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THE SERIAL TEST FOR A NONLINEAR
PSEUDORANDOM NUMBER GENERATOR

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA

Abstract. Let M = 2w, and GM = {1, 3, ...,M − 1}. A sequence {yn}, yn ∈
GM , is obtained by the formula yn+1 ≡ ayn + b+ cyn mod M. The sequence
{xn}, xn = yn/M, is a sequence of pseudorandom numbers of the maximal
period length M/2 if and only if a + c ≡ 1 (mod 4), b ≡ 2 (mod 4). In this
note, the uniformity is investigated by the 2-dimensional serial test for the
sequence. We follow closely the method of papers by Eichenauer-Herrmann
and Niederreiter.

1. Introduction

For generating uniform pseudorandom numbers (denoted as PRN) in the interval
I = [0, 1), the linear congruential methods are commonly used. Recently several
nonlinear methods, especially the inversive congruential one, were proposed and
investigated. For a modulus M, let

ZM = {0, 1, ...,M − 1} = Z/M.

In the linear method , a sequence {yn} in ZM is generated by

(1.1) yn+1 ≡ cyn + b (mod M), n = 0, 1, ...,

where c, b ∈ ZM . The PRN are obtained by the normalization

(1.2) xn = yn/M.

In the inversive method with power of two modulus, let M = 2w and

GM = {1, 3, ...,M − 1} = {positive odd integers less than M}.
For any u ∈ GM , there is a unique u ∈ GM such that uu ≡ 1 mod M. Now a
sequence {yn} in GM is generated by the inversive recursion formula

(1.3) yn+1 ≡ ayn + b (mod M), n = 0, 1, ...,

in which a, b ∈ ZM are chosen so that yn ∈ GM implies yn+1 ∈ GM .
In a previous note we have proposed another nonlinear method which is given

by the following formula, with the modulus M = 2w,

(1.4) yn+1 ≡ ayn + b+ cyn (mod M), n = 0, 1, ...,

in which a, b, c ∈ ZM should be such that yn ∈ GM implies yn+1 ∈ GM . The PRN
{xn} is defined by (1.2). In [7], we proved the following Theorem A, which shows
that the modified inversive method (1.4) bears close resemblance to (1.3):

Received by the editor October 25, 1994.
1991 Mathematics Subject Classification. Primary 65C10; Secondary 11K45.
Key words and phrases. Pseudorandom number generator, the inversive congruential method,

power of two modulus, discrepancy, k-dimensional serial test, Kloostermann sum.

c©1996 American Mathematical Society

761



762 TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA

Theorem A. Let M = 2w, w = 3. Then the PRN {xn} derived from (1.4) is purely
periodic with period M/2 if and only if

a+ c ≡ 1 (mod 4) and b ≡ 2 (mod 4).

Now we will study the behavior of these PRN under the 2-dimensional serial
test. That is, we will estimate the discrepancy of the PRN. For a dimension k = 2
and for N arbitrary points t0, t1, ..., tN−1 ∈ [0, 1)k we define the discrepancy

(1.5) DN (t0, t1, ..., tN−1) = supJ |FN (J)− V (J)|,

where the supremum is extended over all subintervals J of [0, 1)k, FN (J) is N−1

times the number of terms among t0, t1, ..., tN−1 falling into J, and V (J) denotes
the k-dimensional volume of J. If {xn} is a sequence of PRN in [0, 1) with period
p, then we consider the points

xn = (xn, xn+1, ..., xn+k−1) ∈ [0, 1)k for n = 0, 1, ..., p− 1,

and write their discrepancy Dp(x0,x1, ...,xp−1) as D
(k)
p .

Theorem 1. Let M = 2w (w = 6) and a, b, c ∈ ZM . Suppose a+c ≡ 1 (mod 4), b ≡
2 (mod 4) and a 6= 0. Then, for the PRN {xn} in Theorem A, we have

(I) If c is an even number, hence a is odd, then

D
(2)
M/2 < 2KM−1/2(logM)2 + 1.12M−1/2 logM + 1.35M−1/2 + 4/M,

with K = 2/{(23/2 − 1)BP (J2}.
(II) If c is odd (hence a is even), then writing a = 2ta′, a′ odd, we have

D
(2)
M/2 < 2t/2M−1/2{2K(logM)2 + (1.12) logM + 1.35}+ 4/M + 2L/M2,

with K = 2/{(23/2 − 1)BP (J2} and L = 22t{2(t − 1)(t + 2)2 + 14(t + 6)2},
assuming that w = t+ 6.

Theorem 2. Let M = 2w, w = 6. Let 0 < r 5 2 and A(r) = (4 − r2)/(8 − r2).
Suppose c ∈ ZM is given.

If c is even, there are more than A(r)M/8 values of a ∈ ZM such that a+ c ≡
1 mod 4, and for any b ∈ ZM with b ≡ 2 mod 4, we have

D
(k)
M/2 = K

′M−1/2 with K ′ = r/(π + 2).

If c is odd, there are more than A(r)M/32 values of a ∈ ZM such that a + c ≡
1 mod 4, and for any b ∈ ZM with b ≡ 2 mod 4, we have

D
(k)
M/2 = (2K ′/3)M−1/2 with K ′ = r/(π + 2).

Our proofs of Theorems 1 and 2 are almost the same as in [9, Theorem 2], [6,
Theorems 1-2], respectively. The lattice structure of the sequence generated by
(1.4) will be studied in another paper.
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2. Proof of Theorem 1

We closely follow the method in [9, p.141]. Let M = 2w, w = 6.
Suppose m = 2f , with a positive integer f, be given. For k = 1, let Ck(m) be

the set of all nonzero lattice points (h1, ..., hk) ∈ Zk with −m/2 < hj 5 m/2, for
1 5 j 5 k. We put

r(h,m) =

{
1 for h = 0,

m sin(π|h|/m) for h ∈ C1(m),

and for h = (h1, ..., hk) ∈ Ck(m) we define

r(h,m) =
k∏
j=1

r(hj ,m).

For real s we write e(s) = e2πis. For x, y ∈ Rk, x · y denotes the inner product.
We put, for integers u, v,

S(u, v;m) =
∑
n∈Gm

e((un+ vn)/m),

in which n ∈ Gm denotes the number such that nn ≡ 1 (mod m). This sum has
the following properties [12, 9]:

(2.1) S(u, v;m) = S(1, uv;m) if u is odd,

(2.2) S(u, v;m) = 0 if u+ v ≡ 1 (mod 2),

(2.3) S(u, v;m) = 2dS(u/2d, v/2d; 2f−d) if u ≡ v ≡ 0 mod 2d and d < f,

where in (2.2) and (2.3) we assume that f = 2. Further (see [9, p.140]),

(2.4) |S(1, v; 8)| =
{

4 if v ≡ 3 mod 4,

0 otherwise,

(2.5) |S(1, v; 16)| =
{

4
√

2 if v ≡ 1 mod 4,

0 otherwise,

(2.6) |S(1, v; 32)| 5
{

8
√

2 +
√

2 if v ≡ 5 mod 8,

0 otherwise.

For f = 6, we have

(2.7) |S(1, v; 2f)| 5
{

2(f+3)/2 if v ≡ 1 mod 8,

0 otherwise.

The following lemmas are from [9, p.136 and p.140].
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Lemma 2.1. Let m = 2 be an integer and let y0,y1, ...,yN−1 ∈ Zk be lattice
points all of whose coordinates are in [0,m). Then the discrepancy of the points
tn = yn/m, 0 5 n 5 N − 1, satisfies

DN (t0, t1, ..., tN−1) 5 k

m
+

1

N

∑
h∈Ck(m)

1

r(h,m)
|
N−1∑
n=0

e(h · tn)|.

Lemma 2.2. Let m = 2f . For f = 6 and r odd, we have

(2.8)
∑

k∈C1(m),k≡r(mod 8)

csc(
π|k|
m

) <
(f + 1)(log 2)

4π
m+ 0.2126m,

and for f = 3 we have

(2.9)
∑

k∈C1(m),k odd

csc(
π|k|
m

) <
(f + 1)(log 2)

π
m+ 0.3024m.

Now we prove Theorem 1. Since {y0, y1, ..., yM/2−1} = GM , we have

{(yn, yn+1); 0 5 n 5M/2− 1} = {(n, an+ b+ cn); n ∈ GM}.

Lemma 2.1 yields

(2.10) D
(2)
M/2 5

2

M
+

2

M

∑
h∈C2(M)

|S(h)|
r(h,M)

,

where for h = (h1, h2) ∈ C2(M) we have

|S(h)| = |
∑
n∈GM

e(
(h1 + h2c)n+ h2an+ h2b

M
)| = |S(h1 + h2c, h2a;M)|.

Now gcd(h1, h2,M) = 2d with 0 5 d 5 w − 1, so splitting up the following sum
according to the value of d, we get

∑
:=

∑
h∈C2(M)

|S(h)|
r(h,M)

=
w−1∑
d=0

Td

with

Td =
∑
h

|S(h1 + h2c, h2a;M)|
r(h,M)

,

where the last sum is extended over all h=(h1, h2) ∈ C2(M) with gcd(h1, h2,M)=
2d. It follows immediately that

(2.11) Tw−1 = 1 +
1

2M
.
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Now consider 0 5 d 5 w − 2. Write k1 = h1/2
d, k2 = h2/2

d. If one of k1 or k2 is
even, then (2.3) and (2.2) imply S(h1+h2c, h2a;M) = 0. Thus it suffices to suppose
that both k1 and k2 are odd.

We divide the proof into two cases (I) and (II):
(I) c is an even number, hence a is odd. In this case, (2.3) and (2.1) yield

S(h1 + h2c, h2a;M) = 2dS(1, (k1 + k2c)k2a; 2w−d).

Thus we obtain

(2.12) Td = 2d
∑

k1,k2∈C1(2w−d)
k1,k2 odd

|S(1, (k1 + k2c)k2a; 2w−d)|
r(k12d,M)r(k22d,M)

.

For 0 5 d 5 w − 6, we use (2.7) to get

(2.13) Td 5 2(w+d+3)/2
∑
{r(k12d,M)r(k22d,M)}−1,

with the sum over odd numbers k1, k2 ∈ C1(2w−d) such that (k1 + k2c)k2a ≡ 1
(mod 8), that is, k1 + k2c ≡ k2a (mod 8), i.e.,

(2.14) k1 ≡ k2(a− c) (mod 8).

Thus we have

(2.15) Td 5 2(−3w+d+3)/2
∑

k2∈C1(2w−d)
k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d)
k1≡k2(a−c) (mod 8)

csc(
π|k1|
2w−d

).

Together with (2.8) and (2.9), this yields

Td 5 2(w−3d+3)/2{ (w − d+ 1) log 2

4π
+ 0.2126}{ (w− d+ 1) log 2

π
+ 0.3024}

< 2(w−3d+3)/2{ (logM)2

4π2
+ 0.127 logM + 0.1401 + 0.0122d2}.

Therefore, as in [9, p.142],

(2.16)
w−6∑
d=0

Td < M1/2{K(logM)2 + 0.56 logM + 0.675} − 876

M
,

with K = 2/{(23/2 − 1)π2}.
For d = w − 5, we get from (2.6) and (2.13)

Tw−5 5 2−w−2

√
2 +
√

2
∑

k2∈C1(32)
k2 odd

csc(
π|k2|

32
)

∑
k1∈C1(32)

k1≡5k2(a−c) (mod 8)

csc(
π|k1|

32
),
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in which we note that, in the second sum, k1 ≡ k2(5a − c) ≡ 5k2(a − c) mod 8,
since c is even. As in [9, p.142], by distinguishing the cases a− c ≡ 1 or a− c ≡ 5
mod 8, we have

(2.17) Tw−5 < 240/M.

Similarly, using (2.4), (2.5) and (2.13), we get

(2.18) Tw−4 < 60/M, Tw−3 < 14/M.

Since |S(1, v; 4)| = 2 for v odd, it follows from (2.12) that

(2.19) Tw−2 = 4/M.

By combining (2.11) and (2.16, 17, 18, 19), we get

∑
:=

w−1∑
d=0

Td < M1/2{K(logM)2 + 0.56 logM + 0.675}+ 1,

with the constant K in (2.16). The desired result follows from (2.10).
(II) c is an odd number, hence a (6= 0) is even, a ∈ ZM . Put a = 2ta′, a′ odd.

Consider some Td, 0 5 d 5 w − 2.
We always assume that both kj = hj/2

d, j = 1, 2, are odd. Put 2s =
gcd(k1 + k2c, a, 2

w−d−1), and r1 = (k1 + k2c)/2
s, r2 = k2a/2

s.
(II-1) Suppose t = w − d− 1. If s < w − d− 1, then

S(h) = S(h1 + h2c, h2a;M) = 2d+sS(r1, r2; 2w−d−s) = 0

by (2.2), since r1 is odd and r2 is even. If s = w − d− 1, then

S(h) = 2d2w−d−1S(r1, r2; 2) = 2w−1 = M/2.

If w − d = 3, then

Td =
M

2

∑
k1+k2c≡0 mod 2w−d−1

k1,k2 odd

1

r(k12d,M)r(k22d,M)

=
1

2M

∑
k2∈C1(2w−d)

k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d)

k1≡−k2c mod 2w−d−1

csc(
π|k1|
2w−d

)

5 1

2M
{ (w − d+ 1) log 2

π
+ 0.3024}2 22(w−d)

by Lemma 2.2. Since 3 5 w − d 5 t+ 1, we have

Td 5
22t+1

M
{ (t+ 2) log 2

π
+ 0.3024}2.
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If w − d = 2, then

Tw−2 5 4
csc2(π/4)

2M
=

4

M
.

Hence,

∑
w−2=d=w−t−1

Td = Tw−2 +
∑

w−3=d=w−t−1

Td

(2.20)

5 4

M
+

(t− 1)22t+1

M
{ (t+ 2) log 2

π
+ 0.3024}2,

in which the second term does not appear if t = 1.
(II-2) Now suppose 1 5 t 5 w − d− 2.
We define s and r1, r2 as above. Obviously, s 5 t, hence w− d− 1− s = 1. Thus

one of r1 or r2 must be odd. If one of r1 or r2 is even,

S(h) = S(h1 + h2c, h2a;M) = 2d+sS(r1, r2; 2w−d−s) = 0.

Hence both r1 and r2 must be odd, which implies s = t.
Let d 5 w − t− 6. We argue as in the case d 5 w − 6 of (I), with w − t instead

of w; we obtain

Td 5 2(−3w+d+t+3)/2
∑

k2∈C1(2w−d)
k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d),k1 odd
r1r2≡1 (mod 8)

csc(
π|k1|
2w−d

)

= 2(−3w+d+t+3)/2
∑

k2∈C1(2w−d)
k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d),k1 odd
r1≡r2 (mod 8)

csc(
π|k1|
2w−d

)

= 2(−3w+d+t+3)/2
∑

k2∈C1(2w−d)
k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d),k1 odd
k1≡k2(a−c) (mod 8·2t)

csc(
π|k1|
2w−d

)

5 2(−3w+d+t+3)/2
∑

k2∈C1(2w−d)
k2 odd

csc(
π|k2|
2w−d

)
∑

k1∈C1(2w−d),k1 odd
k1≡k2(a−c) (mod 8)

csc(
π|k1|
2w−d

)

5 2(w−3d+t+3)/2{ (w − d+ 1) log 2

4π
+ 0.2126}{ (w− d+ 1) log 2

π
+ 0.3024}

5 2(w−3d+t+3)/2{ (logM)2

4π2
+ (0.127) logM + 0.1401 + 0.0122d2},

since the set {k1; k1 ≡ k2(a − c) (mod 8 · 2t)} is contained in {k1; k1 ≡
k2(a− c) (mod 8)}. Hence we obtain, as in [9, p.142],

(2.21)
w−t−6∑
d=0

Td < 2t/2M1/2{K(logM)2 + 0.56 logM + 0.675} − 876/M,

with K = 2/{(23/2 − 1)π2}.
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For d = w − t− 5, we have as in [9, p.142], with r1 and r2 as above,

Tw−t−5 5 2−w−2

√
2 +
√

2
∑

k2∈C1(2t+5)
k2 odd

csc(
π|k2|
2t+5

)
∑

k1∈C1(2t+5),k1 odd
r1r2≡5 (mod 8)

csc(
π|k1|
2t+5

)

5 2−w−2

√
2 +
√

2
∑

k2∈C1(2t+5)
k2 odd

csc(
π|k2|
2t+5

)
∑

k1∈C1(2t+5),k1 odd
k1≡k2(5a−c) (mod 8)

csc(
π|k1|
2t+5

)

since {k1; r1r2 ≡ 5 (mod 8)} = {k1; k1 + k2c ≡ 5k2a (mod 8 · 2t)} is contained in
{k1; k1 ≡ k2(5a− c) (mod 8)}. Thus we get

(2.22) Tw−t−5 < (t+ 6)2 22t+3/M.

Similarly, using (2.4), (2.5), we get

(2.23) Tw−t−4 < (t+ 5)2 22t/M, Tw−t−3 < (t+ 4)2 22t/M.

Since |S(1, v; 4)| = 2 for v odd, it follows that

(2.24) Tw−t−2 5 (t+ 3)2 22t+2/M.

By (2.11), (2.20), (2.21), (2.22), (2.23), (2.24), we obtain

w−1∑
d=0

Td < 2t/2M1/2{K(logM)2 + 0.56 logM + 0.675}+ 1 + L/M,

with K = 2/{(23/2 − 1)π2} and L = 22t{2(t− 1)(t + 2)2 + 14(t + 6)2}. Thus, the
desired result follows from (2.10).

3. Proof of Theorem 2

The proof is almost the same as in [6].
When c is an even number. Calculating as in [6, p.778], putting h = (1, 1, 0, ..., 0),

we have

(π + 2)MD
(k)
M/2 = |

∑
e(
yn + yn+1

M
)| = |S(1 + c, a;M)| = |S(1, (1 + c)a;M)|.

By [6, Lemma 4], there exist more than A(r)M/8 values of (1+c)a ∈ ZM such that
(1 + c)a ≡ 1 (mod 8), and |S(1, (1 + c)a;M)| = rM1/2. Then a ≡ 1 + c (mod 8),
hence a+ c ≡ 1 + 2c ≡ 1 (mod 4).

When c is odd. If c = 1 + 8k, then put h = (3, 1, 0, ..., 0) and get

3(π + 2)MD
(k)
M/2 = |

∑
e(

3yn + yn+1

M
)| = |S(3 + c, a;M)|

= 4|S(1 + 2k, a/4;M/4)| = 4r(M/4)1/2 = 2rM1/2,
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for more than A(r)M/32 values of (1+2k)a/4 with (1+2k)a/4 ≡ 1, i.e., a/4 ≡ 1+2k
mod 8. Then a ≡ 4 + 8k = 3 + c, hence a+ c ≡ −3 + 2a ≡ 1 mod 4.

If c = 3 + 4k, then put h = (−1, 1, 0, ..., 0) and get

(π + 2)MD
(k)
M/2 = |

∑
e(
−yn + yn+1

M
)| = |S(c− 1, a;M)|

= 2|S(1 + 2k, a/2;M/2)| = 2r(M/2)1/2 =
√

2rM1/2

for more than A(r)M/16 values of (1+2k)a/2 with (1+2k)a/2 ≡ 1, i.e., a/2 ≡ 1+2k
mod 8. Then a ≡ 2 + 4k = c− 1, hence a+ c ≡ 1 + 2a ≡ 1 mod 4.

If c = 5 + 8k, then put h = (−1, 1, 0, ..., 0) and get

(π + 2)MD
(k)
M/2 = |S(c− 1, a;M)| = 4|S(1 + 2k, a/4;M/4)| = 2rM1/2

for more than A(r)M/32 values of (1+2k)a/4 with (1+2k)a/4 ≡ 1, i.e., a/4 ≡ 1+2k
mod 8. Then a ≡ 4 + 8k = c− 1, hence a+ c ≡ 1 + 2a ≡ 1 mod 4.
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