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UNICITY IN PIECEWISE POLYNOMIAL
L1-APPROXIMATION VIA AN ALGORITHM

R. C. GAYLE AND J. M. WOLFE

Abstract. Our main result shows that certain generalized convex functions
on a real interval possess a unique best L1 approximation from the family of
piecewise polynomial functions of fixed degree with varying knots. This result
was anticipated by Kioustelidis in [11]; however the proof given there is noncon-
structive and uses topological degree as the primary tool, in a fashion similar
to the proof the comparable result for the L2 case in [5]. By contrast, the proof
given here proceeds by demonstrating the global convergence of an algorithm
to calculate a best approximation over the domain of all possible knot vectors.
The proof uses the contraction mapping theorem to simultaneously establish
convergence and uniqueness. This algorithm was suggested by Kioustelidis
[10]. In addition, an asymptotic uniqueness result and a nonuniqueness result
are indicated, which analogize known results in the L2 case.

1. Introduction

In this paper we examine the question of the unicity of best L1 approximations
of n + 1 times continuously differentiable functions. The nonlinear approximating
family consists of piecewise polynomial functions of degree at most n with k varying
points of discontinuity. In 1978, Barrow et al. [2] showed:

Theorem 1. Let f ∈ C2[0, 1] with f ′′ > 0 on [0, 1] and suppose that log f ′′ is
concave on (0, 1). Then f has unique best L1 and L2 approximations from S2

k, the
nonlinear family of all second-order (piecewise linear) spline functions with at most
k variable knots in [0, 1].

In fact, if we denote by Pk,1 the likewise nonlinear family of piecewise linear
functions with at most k points of discontinuity in [0, 1], the same hypotheses on f
suffice to show that f has a unique best approximation in the L1 sense or L2 sense
from Pk,1. This observation follows at once from the formula for the derivative
of the error functional F (x) = ‖f − p(x)‖1 with respect to the components of
x = (x1, x2, . . . , xk) ∈ Rk. Here, x is the k-tuple of possible discontinuity points in
[0, 1] of the approximant p(x). One sees that at critical points of F (x), the function
p(x) is in fact continuous and therefore in S2

k. From this observation one is naturally
led to ask whether, under conditions on f analogous to these in Theorem 1, an f
might have a unique best Lp approximation from Pk,n, the family of all piecewise
polynomials of degree at most n with at most k variable points of discontinuity in
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[0, 1]. Chow [5] answered the question affirmatively for p = 2, using the methods
of [2]. The question has an affirmative answer in the case p = 1 as well, a fact
which was established, unbeknownst originally to the authors of the present paper,
by Kioustelidis in [11]. The method of proof was similar to that used in [5] for
the L2 case and is nonconstructive. In the present paper we have established this
result, already known to Kioustelidis, using methods which are constructive and
which utilize an algorithm proposed by Kioustelidis in [10]. We would like to thank
the referees for bringing the results contained in [11] to our attention. Our main
achievement in this paper is in the manner of establishing the following theorem.

Theorem 2. Suppose f ∈ Cn+2[0, 1] and either
i. f (n+1) > 0 on [0, 1] and f (n+2)/f (n+1) is nonincreasing on (0, 1) (i.e.,

log f (n+1) is concave), or
ii. f (n+1) < 0 on [0, 1] and f (n+2)/f (n+1) is nondecreasing on (0, 1) (i.e.,

log(−f (n+1)) is concave); then f has a unique best L1 approximation from
Pk,n.

In addition, we have the following theorems which analogize those of [2] and [5]
to the L1 case for piecewise polynomials of arbitrary degree with arbitrarily many
knots.

Theorem 3. Suppose f ∈ Cn+3[0, 1] and f (n+1) > 0 on [0, 1]. Then, for suffi-
ciently large k, f has a unique best L1 approximation from Pk,n.

Theorem 4. There exists a C∞ function f such that f (n+1) > 0 throughout [0, 1]
so that f has more than one Lq[−1, 1] approximation from the family Pk,n, 1 ≤ q <
∞.

Before proceeding to the proof of Theorem 2, which is the main result of this
paper, we shall give some formal definitions as well as some known results. In §3
we prove Theorem 2 and in §4 Theorem 3. The proof of Theorem 4 is just as the
one already given in [2] and [5] for the L2 case and is omitted.

2. Preliminaries

We begin by defining the approximating family Pk,n, which will be the main
object of study. Accordingly, let

Σk = {x ∈ Rk| 0 < x1 < x2 < · · · < xk < 1},
where the xi are the components of x. Thus, Σk is an open simplex in Rk and is,
therefore, convex. For a fixed x in the closure of Σk, define

Pk,n,x = {f ∈ L∞[0, 1] : f |[xi−1,xi] ∈ Πn for i = 1, 2, . . . , k + 1},
where x0 = 0, xk+1 = 1 and Πn denotes the real (n + 1)-dimensional space of all
polynomials with real coefficients of degree at most n. Finally, let

Pk,n =
⋃

x∈Σk

Pk,n,x.

We shall refer to this set of functions as the collection of piecewise polynomials
of degree at most n with k variable knots, although the term “knot” implies a
continuity which the elements of Pk,n need not possess. We observe that the family
Pk,n is not a linear space but is approximatively compact.

The following lemma will be useful. Its simple proof is omitted.
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Lemma 5. If f (n+1) > 0 throughout [a, b] (or f (n+1) < 0 throughout [a, b]), then
the unique best L1 approximation from Πn in L1[a, b] is given by the Lagrange

interpolating polynomial to f at the points tj =
b− a

2
ζj +

b+ a

2
, where ζj = cos θj

and θj =
j + 1

n+ 2
π. The points tj are known as the L1 canonical points for the

interval [a, b].

The error between this Lagrange interpolating polynomial and the function f
has a well-known form in terms of divided differences:

f(t)− p(t) = f [t0, t1, . . . , tn, t]
n∏
j=0

(t− tj),

where f [t0, t1, . . . , tn, t] denotes the (n + 1)-st order divided difference of f based
on the points {t0, t1, . . . , tn, t} ⊂ [a, b] ([8]). We shall abbreviate this as

f(t)− p(t) = f [t, t]
n∏
j=0

(t− tj).

Lemma 5 together with the following result allows the succinct reformulation
of the piecewise polynomial approximation problem as a nonlinear optimization
problem for those functions satisfying the hypothesis of Lemma 5, which we may
view as possessing a generalized convexity (or concavity).

Lemma 6. Suppose f ∈ C1[a, b] and, for each i, pi is the unique best Lq approxi-
mation to f from Πn over the interval [xi−1, xi]. Then, if 1 ≤ q <∞ and

Fq(f,x) =
k+1∑
i=1

∫ xi

xi−1

|f(t)− pi(t)|q dt,

we have
∂

∂xi
Fq(f,x) = |f(xi)− pi(xi)|q − |f(xi)− pi+1(xi)|q.

Proof. First note from the form of F (f,x) that its partial derivative with respect
to xi will only involve

∂

∂xi

( ∫ xi

xi−1

|f(t)− pi(t)|q dt−
∫ xi+1

xi

|f(t)− pi+1(t)|q dt
)
.

We shall use the easily verified fact that if G(u, t) : [a, b]× [a, b]→ R is continuous
and continuously differentiable with respect to u on [a, b], then

∂

∂u

( ∫ u

a

G(u, t) dt
)∣∣
u=x

= G(x, x) +

∫ u

a

( ∂
∂u
G(u, t)

∣∣
u=x

)
dt.

Note that, if pb is the best Lq approximation to a given continuous f over the
interval [a, b], then the quantity

|f(t)− pb(t)|q
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is a continuously differentiable function of b and in fact has derivative

q sgn(f(t)− pb(t))|f(t) − pb(t)|q−1 ∂

∂b
(pb(t)).

We apply this observation and the aforementioned fact to obtain

∂

∂xi

∫ xi

xi−1

|f(t)− pi(t)|q dt = |f(xi)− pi(xi)|q

+

∫ xi

xi−1

sgn(f(t)−pi(t))|f(t)−pi(t)|q−1 ∂

∂xi
(pi(t)) dt.

Observe that
∂

∂xi
(pi(t)) is a polynomial of degree at most n and therefore is or-

thogonal to sgn(f(t)−pi(t))|f(t)−pi(t)|q−1 over the interval [xi−1, xi](cf., e.g., [14,
p. 168]). Hence, the integral portion of the partial derivative above is zero. Similar
remarks apply to the second term involved in the differentiation; thus the lemma
is proved. �

Of course, best approximations to f satisfying the hypothesis in Lemma 5 will
be found amongst critical points of the functional

F (f,x) =
k+1∑
i=1

‖ f − pi ‖1,[xi−1,xi]

=
k+1∑
i=1

∫ xi

xi−1

|f(t)− pi(t)| dt,

that is, amongst those x ∈ Σk satisfying

|f [ti, xi]
n∏
j=0

(xi − tj,i)| − |f [ti+1, t]
n∏
j=0

(xi − tj,i+1)| = 0,

where ti = {t0,i, t1,i, . . . , tn,i}, the L1 canonical points for the interval [xi−1, xi].
We close this section with a lemma concerning divided differences.

Lemma 7. Suppose f ∈ C1[a, b] and {t0, t1, . . . , tn} ⊂ [a, b] consists of n + 1
distinct points. Then

(2.1)
n∑
j=0

f [t0, . . . , tj , tj , . . . , tn] = f ′[t0, . . . , tn].

Proof. We proceed by induction on n. If n = 0, we seek to verify

f ′[t0] = f [t0, t0],

which, for a continuously differentiable function, is true by the definition of the
right-hand side. Suppose now that for any collection of n distinct elements of [a, b]



UNICITY IN PIECEWISE POLYNOMIAL L1-APPROXIMATION VIA AN ALGORITHM 651

the conclusion of the lemma is valid. We wish to show (2.1). We begin with the
right-hand side. By the recursive definition of higher-order divided differences

f ′[t0, . . . , tn] =
f ′[t1, . . . , tn]− f ′[t0, . . . , tn−1]

tn − t0

=

∑n
j=1 f [t1, . . . , tj , tj , . . . , tn]−

∑n−1
j=0 f [t0, . . . , tj, tj , . . . , tn−1]

tn − t0
,

where one obtains the second equality by applying the induction hypothesis. We
now combine the two sums, producing

f ′[t0, . . . , tn] =
n−1∑
j=1

f [t1, . . . , tj , tj , . . . , tn]− f [t0, . . . , tj , tj , . . . , tn−1]

tn − t0

+
f [t1, . . . , tn−1, tn, tn]− f [t0, t0, t1, . . . , tn−1]

tn − t0

=
n−1∑
j=1

f [t0, . . . , tj , tj , . . . , tn−1]

+
f [t1, . . . , tn−1, tn, tn]− f [t0, , t1, . . . , tn]

tn − t0

+
f [t0, t1, . . . , tn]− f [t0, t0, t1, . . . , tn−1]

tn − t0

=
n∑
j=0

f [t0, . . . , tj , tj , . . . , tn−1],

precisely as required. �

3. Proof of Theorem 2

The proof of Theorem 2 involves an algorithm. We begin with a description
of the algorithm, which was proposed some time ago by Kioustelidis [10] without
any proof of convergence, followed by a demonstration that it is well defined in
our setting. Thereafter, we examine its convergence properties under the special
assumptions of Theorem 2.

Algorithm. Fix f such that f (n+1) > 0 on the interval [0, 1].

Step I. Select x ∈ Σk\∂Σk.
Step II. On each subinterval [xi−1, xi] of [0, 1] determined by x, compute pi,q(t),

the unique best approximant to f from Πn in the Lq norm, for i = 1, 2, . . . , k + 1.
Step III. For each i = 1, 2, . . . , k, locate the zero, zi say, of

gi(t) = |f(t)− pi,q(t)|q − |f(t)− pi+1,q(t)|q

which lies nearest xi.

Step IV. Set xi = zi, i = 1, 2, . . . , k, and repeat.
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Lemma 8. For f which satisfies f (n+1) > 0, the algorithm just described is well
defined at each iteration.

Proof. We must verify that the map

x 7−→ z where z = (zi, z2, . . . , zk)

is well defined. Since pi,q is the best Lq[xi−1, xi] approximation to f and f (n+1) > 0
on that interval, f − pi,q must have precisely n + 1 simple zeros. Thus, by using

Rolle’s Theorem and the fact that f (n+1) > 0 once again, we conclude that there
are no zeros of f ′ − p′i,q before the first or after the last zero of f − pi,q. Denoting
these zeros τi,0 and τi,n, respectively, for each i = 1, 2, . . . , k, we thus have that
|f − pi,q|q is monotone increasing on the interval [τi,n,∞] whereas |f − pi+1,q|q
is monotone decreasing on [−∞, τi+1,0]. Since gi(τi,n) < 0 and gi(τi+1,0) > 0,
it follows that gi has a unique zero, zi, which in fact lies on the interval
[τi,n, τi+1,0]. �

We now prove Theorem 2. Our proof assumes that the hypotheses of case (i)
hold; a virtually identical proof works in case (ii).

Proof of Theorem 2. We shall show that the map

x 7−→ z

is a contraction on Σ̄k and hence has a unique fixed point on that domain. In fact,
since best approximations cannot come from ∂Σk, the unique fixed point must be
in Σk itself. Clearly, if x is a critical point, then the algorithm maps x to itself
and hence it is the unique critical point for the minimization problem, and so the
element of Pk,n determined by x will be the unique best approximation to f from
Pk,n.

Note first that all of the following derivatives exist and are positive:

d

ds
gi(s)

∣∣
s=zi

,

∂zi
∂xi−1

,
∂zi
∂xi

, and
∂zi
∂xi+1

.

The first is positive by our earlier discussion, and thus the implicit function theorem
guarantees the existence of the final three. These last three are positive because
as any one of the parameters xi−1, xi, or xi+1 increases, so too do the canonical
points on the intervals [xi−1, xi] and [xi, xi+1], and so also the crossings zi of the
error functions.

We now differentiate the expression

(3.1) gi(zi) := |f(zi)− pi(zi)| − |f(zi)− pi+1(zi)| = 0,

which defines the value zi with respect to the parameters xi−1, xi, or xi+1 to
obtain the derivative of the map defined in the algorithm. Note that all other
possible partial derivatives are zero. Before doing so, we rewrite (3.1), using divided
differences, as

(3.2) gi(zi) := f [ti, zi]Qi(zi) + (−1)nf [ti+1, zi]Qi+1(zi) = 0,
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where ti is the vector (ti,0, ti.1, . . . , ti,n) of L1 canonical points for the interval
[xi−1, xi] for the family Πn,

Qi(t) =
n∏
j=0

(t− ti,j),

and we have used the fact that zi ∈ [ti,n, ti+1,0] to infer the sign of the terms in
question. Proceeding with the differentiation, we obtain

∂zi
∂xi−1

= − 1

2g′i(zi)

[
Qi(zi)

n∑
j=0

f [ti, ti,j , zi](1− ζj)− f [ti, zi]
n∑
j=0

Qi,j(zi)(1− ζj)
]
,

∂zi
∂xi+1

= − (−1)n

2g′i(zi)

[
Qi(zi)

n∑
j=0

f [ti+1, ti+1,j , zi](1 + ζj)

− f [ti+1, zi]
n∑
j=0

Qi+1,j(zi)(1 + ζj)
]
,

and

∂zi
∂xi

= − 1

2g′i(zi)

[
Qi(zi)

n∑
j=0

f [ti, ti,j , zi](1 + ζj)− f [ti, zi]
n∑
j=0

Qi,j(zi)(1 + ζj)
]

− (−1)n

2g′i(zi)

[
Qi+1(zi)

n∑
j=0

f [ti+1, ti+1,j , zi](1− ζj)

− f [ti+1, zi]
n∑
j=0

Qi+1,j(zi)(1− ζj)
]
,

where

Qi,j =
n∏

l=0,l6=j
(t− ti,j),

and

g′i(zi) = Qi(zi)f [ti, zi, zi] + f [ti, zi]
n∑
j=0

Qi,j(zi)

+ (−1)n
[
Qi+1(zi)f [ti+1, zi, zi] + f [ti+1, zi]

n∑
j=0

Qi+1,j(zi)
]
.

Our interest is in the row norm of the matrix Z = { ∂zi∂xl
}1≤i≤k,1≤l≤k and hence

in the sum of the absolute values of the partial derivatives above. By an earlier
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remark, however, this is merely their sum. Thus,∣∣∣ ∂zi
∂xi−1

∣∣∣+
∣∣∣ ∂zi
∂xi+1

∣∣∣+
∣∣∣ ∂zi
∂xi

∣∣∣
=

1

g′i(zi)

[
−Qi(zi)

n∑
j=0

f [ti, ti,j , zi] + f [ti, zi]
n∑
j=0

Qi,j(zi)

− (−1)nQi+1(zi)
n∑
j=0

f [ti+1, ti+1,j , zi]

+ (−1)nf [ti+1, zi]
n∑
j=0

Qi+1,j(zi)
]
,

where products involving ζj have been cancelled in the addition. We shall show
that under the conditions imposed on f , the sum above is less than or equal to 1
in rows two through k and is strictly less in the first and last rows. Now∣∣∣ ∂zi

∂xi−1

∣∣∣+
∣∣∣ ∂zi
∂xi+1

∣∣∣+
∣∣∣ ∂zi
∂xi

∣∣∣ ≤ 1

⇐⇒ −Qi(zi)
n∑
j=0

f [ti, ti,j , zi] + f [ti, zi]
n∑
j=0

Qi,j(zi)

− (−1)nQi+1(zi)
n∑
j=0

f [ti+1, ti+1,j , zi] + (−1)nf [ti+1, zi]
n∑
j=0

Qi+1,j(zi)

≤ g′i(zi) = Qi(zi)f [ti, zi, zi] + f [ti, zi]
n∑
j=0

Qi,j(zi)

+ (−1)nQi+1(zi)f [ti+1, zi, zi] + (−1)nf [ti+1, zi]
n∑
j=0

Qi+1,j(zi)

⇐⇒ −Qi(zi)
n∑
j=0

f [ti, ti,j , zi]− (−1)nQi+1(zi)
n∑
j=0

f [ti+1, ti+1,j , zi]

≤ Qi(zi)f [ti, zi, zi] + (−1)nQi+1(zi)f [ti+1, zi, zi].

By Lemma 7 we have

n∑
j=0

f [ti, ti,j , zi] = f ′[ti, zi]− f [ti, zi, zi]

and
n∑
j=0

f [ti+1, ti+1,j , zi] = f ′[ti+1, zi]− f [ti+1, zi, zi].

Applying this observation allows us to infer that the above inequality is equivalent
to

0 ≤ Qi(zi)f ′[ti, zi] + (−1)nQi+1(zi)f
′[ti+1, zi]
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or
Qi(zi)f

′[ti, zi] ≥ (−1)(n+1)Qi+1(zi)f
′[ti+1, zi]

⇐⇒ f ′[ti, zi] ≥
(−1)(n+1)Qi+1(zi)

Qi(zi)
f ′[ti+1, zi].

Recalling (3.2), we find this is equivalent to

f ′[ti, zi] ≥
f [ti, zi]

f [ti+1, zi]
f ′[ti+1, zi]

⇐⇒ f ′[ti, zi]

f [ti, zi]
≥ f ′[ti+1, zi]

f [ti+1, zi]
.

An argument using the Cauchy Mean Value theorem shows that this condition is
implied by the log concavity condition imposed on f (n+1). Hence, the row norm of
Z is less than or equal to one. We note, further, that the sums in rows one and k
are strictly less than one. We claim that this, in conjunction with the special form
of the matrix Z, implies that its spectral norm, the product of its eigenvalues, is
strictly less than one. Indeed all the eigenvalues of Z are real since Z is symmetric
and, since the row norm of Z dominates the spectral, all are of absolute value less
than one. If λ = ±1 is an eigenvalue of Z, then λI − Z is singular. But λI − Z
is an irreducible diagonally dominant matrix which is strictly so in either row one
or row k, hence nonsingular, a contradiction. Thus, the spectral norm of Z is less
than one as claimed, and the map

x 7−→ z

is a contraction as we indicated. �
Note that the algorithm is well defined in the general Lq case, though no con-

vergence results are shown here in cases other than q = 1. When q 6= 1 or 2, the
calculation of the polynomial of best Lq approximation to f across each subinter-
val is a difficult nonlinear problem in general. Iterative methods for arriving at
approximate solutions to this problem are, however, available [15]. One notes as
well that the algorithm just described decreases the Lp norm of the error curve at
each step provided the sign of f (n+1) is constant. Finally, preliminary calculations
indicate that standard methods may successfully be applied to accelerate the rate
of convergence.

4. Proof of Theorem 3

The proof of Theorem 3 is, in outline, as the proof of the analogous theorems
in [2] and [5]. One shows that the matrix of second partials of the functional
F (f,x) has positive determinant at any critical point x ∈ Σk for sufficiently large
k, whenever f (n+1) > 0. This, together with the unicity of the best approximation
to tn+1 from Pk,n in all the Lq norms 1 ≤ q ≤ ∞, allows one to infer through a
topological degree of mapping argument that f has only one critical point over Σk

and thus a unique best approximation. Aside from establishing a particular and
convenient form for the entries of the matrix of second partials of the functional
F (f,x), the proof is the same in any Lq norm and is given in [2] and [5]. Hence, we
shall give here only those elements peculiar to the L1 case which are new here. The
first step is to establish a convenient form for the entries of J(f,x), the matrix of
the second partials of F (f,x), in terms of integrals against a kernel function which
depends on n but on neither f nor k. The following lemma furthers this aim.
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Proposition 9. Suppose f ∈ C(n+1)[a, b] and p is the unique best approximation
to p from Πn in the L1 sense. Suppose

L(f, [a, b]) = f(a)− p(a)

and
R(f, [a, b]) = f(b)− p(b).

Then

L(f, [a, b]) =
(−1)(n+1)(b− a)n

n!

∫ 1

0

f (n+1)((b− a)t+ a)K+
n (t) dt

and

R(f, [a, b]) =
(b− a)n

n!

∫ 1

0

f (n+1)((b− a)t+ a)K−n (t) dt,

where

K+
n (t) =

n∑
j=0

Aj(ξj − t)n+,

K−n (t) =
n∑
j=0

Aj(ξj − t)n−,

Aj =
n∏

k=0,k 6=j

1− ξk
ξj − ξk

,

and (x− t)n+ denotes the truncated power of (x− t)n given by

(x− t)n+ =

{
(x− t)n if x ≥ t,
0 otherwise,

and the values ξk
n
k=0 are the L1-canonical points for Πn for the interval [0, 1] indexed

so that ξn < ξn−1 < · · · < ξ0.

Proof. We will use the Peano Kernel Theorem, a statement of which may be found
in Davis [6, Theorem 9.7.1]. As was discussed earlier, for a given f over [a, b], p is
the uniquely determined p ∈ Πn which interpolates f at the points given by

tk = (b− a)ξk + a.

Accordingly,

L((· − τ)n+, [a, b]) = (a− τ)n+ −
n∑
j=0

(tj − τ)n+
∏
k 6=j

a− tk
tj − tk

and

R((· − τ)n+, [a, b]) = (b− τ)n+ −
n∑
j=0

(tj − τ)n+
∏
k 6=j

b− tk
tj − tk

.
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Noting that (a − τ)n+ = 0 and that (b − τ)n+ = (b − τ)n whenever τ ∈ [a, b], the
above forms become

L((· − τ)n+, [a, b]) = −
n∑
j=0

(tj − τ)n+
∏
k 6=j

a− tk
tj − tk

and

R((· − τ)n+, [a, b]) = (b− τ)n −
n∑
j=0

(tj − τ)n+
∏
k 6=j

b− tk
tj − tk

.

Thus by the Peano Kernel Theorem,

L(f, [a, b]) =
1

n!

∫ b

a

f (n+1)(τ)
(
−

n∑
j=0

(tj − τ)n+
∏
k 6=j

a− tk
tj − tk

)
dτ

and

R(f, [a, b]) =
1

n!

∫ b

a

f (n+1)(τ)
(
(b− τ)n −

n∑
j=0

(tj − τ)n+
∏
k 6=j

a− tk
tj − tk

)
dτ.

Now we convert the above integrals to integrals over the interval [0, 1] by making
the change of variables τ = (b− a)t+ a. Noting that tj = (b− a)ξj + a, we obtain

L(f, [a, b]) =
−(b− a)(n+1)

n!

∫ 1

0

f (n+1)((b− a)t+ a)
( n∑
j=0

(ξj − t)n+
∏
k 6=j

−ξk
ξj − ξk

)
dt

and

R(f, [a, b]) =
(b− a)(n+1)

n!

∫ 1

0

f (n+1)((b− a)t+ a)

·
(
(1− t)n+ −

n∑
j=0

(ξj − t)n+
∏
k 6=j

1− ξk
ξj − ξk

)
dt.

Now the symmetry of the ξj yields

−ξk = −(1− ξk) and ξj − ξk = −(ξn−j − ξn−k),

which in turn implies

∏
k 6=j

−ξk
ξj − ξk

= (−1)n
∏
k 6=j

1− ξk
ξj − ξk

,

where the symmetry of the canonical points has been again employed. Substituting
this into the form for L(f, [a, b]) produces

L(f, [a, b]) =
(−1)(n+1)(b− a)(n+1)

n!

∫ 1

0

f (n+1)((b− a)t+ a)
( n∑
j=0

Aj(ξj − t)n+
)
dt
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and

R(f, [a, b]) =
(b− a)(n+1)

n!

∫ 1

0

f (n+1)((b− a)t+ a)
(
(1− t)n −

n∑
j=0

Aj(ξj − t)n+
)
dt.

Now we expand (1 − t)n in terms of the polynomials qj(t) = (ξj − t)n, using
the fact that the latter form a Haar system relative to any real interval, so as to
obtain a comparable kernel function for both L(f, [a, b]) and R(f, [a, b]). The useful
expansion is, remarkably,

(1− t)n =
n∑
j=0

Aj(ξj − t)n.

To verify this, for each fixed t consider the polynomial in u of degree n, (u−t)n. The
Lagrange interpolating form for this polynomial in u using the points ξ0, . . . , ξn is

(u− t)n =
n∑
j=0

(ξj − t)n
∏
k 6=j

u− ξk
ξj − ξk

,

an identity in u. If u = 1, we obtain the form claimed. Using this, we find

R(f, [a, b]) =
(b− a)(n+1)

n!

∫ 1

0

f (n+1)((b− a)t+ a)
∑n

j=0
Aj
(
(ξj − t)n− (ξj − t)n+

)
dt

=
(b− a)n+1

n!

∫ 1

0

f (n+1)((b− a)t+ a)
n∑
j=0

Aj(ξj − t)n− dt,

which completes the proof of the proposition. �

Henceforth we shall denote
∂

∂xi
F (f,x) by Fi(f,x). With this notation we have

the following corollary to Proposition 9.

Corollary 10. There holds

Fi(f,x) =
h

(n+1)
i

n!

∫ 1

0

f (n+1)(xi − thi)Kn(t) dt

−
h

(n+1)
i+1

n!

∫ 1

0

f (n+1)(xi + thi+1)Kn(t) dt,

where Kn(t) = K+
n (t) as given in the preceding proposition, x = (x1, x2, . . . , xk),

and hi = xi − xi−1.

Proof. Using the hypothesis that f (n+1) > 0 and Rolle’s Theorem, one shows that

Fi(f,x) = (f(xi)− pi(xi))− (f(xi)− pi+1(xi))

if n is odd, and

Fi(f,x) = (f(xi)− pi(xi))− (pi+1(xi)− f(xi))
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if n is even. Thus, in the notation of Proposition 9,

Fi(f,x) =

{
R(f, [xi−1, xi])− L(f, [xi, xi+1]) if n is odd,

R(f, [xi−1, xi]) + L(f, [xi, xi+1]) if n is even.

Hence, applying Proposition 9, we get

Fi(f,x) =
h

(n+1)
i

n!

∫ 1

0

f (n+1)(xi + thi)K
−
n (t) dt

− (−1)n+1h
(n+1)
i+1

n!

∫ 1

0

f (n+1)(xi + thi+1)K+
n (t) dt

=
h

(n+1)
i

n!

∫ 1

0

f (n+1)(xi + thi)K
−
n (t) dt

−
h

(n+1)
i+1

n!

∫ 1

0

f (n+1)(xi + thi+1)K+
n (t) dt

if n is odd, and

Fi(f,x) =
h

(n+1)
i

n!

∫ 1

0

f (n+1)(xi + thi)K
−
n (t) dt

+ (−1)n+1h
(n+1)
i+1

n!

∫ 1

0

f (n+1)(xi + thi+1)K+
n (t) dt

=
h

(n+1)
i

n!

∫ 1

0

f (n+1)(xi + thi)K
−
n (t) dt

−
h

(n+1)
i+1

n!

∫ 1

0

f (n+1)(xi + thi+1)K+
n (t) dt

if n is even. Thus, Fi(f,x) has the same form for even and odd n. Finally, note
that

h
(n+1)
i

n!

∫ 1

0

f (n+1)(xi + thi)K
−
n (t) dt =

h
(n+1)
i

n!

∫ 1

0

f (n+1)(xi − thi)K+
n (t) dt

to obtain the corollary. �

Using these forms, one can show, as in [2] and [5], that the matrix of second
partials is a tridiagonal matrix whose entries {ai,j}1≤i,j≤k satisfy the inequality

aiiai−1,i−1

(
1 +O(∆3)

)
≥ 4ai,i−1ai−1,i

at any critical point x, where ∆ = max{hi|i = 1, . . . , k}. This, in turn, implies
that detJ(f,x) > 0 at such a point. The proof of Theorem 3 then follows by the
degree of mapping argument as given in [2] and [5].
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