . . , γn−1},
and to determine all such γ, is a classical problem in algebraic number theory. This
problem is equivalent to solving the corresponding index form equation, which is a
decomposable form equation of degree n(n−1)/2 in n−1 variables, with coefficients
in Z.

In [17] the author and Schulte considered index form equations in cubic number
fields. In this case the index form equation reduces to a cubic Thue equation.

The author, Pethő and Pohst in a series of papers [10, 11, 12, 13, 14, 15] con-
sidered the same question in quartic number fields. Finally, it turned out [16] that
also in this case it is possible to reduce the problem of resolution of index form
equations to the resolution of cubic and quartic Thue equations.

The index form is reducible if there are nontrivial subfields of the number field
in question. For fields of higher degree the resolution of index form equations is
only feasible if the index form is reducible. For this reason, we consider now this
problem in a class of sextic number fields. In case of sextic number fields the index
form equation has already 5 variables and degree 15. The most intensively studied
class of sextic fields is the class of totally real cyclic sextic fields (cf. [20, 6]). These
fields admit also a couple of nice properties. This is the reason why first of all we
develop a method for totally real cyclic sextic fields. In this case the field K has
both a quadratic subfield M and a cubic subfield L, and the index form has three
factors.
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Remark 1. Our algorithm is in fact applicable in all sextic fields having both a
quadratic and a cubic subfield. If the field is not totally real, the procedure becomes
simpler.

In order to be able to describe the factors of the index form in an appropriate
way, we shall restrict ourselves to orders of the form

O = Z[1, θ, θ2, ω, ωθ, ωθ2],

where {1, ω} is a basis of M and θ ∈ ZK . Apart from very few exceptions (about
2%), the sextic fields with a quadratic subfield admit a relative power integral basis
{1, θ, θ2} over the quadratic subfield (cf. Bergé, Martinet and Olivier [2] and the
tables of Olivier [23, 24]), which implies, that O is the main order of the field. The
situation is just a little bit worse for totally real cyclic sextic fields, but also in this
case we have O = ZK for almost all fields (cf. [23]).

Remark 2. In the few exceptional cases (which occur only for large discriminants)
we can represent the integers γ ∈ ZK in the form

γ =
x0 + x1θ + x2θ

2 + y0ω + y1ωθ + y2ωθ
2

d
,

with x0, x1, x2, y0, y2, y3 ∈ Z and with a denominator d ∈ Z common for all γ ∈ ZK .
In this case we obtain the equations (11), (12), (13) with right-hand sides f1, f2, f3,

respectively, with f1, f2, f3 ∈ Z satisfying f1f2f3 = ±d15
√
DK/

√
D, where DK is

the discriminant of the field K and D is the discriminant of order O, (cf. (1)).
One has to consider all triples f1, f2, f3 with this property. Our method with slight
modifications works also in this case, but the CPU time needed is much more than
in most nonexceptional cases.

The main goal of our method is to show that for totally real cyclic sextic fields the
problem of resolution of the index form equation can be reduced to the resolution of
certain Thue equations. More exactly, we obtain a relative Thue equation of degree
3 over the quadratic subfield M . Moreover, for each solution of the relative Thue
equation we get an equation of degree 3, in 2 dominating and 1 nondominating
variables being of the same nature, like an inhomogeneous Thue equation.

We remark that such inhomogeneous Thue equations were first considered by
Sprindzuk [27]. He showed that Baker’s method is applicable to equations of this
type. The author [9] pointed out that the Baker–Davenport reduction method [1] is
also similarly usable as in the case of Thue equations, and hence one can determine
without difficulties the solutions of such equations. Until now, these results were
only of theoretical importance; this is the first case in which such inhomogeneuos
equations have found a practical application.

At the end of the paper we list all power integral bases of the first five totally
real cyclic sextic number fields with smallest discriminants. In all our examples we
have O = ZK .

2. Preliminaries

Let M be a real quadratic number field, with integral basis {1, ω}. Let f ∈ ZM
be a monic, irreducible, cubic polynomial, and denote by θ = θ(1), θ(2), θ(3) the
roots of f . Assume that K = Q(θ) is a totally real cyclic sextic number field. Let

O = Z[1, θ, θ2, ω, ωθ, ωθ2].
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Denote by L the cubic subfield of K. Let ZK ,ZM ,ZL be the rings of integers of
the number fields K,M,L, respectively. Denote by γ̄ the conjugate of any γ ∈ K
over M .

Remark 3. The field K is the composite of its quadratic subfield M and of its cubic
subfield L. With any primitive element % of L, {1, %, %2, ω, ω%, ω%2} is obviously
a basis of K. If we represent any γ ∈ K in this basis, it is easy to see that
(γ − γ̄)/(ω − ω̄) ∈ L holds.

Let θ(4) = θ(1), θ(5) = θ(2), θ(6) = θ(3). For any γ ∈ K denote by γ(i) the conju-
gate of γ corresponding to θ(i). Note that the generating element of the Galois group
of K is σ, mapping any γ ∈ K with conjugates {γ = γ(1), γ(2), γ(3), γ(4), γ(5), γ(6)}
onto σ(γ) ∈ K with conjugates {γ(5), γ(6), γ(4), γ(2), γ(3), γ(1)}. Obviously, for any
γ ∈ K we have γ̄ = σ3(γ), and if γ ∈M , then γ̄ = σ(γ).

It is easily calculated that the discriminant D of O satisfies

(1)
√
D = |NK/Q(θ(1) − θ(2))(ω − ω̄)3| .

Let X = (X1, X2, Y0, Y1, Y2), define Li(X) = X1θ
(i) + X2(θ(i))2 + Y0ω

(i) +
Y1ω

(i)θ(i) + Y2ω
(i)(θ(i))2 (1 ≤ i ≤ 6), and let

Lij(X) = Li(X)− Lj(X) (1 ≤ i, j ≤ 6, i 6= j).

The index form corresponding to the basis {1, θ, θ2, ω, ωθ, ωθ2} of O is

(2) I(X) = I(X1, X2, Y0, Y1, Y2) = ± 1√
D

∏
1≤i<j≤6

Lij(X).

Our purpose is to find all solutions of the index form equation

(3) I(x) = I(x1, x2, y0, y1, y2) = ±1 in x1, x2, y0, y1, y2 ∈ Z.

This equation has only finitely many solutions (cf. [18]). An element γ ∈ O
generates a power integral basis {1, γ, γ2, γ3, γ4, γ5} if and only if the index of γ,

I(γ) = (O+ : Z+[γ]),

is equal to 1. Further, for any x0, x1, x2, y0, y2, y3 ∈ Z the index of

(4) γ = x0 + x1ϑ+ x2ϑ
2 + y0ω + y1ωϑ+ y2ωϑ

2

satisfies

I(γ) = |I(x1, x2, y0, y1, y2)|.

Hence, γ ∈ ZK generates a power integral basis in K if and only if it is represented
in the form (4) with an arbitrary x0 ∈ Z and with a solution (x1, x2, y0, y1, y2) of
(3).
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3. The factors of the index form

In this section we split the 15 factors of the index form into 3 groups, and from
these groups we build up the three factors with integer coefficients of the index
form.

I. Taking the pairs (i, j) = (1, 2), (5, 6), (3, 1), (4, 5), (2, 3), (6, 4), we can see that
the forms Lij(X) in this group are just the six conjugates of L12(X). Since

L12(X) = (θ(1) − θ(2))
(
X1 + (θ(1) + θ(2))X2 + ωY1 + ω(θ(1) + θ(2))Y2

)
,

we have that the product of the six factors in this group is

(5) NK/Q(θ(1) − θ(2)) · F1(X),

with

(6) F1(X) = NK/Q

(
X1 + (θ(1) + θ(2))X2 + ωY1 + ω(θ(1) + θ(2))Y2

)
.

The form F1(X) is obviously primitive.
II. Take now the pairs (i, j) = (1, 5), (5, 3), (3, 4), (4, 2), (2, 6), (6, 1). For these

pairs the forms Lij(X) are just the six conjugates of L15(X). The product of these
six factors is again a complete norm:

NK/Q

((
θ(1) − θ(5)

)
X1 +

(
(θ(1))2 − (θ(5))2

)
X2 + (ω − ω̄)Y0

+
(
ωθ(1) − ω̄θ(5)

)
Y1 +

(
ω(θ(1))2 − ω̄(θ(5))2

)
Y2

)
.

This form is not always primitive. If it is primitive, take α = 1; otherwise, if the
gcd of its coefficients in Z is d > 1, find all nonassociate integers in K of norm
±d (using the method of [8]) and let α be one of them, dividing all coefficients of
L15(X) in ZK . Then the product of the six factors equals

(7) NK/Q(α) · F2(X),

with

(8) F2(X) = NK/Q

(
θ(1) − θ(5)

α
X1 +

(θ(1))2 − (θ(5))2

α
X2 +

ω − ω̄
α

Y0

+
ωθ(1) − ω̄θ(5)

α
Y1 +

ω(θ(1))2 − ω̄(θ(5))2

α
Y2

)
.

III. The remaining pairs are (i, j) = (1, 4), (5, 2), (3, 6). In view of our Remark 3,
for all these pairs, Lij(X)/(ω − ω̄) has coefficients in L. Moreover, the conjugates
of L14(X)/(ω − ω̄) over L are exactly L52(X)/(ω − ω̄) and L36(X)/(ω − ω̄). This
means that the product of the three factors in this group is equal to

(ω − ω̄)3 ·NL/Q
(
θ(1) − θ(4)

ω − ω̄ X1 +
(θ(1))2 − (θ(4))2

ω − ω̄ X2 + Y0

+
ωθ(1) − ω̄θ(4)

ω − ω̄ Y1 +
ω(θ(1))2 − ω̄(θ(4))2

ω − ω̄ Y2

)
.
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The form L14(X)/(ω − ω̄) does not always have integer coefficients in L. But the
index form I(X) has integer coefficients and therefore there must be a β ∈ ZL of
norm |NL/Q(β)| = |NK/Q(α)| (to find such an element, test again the nonassoci-
ated integers in L of norm ±|NK/Q(α)| obtained by the method of [8]) such that
βL14(X)/(ω − ω̄) admits integer coefficients in L. Hence, the product of the three
factors in this group is equal to

(9)
(ω − ω̄)3

NL/Q(β)
· F3(X),

with

(10) F3(X) = NL/Q

(
β(θ(1) − θ(4))

ω − ω̄ X1 +
β((θ(1))2 − (θ(4))2)

ω − ω̄ X2 + βY0

+
β(ωθ(1) − ω̄θ(4))

ω − ω̄ Y1 +
β(ω(θ(1))2 − ω̄(θ(4))2)

ω − ω̄ Y2

)
.

In view of (1), (2) and |NL/Q(β)| = |NK/Q(α)| we conclude that the index form
equation (3) is equivalent to the system of equations

F1(x1, x2, y1, y2) = ±1,(11)

F2(x1, x2, y0, y1, y2) = ±1 in x1, x2, y0, y1, y2 ∈ Z,(12)

F3(x1, x2, y0, y1, y2) = ±1,(13)

with the above F1, F2, F3 ∈ Z[X1, X2, Y0, Y1, Y2].

4. A relative Thue equation over the quadratic subfield

We consider now the first equation (11) of the above system. In view of (6) it
can be rewritten as

NK/Q((x1 + ωy1) + (θ(1) + θ(2))(x2 + ωy2)) = ±1 in x1, x2, y0, y1, y2 ∈ Z.

The element % = θ(1) + θ(2) ∈ K is of degree 6, x = x1 + ωy1 and y = x2 + ωy2 are
in ZM . Then the equation is equivalent to

(14) NK/Q(x+ %y) = ±1 in x, y ∈ ZM .
Denote by µ the fundamental unit of M with µ > 1. Then (14) implies

NK/M (x+ %y) = ±µs

with some s ∈ Z. Taking s = 3q + r, with q, r ∈ Z, 0 ≤ r < 3 and x′ = xµ−q, y′ =
yµ−q, we get

(15) NK/M (x′ + %y′) = ±µr in x′, y′ ∈ ZM .
For a fixed r this equation is a relative Thue equation over M . It is well known
that such an equation has only finitely many solutions. This means that equation
(14) can be reduced to three (r = 0, 1, 2 in (15)) relative Thue equations.

We show that by analyzing equation (14) in a proper way we can find all x = x1+
ωy1, y = x2 +ωy2 ∈ ZM , such that all solutions of (14) are of the form ±µsx,±µsy
with some s ∈ Z. The cases r = 0, 1, 2 can be dealt with simultaneously; only one
solving procedure is needed.

We remark that recently de Weger [31] also solved a relative Thue equation over
a quadratic field by somewhat different methods.
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4.1. Fundamental units. Denote by τ a unit in the cubic subfield L such that
{τ, τ (3)} forms a fundamental system of units in L. (Such a τ always exists, cf.
[20].) The system {µ, τ, τ (3)} can always be extended to a fundamental system of
units in K ([20]).

Equation (14) can always be reduced to a unit equation in two variables over
K (see [7]). In our case, since we deal with relative conjugates over M , the factor
corresponding to µ cancels, and the units in this unit equation have 4 factors with
unknown exponents. There is a well–known constructive method to analyze such
unit equations (cf. [11]).

However (see [20]), in about 95% of the totally real cyclic sextic fields there
exists a unit ξ such that {µ, τ, τ (3), ξ, ξ(5)} is a fundamental system of units in K.
(Exceptions occur only for very large discriminants.) Such a system of fundamental
units makes the formulas very much simpler (cf. also Remark 4 in §4.4), and ideas
of this type may be fruitful in some other applications, too. For this reason, we
assume in the following that {µ, τ, τ (3), ξ, ξ(5)} is a system of fundamental units in
K, and we develop our method in detail under this condition.

Lemma 1. Let µ, τ, ξ be as above. If {µ, τ, τ (3), ξ, ξ(5)} is a fundamental system of
units in K, then the same holds for {µ, τ, τ (3), ξ, ξ(3)}.
Proof. We have

(16) NK/M (ξ) = ξξ(2)ξ(3) = ±µt

with a t ∈ Z. On the other hand,

NK/L(ξ) = ξξ(4) = ±τa(τ (3))b

with suitable a, b,∈ Z. This implies

ξ(2)ξ(5) = ±(τ (2))aτb = ±
(
±1

τ(τ (3))

)a
τb = ±τb−a(τ (3))−a,

whence
ξ(5) = ±(ξ(2))−1τb−a(τ (3))−a .

Combining this expression with (16), we obtain

ξ(5) = ±ξξ(3)τb−a(τ (3))−aµ−t,

which implies the assertion. �
4.2. Application of Baker’s method. Let x, y ∈ ZM be an arbitrary but fixed
solution of (14). Let β = x+ %y. Obviously,

(17) β = ±µlτa(τ (3))bξc(ξ(3))d,

with l, a, b, c, d ∈ Z.
We use the identity(

%(1) − %(2)
)
β(3) +

(
%(2) − %(3)

)
β(1) +

(
%(3) − %(1)

)
β(2) = 0
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to get

(18)

(
%(1) − %(3)

)
β(2)(

%(3) − %(2)
)
β(1)

+ 1 =

(
%(1) − %(2)

)
β(3)(

%(3) − %(2)
)
β(1)

.

From
ττ (2)τ (3) = ±1 and ξξ(2)ξ(3) = ±µt

(cf. the proof of Lemma 1) and (17) we conclude∣∣∣∣β(2)

β(1)

∣∣∣∣ =
∣∣∣τb−2a(τ (3))−b−aξd−2c(ξ(3))−d−cµtc

∣∣∣(19)

=
∣∣εa1εb2εc3εd4∣∣ ,(20)

with

ε1 =
1

τ2τ (3)
, ε2 =

τ

τ (3)
, ε3 =

µt

ξ2ξ(3)
, ε4 =

ξ

ξ(3)
.

It follows from (19) that ε1, ε2, ε3, ε4 are multiplicatively independent. Similarly,
we obtain ∣∣∣∣β(3)

β(1)

∣∣∣∣ =
∣∣∣τ−a−b(τ (3))a−2bξ−c−d(ξ(3))c−2dµkd

∣∣∣
= |ηa1ηb2ηc3ηd4 |,(21)

with multiplicatively independent

η1 =
τ (3)

τ
, η2 =

1

τ(τ (3))2
, η3 =

ξ(3)

ξ
, η4 =

µt

ξ(ξ(3))2
.

Set γ = β(3)/β. Denote by γ(I) the conjugate of γ with

(22) | log(γ(I))| = max
1≤i≤6

| log(γ(i))|.

We have

log |γ(k)| = a log |η(k)
1 |+ b log |η(k)

2 |+ c log |η(k)
3 |+ d log |η(k)

4 | (1 ≤ k ≤ 6).

Consider this system as a system of linear equations in a, b, c, d. Since the ηj
are multiplicatively independent, taking any 4 of the indices 1 ≤ k ≤ 6 in the
above system of equations, the matrixM of the system of equations is nonsingular.
Choose the 4 indices such that the row norm ofM−1 become as small as possible.
Denote this value by c1. Then (22) implies

H = max(|a|, |b|, |c|, |d|) ≤ c1| log |γ(I)||,

whence

| log |γ(I)|| ≥ H

c1
.
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This, in view of

(23)
6∑
k=1

log |γ(k)| = 0

(holding because γ is a unit in K), implies in turn that there exists a conjugate γ(i)

of γ with

(24) log |γ(i)| ≤ −H
5c1

.

Take now the conjugate (·)(i) of all terms in the equation (18). (Note that in the
course of the computation one has to consider all possible values for i.) From (24)
we conclude

(25)

∣∣∣∣(ε(i)
1

)a (
ε

(i)
2

)b (
ε

(i)
3

)c (
ε

(i)
4

)d
ε

(i)
5 − 1

∣∣∣∣ ≤ c2 exp

(
− H

5c1

)
,

with

ε5 =
%(3) − %(1)

%(3) − %(2)
and c2 =

∣∣∣∣∣
(
%(1) − %(2)

%(3) − %(2)

)(i)
∣∣∣∣∣ .

In view of the inequality

(26) | log t| ≤ 2|t− 1|, which holds for any real t with |t− 1| < 0.795,

(25) implies

Λ =
∣∣∣a log

∣∣∣ε(i)
1

∣∣∣+ b log
∣∣∣ε(i)

2

∣∣∣+ c log
∣∣∣ε(i)

3

∣∣∣+ d log
∣∣∣ε(i)

4

∣∣∣+ log
∣∣∣ε(i)

5

∣∣∣∣∣∣
≤ 2c2 exp

(
− H

5c1

)
,(27)

where it is assumed that

(28) H > −5c1 log

(
0.795

c2

)
= c3.

We now wish to give a lower bound for the linear form Λ in (27) in terms of
H by using Baker’s method. We observe that ε5 is multiplicatively dependent on
ε1, ε2, ε3, ε4 (which are independent). We have

log |ε5| =
a0

m
log |ε1|+

b0
m

log |ε2|+
c0
m

log |ε3|+
d0

m
log |ε4|,

with suitable integers a0, b0, c0, d0,m. (In our examples we always had m = 3.) Set

(29) ā = ma+ a0, b̄ = mb+ b0, c̄ = mc+ c0, d̄ = md+ d0

and
H0 = max(|a0|, |b0|, |c0|, |d0|), H̄ = max(|ā|, |b̄|, |c̄|, |d̄|).
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Then H̄ ≤ mH +H0, whence

(30) H ≥ H̄ −H0

m
,

and inequality (27) becomes

Λ =
∣∣∣ā log

∣∣∣ε(i)
1

∣∣∣+ b̄ log
∣∣∣ε(i)

2

∣∣∣+ c̄ log
∣∣∣ε(i)

3

∣∣∣+ d̄ log
∣∣∣ε(i)

4

∣∣∣∣∣∣
≤ AB−H̄ ,(31)

with

A = 2mc2 exp

(
H0

5mc1

)
and B = exp

(
1

5mc1

)
.

We used the inequality of Corollary 2 of [3] (see also [4]) to obtain a lower bound
of type

(32) exp(−W (log H̄ + C))

for Λ. Combining this lower bound with (31), we obtain an upper bound H̄B for
H̄. In our examples the upper bound was between 1044 and 1046.

4.3. Reduction of the bound. The next step is to reduce the bound H̄B for H̄.

For simplicity set γj =
∣∣∣ε(i)
j

∣∣∣ for 1 ≤ j ≤ 4. Consider the lattice Γ spanned by

the columns of the matrix

(33) Γ =


1 0 0 0
0 1 0 0
0 0 1 0

[Cγ1] [Cγ2] [Cγ3] [Cγ4]

 ,

where [·] denotes the nearest integer and C is a constant to be determined later.
Reduce the basis (33) of the lattice Γ by the LLL-reduction algorithm (cf. [19]).

Denote by b1 the first vector in the reduced basis. The assertions (i) and (ii) of the
following lemma are special cases of Lemma 3.7 of [30] and of Proposition 3.1 of
[28], respectively.

Lemma 2. (i) If

(34) 2−3/2|b1| >
√

34H̄B

and ā, b̄, c̄, d̄ ∈ Z is a solution of (31) with H̄ = max(|ā|, |b̄|, |c̄|, |d̄|) ≤ H̄B, then

(35) H̄ ≤ logC + logA− log H̄B

logB
.

(ii) If H̄1 is a positive constant,

(36) |b1| >
√

152H̄1
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and ā, b̄, c̄, d̄ ∈ Z is a solution of (31) with H̄ = max(|ā|, |b̄|, |c̄|, |d̄|) ≤ H̄1, then

(37) H̄ ≤
logC + logA− log

(√
0.125|b1|2 − 3H̄2

1 − 4H̄1

)
logB

.

In the first reduction step it is advisable to use the simpler statement Lemma 2
(i). Set C = H̄4

B. Then C is large enough to expect that (34) is satisfied. By (35)
we get a reduced bound H̄1 for H̄, which was in our examples between 5000 and
9500.

In the second and further reduction steps, usually Lemma 2 (ii) is applied, in
order to get more exact estimates. We set H̄1 to be the bound obtained in the
preceding reduction step. If we take C = H̄4

1 , inequality (36) usually holds, but in
order to get a better reduced bound, we try to diminish the value of C as much as
possible. After the first reduction step, the bound H̄1 is not so extremely large like
in the first step, hence the LLL–reduction of the lattice Γ requires only a negligible
computing time, and therefore it is worth making some trials to obtain a better
bound. For this purpose, we find the smallest h such that with C = 10h, (36) is
satisfied.

In our examples we reduced the bound H̄B in 4 steps and finally obtained a bound
between 400–1100. A typical sequence of the bounds is, e.g., 1045, 5214, 662, 530,
524. Note that in our examples we had 0.69 ≤ A ≤ 160, 5.4 ≤ B ≤ 11.4.

We have to use Baker’s method and perform the reduction for all possible values
1 ≤ i ≤ 6. Denote by H̄R the maximum of the reduced bounds obtained for
1 ≤ i ≤ 6.

We end this subsection with calculating the bound for H implied by the reduced
bound for H̄ (cf. (29)):

H = max(|a|, |b|, |c|, |d|) ≤ HR =
H̄R +H0

m
.

This bound usually also satisfies HR > c3 (cf. (28)). In our examples, HR was
between 171 and 359.

4.4. Testing over the remaining set. Consider again equation (18). In view of
our notation it can be rewritten as

(38) ±εa1εb2εc3εd4ε5 + 1 = ±ηa1ηb2ηc3ηd4η5,

with

η5 =
%(1) − %(2)

%(3) − %(2)
.

Remark 4. The main advantage of our choice of fundamental units (cf. §4.1) is that
at this step we have an equation (38) with the same exponents on both sides.

The bound HR is too large to test directly all possible values of a, b, c, d with
absolute values below HR. For this reason, we apply a sieve method. We remark
that a similar test is used in [29]. The idea is that we embed O into Zp for a prime
p. To perform the embedding, one merely has to embed θ and ω, which induces
the embedding for any element in O. First we represent ω in the form

ω =

∑5
i=0 giθ

i

gd
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with integers gi (0 ≤ i ≤ 5), gd. Then, if the prime does not divide gd, we can
easily calculate the image of ω from the image of ϑ.

We determine primes p1, p2, . . . such that
• The minimal polynomial of θ over Q splits into linear factors mod pi,
• pi does not divide the discriminant D of O, and
• pi does not divide gd.
Then we can compute integers eji, fji with the property

εj ≡ eji (mod ℘i) (1 ≤ j ≤ 5),

ηj ≡ fji (mod ℘i) (1 ≤ j ≤ 5),

with a prime ideal ℘i lying above pi. Then equation (38) becomes

(39) ±ea1ieb2iec3ied4ie5i + 1 ≡ ±fa1if b2if c3ifd4if5i (mod pi).

We test all possible exponents (a, b, c, d) mod (p1 − 1). If a tuple (a0, b0, c0, d0) is
a solution of (39) mod p1, then we generate all possible a, b, c, d such that

a ≡ a0, b ≡ b0, c ≡ c0, d ≡ d0 (mod (p1 − 1)),

and
max(|a|, |b|, |c|, |d|) < HR.

For all these possible tuples (a, b, c, d) we test (39) modulo p2 and the surviving
tuples modulo p3 etc. After about the fourth test the set of possible solutions does
not reduce any more and the tuples in this set are usually solutions of (38) as well.

The first sieving step requires a considerable CPU time (about 3 hours) and
produces a huge amount of possible solutions. This is the reason why it is worth
storing the possible tuples only after the second sieving step, which is already much
faster. The third and further steps require only a negligible amount of CPU time.
The primes we used in our examples were all less than 350.

For all solutions (a, b, c, d) of (38) we calculate β̃ = τa(τ (3))bξc(ξ(3))d (cf. (17)).
We can decide, whether there exist x, y ∈ ZM such that

β̃ = x+ %y.

If so, then all solutions of (14) corresponding to (a, b, c, d) are of the form

(40) x1 + ωy1 = ±µnx, x2 + ωy2 = ±µny,

with x1, y1, x2, y2 ∈ Z depending already only on the unknown n ∈ Z.

5. Inhomogeneous equations in two dominating variables

By (40) we express x1, y1, x2, y2 to get

x1 = ±µ
nxω̄ − (µ̄)nx̄ω

ω̄ − ω ,

y1 = ±µ
nx− (µ̄)nx̄

ω − ω̄ ,

x2 = ±µ
nyω̄ − (µ̄)nȳω

ω̄ − ω ,

y2 = ±µ
ny − (µ̄)nȳ

ω − ω̄ .(41)
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In the following we have to determine n (which fixes also the values of x1, y1, x2,
y2 up to sign) and y0 of (3). For this purpose we use equation (13).

Substituting the values of (41) into (13), we obtain an equation of the form

(42)
3∏
k=1

(Akµ
n +Bk(µ̄)n + Cky0) = ±1,

with explicitly known algebraic coefficients Ak, Bk, Ck ∈ K (1 ≤ k ≤ 3).
We consider this equation in detail only for n ≥ 0. The opposite case of n < 0

is similar by interchanging the roles of Ak and Bk.
If n ≥ 0, then in (42) the dominating variables are µn and y0, and the value of

(µ̄)n is “small” compared to the dominating variables. (We recall that we defined µ
with µ > 1.) The structure of this equation is very similar to that of an inhomoge-
neous Thue equation considered in [9, 27]. In many respects the situation is much
simpler, because, except for small n > 0 (which values can be tested separately),
the value of |(µ̄)n| can be bounded by a quite small constant.

5.1. Baker’s method. The factors of F3 in (13) have algebraic integer coefficients
and the right side of (13) is ±1, hence

(43) ν(k) = Akµ
n +Bk(µ̄)n + Cky0 = ±(δ

(k)
1 )a(δ

(k)
2 )b (1 ≤ k ≤ 3)

with a, b ∈ Z, where for simplicity we take δ1 = τ, δ2 = τ (3).
We fix a small value µ0 and determine the smallest n0 (> 0) such that for

n > n0

(44) µn >
1

µ0
.

In our examples we took µ0 = 10−4. In the course of our considerations below
we shall require to increase n0 if necessary, so that for n > n0 the value of µn is
larger than certain constants. We remark that by taking µ0 = 10−4 the value of
n0 was essentially determined by (44). The values of n with 0 ≤ n ≤ n0 must be
considered separately. Using µ0 = 10−4 requires testing about 10 values n. For all
fixed n, equation (42) is a cubic polynomial equation in y0.

Denote by i the index with

(45) |ν(i)| = min
1≤k≤3

|ν(k)|.

Obviously,

(46) |ν(i)| ≤ 1.

(In the course of the computation one has to consider all possible values for i.) We
have

(47) |y0| ≤ |ν(i)|+ |Ai|µn + |Bi|µ0 ≤ c1|Ai|µn

with
c1 = 1.1|Ai|,
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assuming that

(48) µn ≥ 10

|Ai|
(1 + |Bi|µ0).

For k 6= i, by (46) we obtain

|Ciν(k)| ≥ |Ciν(k) − Ckν(i)| − |Ckν(i)|
≥ |CiAk − CkAi|µn − |CiBk − CkBi|µ0 − |Ck|
≥ 0.9|CiAk − CkAi|µn

if

(49) µn >
|CiBk − CkBi|µ0 + |Ck|

0.1|CiAk − CkAi|
.

The above inequality implies

(50) |ν(k)| ≥ c2(k)µn (k 6= i)

with

c2(k) =
0.9|CiAk − CkAi|

|Ci|
(k 6= i).

It follows from (50) that

(51) |ν(k)| > 1 (k 6= i)

if we assume that

(52) µn >
1

c2(k)
(k 6= i).

Consider now the equations

log |ν(k)| = a log |δ(k)
1 |+ b log |δ(k)

2 | for 1 ≤ k ≤ 3, k 6= i,

as a system of linear equations in a, b. Denote by c3 the row norm of the inverse of
the matrix of this system. Then in view of (47) and (51) we conclude

(53) H = max(|a|, |b|) ≤ c3 max
k 6=i

log |ν(k)| ≤ c3(log c4 + logµn)

with
c4 = max

k 6=i
(|Ak|+ c1|Ck|+ 0.01),

assuming that

(54) µn > 100µ0 max
k 6=i
|Bk|.
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Set now {j, k} = {1, 2, 3} \ {i}. Then equation (42) can be rewritten as

ν(i)ν(j)ν(k) = ±1,

whence by (50) we get

(55) |ν(i)| = 1

|ν(j)ν(k)| ≤
1

c2(j)c2(k)
µ−2n.

In this inhomogeneous case, Siegel’s identity becomes

(CiAj − CjAi)ν(k) + (CjAk − CkAj)ν(i) + (CkAi − CiAk)ν(j) = (µ̄)nχ,

where

χ = Bk(CiAj − CjAi) +Bi(CjAk − CkAj) +Bj(CkAi − CiAk).

Let c5 = |χ|. By (55), (50) and (53) this identity implies

(56) ∣∣∣∣ (CiAj − CjAi)ν(k)

(CiAk − CkAi)ν(j)
− 1

∣∣∣∣ ≤ ∣∣∣∣CkAj − CjAkCiAk − CkAi

∣∣∣∣ ∣∣∣∣ ν(i)

ν(j)

∣∣∣∣+
c5|µ̄|n

|(CiAk − CkAi)ν(j)|
≤ c6µ−3n + c7µ

−2n ≤ (c6µ0 + c7) exp (−2 logµn)

≤ exp

(
c8 −

2H

c3

)
,

with

c6 =

∣∣∣∣CkAj − CjAkCiAk − CkAi

∣∣∣∣ 1

c2(j)2c2(k)
,

c7 =
c5

|CiAk − CkAi|c2(j)
and c8 = log(c6µ0 + c7) + 2 log c4.

Using again inequality (26), we see that our estimate (56) implies

(57) Λ =

∣∣∣∣∣log

∣∣∣∣CiAj − CjAiCiAk − CkAi

∣∣∣∣+ a log

∣∣∣∣∣δ(k)
1

δ
(j)
1

∣∣∣∣∣+ b log

∣∣∣∣∣δ(k)
2

δ
(j)
2

∣∣∣∣∣
∣∣∣∣∣ ≤ 2 exp

(
c8 −

2H

c3

)
,

assuming that

(58) µn >

√
c6µ0 + c7

0.795
.

Now we have to distinguish between two cases, according as

(59)

∣∣∣∣CiAj − CjAiCiAk − CkAi

∣∣∣∣
is multiplicatively independent of

(60)

∣∣∣∣∣δ(k)
1

δ
(j)
1

∣∣∣∣∣ and

∣∣∣∣∣δ(k)
2

δ
(j)
2

∣∣∣∣∣
or not. In our computations both cases have frequently occurred.
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5.1.1. The case of independence. In case the expression (59) is multiplica-
tively independent of the terms in (60), we can use Baker’s method (Corollary 2
of [3]) directly to the linear form Λ in (57) to obtain a lower bound of the form
exp(−W (logH +C)) for Λ. Comparing this lower bound with the upper bound in
(57) for Λ, we conclude with a bound HB for H. In our examples HB was between
1030 and 1032.

5.1.2. The case of dependence. In this case we proceed similarly as in §4.2.
There exist a0, b0,m ∈ Z such that

log

∣∣∣∣CiAj − CjAiCiAk − CkAi

∣∣∣∣ =
a0

m
log

∣∣∣∣∣δ(k)
1

δ
(j)
1

∣∣∣∣∣+
b0
m

log

∣∣∣∣∣δ(k)
2

δ
(j)
2

∣∣∣∣∣
(in our examples we always had m = 3). Set

(61) ā = ma+ a0, b̄ = mb+ b0

and
H0 = max(|a0|, |b0|), H̄ = max(|ā|, |b̄|);

then H̄ ≤ mH +H0, whence

(62) H ≥ H̄ −H0

m
.

With this notation, (57) becomes

(63) Λ =

∣∣∣∣∣ā log

∣∣∣∣∣δ(k)
1

δ
(j)
1

∣∣∣∣∣+ b̄ log

∣∣∣∣∣δ(k)
2

δ
(j)
2

∣∣∣∣∣
∣∣∣∣∣ ≤ c9 exp

(
− 2H̄

mc3

)
,

with

c9 = 2m exp

(
c8 +

2H0

mc3

)
.

We apply now Corollary 2 of [3] in the two variables case. Comparing the lower
bound of type exp(−W (log H̄ +C)) for Λ with (63), we conclude H̄ ≤ H̄B. In our
examples H̄B was between 1021 and 1023.

5.2. Reduction of Baker’s bound. We use different methods for the reduction
procedure in the cases of independece and dependence. Note, that these reduction
algorithms can also be developed by using lattices and ideas similar to those used in
§4.3 (cf. [30]). We follow here a more traditional way, using the continued fraction
algorithm.

5.2.1. Reduction in the case of independence. Inequality (57) implies

(64) |aφ+ b− ψ| ≤ AB−H ,
with

φ =
log
∣∣∣ δ(k)

1

δ
(j)
1

∣∣∣
log
∣∣∣ δ(k)

2

δ
(j)
2

∣∣∣ , ψ =
− log

∣∣∣ CiAj−CjAiCiAk−CkAi

∣∣∣
log
∣∣∣ δ(k)

2

δ
(j)
2

∣∣∣
and

A =
2 exp c8∣∣∣log
∣∣∣ δ(k)

2

δ
(j)
2

∣∣∣∣∣∣ , B = exp

(
2

c3

)
.

We apply now the Baker–Davenport Lemma [1] in a slightly modified form (cf.
Lemma 2 of [9]) to inequality (64):
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Lemma 3. Let C,D be positive constants. If there exists q ∈ Z such that

1 ≤ q ≤ CD,(65)

‖qφ‖ < 2

CD
,(66)

‖qψ‖ ≥ 3

D
,(67)

then inequality (64) has no solutions a, b,∈ Z with

(68)
log
(
CD2A

)
logB

≤ H ≤ C,

where H = max(|a|, |b|) and ‖ · ‖ denotes the distance from the nearest integer.

We use this lemma with C = HB and D = 100 or 1000. Applying the continued
fraction algorithm to φ, one can compute a q satisfying (65) and (66). The same
q usually also satisfies (67), because here we are in the case of independence. In
the next step, C is the bound obtained in the preceding reduction step. Applying
the lemma about 4 times (until the bound does not diminish any further), we get a
reduced bound for H, which was below 35 in our examples. Note that it is usually
possible to reduce this bound further by testing (64) for the pairs below the reduced
bound.

One has to apply Baker’s method and the reduction algorithm for all possible
values of i (1 ≤ i ≤ 3). Let HR be the maximum of the reduced bounds obtained
for i = 1, 2, 3.

5.2.2. Reduction in the case of dependence. In this case, from (63) we have

(69) |āφ+ b̄ψ| ≤ AB−H̄ ,

with

φ = log

∣∣∣∣∣δ(k)
1

δ
(j)
1

∣∣∣∣∣ , ψ = log

∣∣∣∣∣δ(k)
2

δ
(j)
2

∣∣∣∣∣ , A = c9, B = exp

(
2

mc3

)
.

Our reduction method used in this case is again based on the continued fraction
algorithm.

We assume that |φ| < |ψ|; the opposite case |φ| > |ψ| can be considered similarly
by interchanging the roles of ā, φ with b̄, ψ, respectively. First we consider only the
coprime solutions ((ā, b̄) = 1) of (69); we shall show that from that case one can
easily obtain all solutions of (69). The case ā = 0 being trivial, we may also assume
ā 6= 0.

Denote by pi/qi the convergents in the continued fraction expansion of χ =
−φ/ψ, and by ai the corresponding partial quotients, satisfying pi+1 = aipi +
pi−1, qi+1 = aiqi + qi−1 for i ≥ 0 (cf. [21]). We use the following lemma (see [5]
for its basic idea):

Lemma 4. Assume that for χ = −φ/ψ we have |χ| < 1. Let C be a positive
constant, denote by m0 the index with qm0−1 ≤ C < qm0 , let

Amax = max
i≤m0

ai,
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and set
ε = min(|χ|, 1− |χ|).

Then, if ā, b̄ ∈ Z is a solution of (69) with ā 6= 0, (ā, b̄) = 1, and H̄ = max(|ā|, |b̄|) <
C, then H̄ satisfies one of the following inequalities:

BH̄ ≤ A

|ψ|ε,(70)

BH̄ <
2AH̄

|ψ| ,(71)

BH̄ <
A(Amax + 2)H̄

|ψ| .(72)

Proof. We have

(73)

∣∣∣∣|χ| − ∣∣∣∣ b̄ā
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣χ− b̄

ā

∣∣∣∣ ≤ 1

|ψā|AB
−H̄ ≤ 1

|ψ|AB
−H̄ .

If the right side of the above inequality is < ε, then H̄ = |ā|; in the opposite case,
(70) holds. Assume that H̄ is large enough, and therefore H̄ = |ā|. Again, either
(71) holds, or we have ∣∣∣∣χ− b̄

ā

∣∣∣∣ ≤ 1

|ψā|AB
−H̄ ≤ 1

2ā2
.

By (ā, b̄) = 1 this implies that b̄/ā is a convergent pi/qi in the continued fraction
expansion of χ. It follows by (ā, b̄) = 1 that b̄ = ±pi and ā = ±qi with i ≤ m0 − 1,
hence (cf. [26])

1

(Amax + 2)q2
i

≤ 1

(ai+1 + 2)q2
i

<

∣∣∣∣χ− b̄

ā

∣∣∣∣ ≤ 1

|ψā|AB
−H̄ ,

which implies (72).

We use Lemma 4 in the first reduction step with C = H̄B. The inequalities of
Lemma 4 imply that either H̄ is small (cf. (70), (71)), or in view of (72), we can
reduce the bound for H̄. In the next step we proceed by taking the reduced bound
for C and we repeat the reduction until it does not diminish the bound any further.
Usually, the reduced bound is below 10 already after the first reduction, and 2–3
reduction steps are sufficient.

By the inequality ∣∣∣∣χ− b̄

ā

∣∣∣∣ ≤ 1

|ψ|AB
−H̄

(cf. (73)) it is obvious that if a pair (dā, db̄) with (ā, b̄) = 1 is a solution of (69),
then so also is the coprime pair (ā, b̄). Lemma 4 makes it possible to determine the
coprime solutions of (69). If, in addition, the corresponding pair (dā, db̄) were also
a solution of the inequality, then we would have∣∣∣∣χ− b̄

ā

∣∣∣∣ =

∣∣∣∣χ− db̄

dā

∣∣∣∣ ≤ 1

|ψ|AB
−dH̄
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with H̄ = max(|ā|, |b̄|), which implies

d ≤ 1

H̄

(
logA− log |ψ| − log

∣∣∣∣χ− b̄

ā

∣∣∣∣) .
This bound for d is usually very small (< 5). For all values of d satisfying this
inequality, the pairs (dā, db̄) should be tested together with (ā, b̄). If some of them
are solutions of (69), then the reduced bound should be increased if necessary to
be at least as large as max(|dā|, |db̄|). We remark that usually these calculations
do not effect the reduced bound.

One has to use Baker’s method and apply the reduction algorithm for all possible
values of i (1 ≤ i ≤ 3). Denote by H̄R the maximum of the reduced bounds
obtained for i = 1, 2, 3. From (61) we obtain

(74) max(|a|, |b|) ≤ HR =
H̄R +H0

m
.

5.3. Testing small solutions. In the preceding sections we applied Baker’s
method and the reduction algorithm both in the case of independence (cf. §§5.1.1
and 5.2.1) and in the case of dependence (cf. §§5.1.2 and 5.2.2). Finally, we obtained
a relatively small bound HR for H.

Recall now the system of equations (43). In view of max(|a|, |b|) ≤ HR, it implies

(75) |Akµn + Cky0| < Tk (1 ≤ k ≤ 3),

with

Tk =
(

max
(
|δ(k)

1 |, 1/|δ
(k)
1 |
)
·max

(
|δ(k)

2 |, 1/|δ
(k)
2 |
))HR

+ |Bk|µ0 (1 ≤ k ≤ 3).

This in turn implies a bound n < N0 for n. Moreover, we also have to test the
values of n with n < n0 (cf. §5.1). This means that in the case n > 0 we have to
test the values of n with n < max(N0, n0).

Usually, N0 ≤ n0 and, as we remarked in §5.1, it is required to test about 10
values of n. For all fixed n, equation (42) is a cubic polynomial equation in y0 with
coefficients in Z, and it is easy to decide if it has integer solutions in y0.

6. Computational aspects

The computations were done partially on a HP 9000/433s workstation and par-
tially on an IBM PC 486 AT compatible computer.

Baker’s bound for the relative Thue equation (§4.2) was about H̄B = 1045. In
the first reduction step (§4.3) we used Lemma 2 (i) with C = H̄4

B, hence we had to
use 200 (decimal)–digit numbers. The first reduction step took about three minutes
on the HP workstation, the further steps were much faster.

Most CPU time was needed for testing the exponents a, b, c, d with
max(|a|, |b|, |c|, |d|) < HR (§4.4). The test of about 108 tuples in the first siev-
ing step took about three hours on the PC, and reduced the number of tuples to
about 106. The second step needed only a few minutes, and we obtained about 104

surviving tuples. The further steps took only a few seconds.
For all solutions of the relative Thue equation we had to solve an inhomogeneous

equation in two dominating variables (§5). The complete resolution of such an
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equation (calculating Baker’s bound, the reduction procedure, and the test of small
solutions) took about a minute on the PC. In the reduction procedure of these
equations we used 100 (decimal)–digit numbers.

7. Numerical results

We computed all solutions of the index form equation (3) in the first five totally
real cyclic sextic fields with smallest discriminants. The discriminants and the
coefficients of the polynomial f ∈ ZM were taken from [2]. The fundamental units
of the fields K are from the tables of [20]. All other input data were computed by
using the algorithms of the KANT package [22].

In all our examples, O = ZK , and D = DK is the discriminant of K. Hence the
results give all power integral bases of ZK .

It is clear from the tables of [25] that the fields with discriminants 300125,
371293, 453789 and 1075648 admit power integral bases. In case of the field with
discriminant 820125 the generating element given in [25] has index > 1, but also in
this case we found several solutions of the index form equation, that is, elements
with index 1.

In our table we list the discriminant DK of K, the quadratic field M , the element
ω such that {1, ω} is a basis of M , and the polynomial f ∈ ZM . Finally we list
the solutions (x1, x2, y0, y1, y2) of the index form equation (3) corresponding to the
integer basis {1, θ, θ2, ω, ωθ, ωθ2} of K. If (x1, x2, y0, y1, y2) is a solution of (3), then
so also is (−x1,−x2,−y0,−y1,−y2), but we list only one of them.

I. DK = 300125,M = Q(
√

5), ω = 1+
√

5
2 , f(t) = t3 − (7 + 7ω)t+ (7 + 14ω)

x1 x2 y0 y1 y2 x1 x2 y0 y1 y2

–71 68 66 44 –42 –2 1 4 –2 0
–61 73 88 38 –45 –2 2 1 1 –1
–12 11 13 7 –7 –2 3 4 1 –2
–11 13 15 7 –8 –2 3 5 1 –2
–10 –5 4 6 3 1 –1 –5 0 1
–6 6 9 3 –4 1 –1 –4 0 1
–6 6 10 3 –4 1 –1 5 –2 0
–5 4 9 2 –3 1 1 –15 3 1
–5 5 5 3 –3 1 1 –5 1 0
–4 3 4 2 –2 1 2 –1 0 –1
–4 3 5 2 –2 2 –1 –5 0 1
–4 4 9 1 –3 2 –1 –4 0 1
–4 5 5 3 –3 3 –1 –13 2 2
–3 2 9 0 –2 8 5 –88 15 6
–3 2 10 0 –2 10 4 –66 17 6
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II. DK = 371293,M = Q(
√

13), ω = 1+
√

13
2 , f(t) = t3−ωt2+(−10+5ω)t+(2−ω)

x1 x2 y0 y1 y2 x1 x2 y0 y1 y2

–499 284 121 –383 218 –11 7 5 –9 5
–456 241 136 –350 185 –9 4 3 –7 3
–99 56 24 –76 43 –9 5 2 –7 4
–82 43 25 –63 33 –8 4 2 –6 3
–46 26 11 –35 20 –8 4 3 –6 3
–43 43 8 –33 33 –7 4 2 –6 3
–42 22 12 –32 17 –6 4 1 –5 3
–31 17 9 –24 13 –6 4 2 –5 3
–22 13 5 –17 10 –4 1 1 –2 1
–17 9 4 –13 7 –4 4 1 –3 3
–17 9 5 –13 7 –1 1 1 –2 1
–17 13 4 –13 10 –1 2 1 –3 1
–16 9 3 –12 7 0 1 5 –1 0
–16 9 4 –12 7 1 0 0 1 0
–15 8 4 –11 6 4 4 24 –3 –1
–14 8 4 –11 6 6 –2 0 –1 0
–14 8 5 –11 6 10 2 1 –4 –1

III. DK = 453789,M = Q(
√

21), ω = 1+
√

21
2 , f(t) = t3−ωt2+(−1+ω)t+(−3+ω)

x1 x2 y0 y1 y2 x1 x2 y0 y1 y2

–52 25 4 –29 14 –1 4 3 0 –1
–43 16 13 –24 9 0 –1 0 1 0
–12 7 2 –7 3 0 1 0 0 0
–11 5 4 –6 2 1 –2 –1 1 0
–9 9 1 –5 5 1 0 0 0 0
–8 –3 2 3 1 1 1 1 1 –1
–7 3 0 –4 2 1 2 3 0 –1
–5 1 1 –1 1 2 –1 –1 1 0
–5 2 2 –3 1 2 –1 0 1 –1
–5 3 2 –3 1 2 1 1 1 –1
–4 1 0 –2 1 3 –2 0 2 –1
–3 14 12 1 –5 4 3 4 1 –2
–2 2 2 –1 0 5 17 20 –2 –6
–1 2 0 –1 1
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IV. DK = 820125,M = Q(
√

5), ω = 1+
√

5
2 , f(t) = t3 + (−6− 6ω)t+ (6 + 11ω)

x1 x2 y0 y1 y2 x1 x2 y0 y1 y2

–10 8 4 6 –5 1 2 –8 2 0
–4 3 2 2 –2 2 –4 –10 0 3
–4 11 16 2 –7 2 –1 –12 2 2
–1 0 0 1 0 2 –1 –4 0 1
–1 1 3 0 –1 2 0 –9 1 1
–1 1 5 0 –1 2 0 –7 1 1
0 –2 8 –3 0 2 1 2 –2 –1
0 0 –2 1 0 3 2 –26 5 2
0 0 8 –2 –1 3 2 –22 6 2
1 0 –4 2 0 6 3 0 –4 –2
1 1 –5 1 0 8 4 –68 13 6
1 1 –3 1 0 9 4 –60 15 6

V. DK = 1075648,M = Q(
√

7), ω =
√

7, f(t) = t3 − ωt2 + ω

x1 x2 y0 y1 y2 x1 x2 y0 y1 y2

–6 –2 1 2 1 3 –5 2 2 –1
–6 2 1 –2 1 3 5 2 –2 –1
–3 0 –1 0 1 5 –8 4 2 –3
1 0 0 0 0 5 8 4 –2 –3
2 –4 1 1 –1 11 –10 7 4 –4
2 0 2 0 –1 11 10 7 –4 –4
2 4 1 –1 –1
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