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ANTI-GAUSSIAN QUADRATURE FORMULAS

DIRK P. LAURIE

Abstract. An anti-Gaussian quadrature formula is an (n+ 1)-point formula
of degree 2n− 1 which integrates polynomials of degree up to 2n+ 1 with an
error equal in magnitude but of opposite sign to that of the n-point Gaussian
formula. Its intended application is to estimate the error incurred in Gaussian
integration by halving the difference between the results obtained from the two
formulas. We show that an anti-Gaussian formula has positive weights, and
that its nodes are in the integration interval and are interlaced by those of the
corresponding Gaussian formula. Similar results for Gaussian formulas with
respect to a positive weight are given, except that for some weight functions,
at most two of the nodes may be outside the integration interval. The anti-
Gaussian formula has only interior nodes in many cases when the Kronrod
extension does not, and is as easy to compute as the (n + 1)-point Gaussian
formula.

1. Introduction

Let w be a given weight function over an interval [a, b] and let G
(n)
w be the

corresponding n-point Gauss-Christoffel quadrature formula

G(n)
w f :=

n∑
i=1

w
(n)
i f(x

(n)
i )(1)

of degree 2n− 1 for the integral

If :=

∫ b

a

f(x)w(x) dx.(2)

The defining property of G
(n)
w is that

G(n)
w p = Ip ∀p ∈ P2n−1,(3)

where Pm is the space of polynomials of degree not greater than m.
There are various questions of interest regarding the existence and other proper-

ties of quadrature formulas defined by a set of equations. To make the terminology
precise, we shall say:

• The formula exists if the defining equations have a (possibly complex) solu-
tion.
• The formula is real if the points and weights are all real.
• A real formula is internal if all the points belong to the (closed) interval of

integration. A node not belonging to the interval is called an exterior node.
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• The formula is positive if all the weights are positive.

The Gaussian formulas are known to be internal and positive.

In practice it is not easy to find an accurate estimate of the error If − G(n)
w f

when f is some function that has not been subjected to very much analysis. The

usual method is to use the difference Af −G(n)
w f , where A is a quadrature formula

of degree greater than 2n − 1. Any such quadrature formula A requires at least

n+ 1 additional points. This is because, if we append n arbitrary points to G
(n)
w ,

the weights of the new points simply turn out to be 0 since the weights of a (2n)-
point formula of degree at least 2n− 1 are unique. In fact, any set of n+ 1 points
together with the original n points can be used to construct such a formula, because

Af−G(n)
w f is a null rule [5] of degree 2n, that is, a functional that maps polynomials

of degree up to 2n to zero, but not polynomials of exact degree 2n+ 1. It is known
[12] that a null rule of degree 2n based on 2n + 1 points must be a multiple of
the (2n)th divided difference on those points. One may therefore view the use of

Af −G(n)
w f as a numerical approximation to the theoretical error of the Gaussian

formula in terms of the (2n)th derivative obtained from the Peano kernel theorem
[13].

Several possibilities for constructing a formula A with n + 1 extra points have
been singled out in the literature:

1. The (n+1)-point Gauss-Christoffel formula G
(n+1)
w has degree 2n+1 and can

therefore serve as the formula A. It has been noted [3] that this procedure
can be very unreliable.

2. For certain weight functions (including w(x) = 1) it is possible to find a
(2n + 1)-point formula containing the original n points, with degree at least
3n+ 1. Such formulas were first computed for the case w(x) = 1 by Kronrod
[11], and have found widespread acceptance as components of automatic quad-
rature algorithms [18]. Developments up to 1988 are surveyed by Gautschi

[7]. The Kronrod formulas are of optimal degree, given that the points of G
(n)
w

are to be included, but often the weight function w is such that G
(n)
w does not

possess a real Kronrod extension, e.g. the Gauss-Laguerre and Gauss-Hermite
cases [10].

3. In cases where no real Kronrod extension exists, Begumisa and Robinson [2]
try to find a suboptimal extension, that is, a (2n+ 1)-point formula of degree
greater than 2n but less than 3n+ 1, by gradually reducing the degree aimed
at until an extension is found to exist. Patterson [17] shows that such formulas
can be found easily by his software package [16].

The idea of constructing two numerical methods with error terms of the same
modulus but opposite signs has been used in the numerical solution of initial value
problems in ordinary differential equations [4, 19, 20]. In this paper we consider
the anti-Gaussian quadrature formula

H(n+1)
w f :=

n+1∑
i=1

λ
(n+1)
i f(ξ

(n+1)
i )(4)

which is designed to have an error precisely opposite to the error in the Gauss-

Christoffel formula G
(n)
w , that is,

Ip−H(n+1)
w p = −(Ip−G(n)

w p), p ∈ P2n+1.(5)
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The error If −G(n)
w f can then be estimated as (H

(n+1)
w f −G(n)

w f)/2. In effect, we

are using a (2n + 1)-point formula L
(2n+1)
w = (G

(n)
w + H

(n+1)
w )/2 of degree 2n + 1

to estimate the integral. We shall call this formula an averaged Gaussian formula.

One can think of {G(n)
w , L

(2n+1)
w } as the first two terms in a stratified sequence

[14] of quadrature formulas (each formula is a linear combination of the previous
formula and a formula containing new points only).

The averaged Gaussian formula is of course also a suboptimal extension (and
therefore subsumed in the theory of [16]), but we shall show that it has significant
theoretical and practical properties. In particular, it always exists, it is an almost
trivial task to construct it, it always has positive weights, its nodes are always real,
and at worst two nodes may be exterior.

2. Construction of anti-Gaussian quadrature formulas

From (5) we see that

H(n+1)
w p = 2Ip−G(n)

w p, p ∈ P2n+1.(6)

By comparing (6) with (3), we see that H
(n+1)
w is the Gaussian formula for the

linear functional 2I − G
(n)
w . The points and weights of H

(n+1)
w can therefore be

found by the following (now classical) algorithm:

1. Find the coefficients {αj, j = 0, 1, . . . , n} and {βj, j = 1, 2, . . . , n} which
appear in the recurrence relation

π−1(x) = 0,

π0(x) = 1,

πj+1(x) = (x− αj)πj(x)− βjπj−1(x), j = 0, 1, . . . , n,

(7)

satisfied by the polynomials {πj} orthogonal with respect to the linear func-

tional 2I − G
(n)
w . The coefficient β0 can be any finite number: following

Gautschi [6], we put β0 = (2I−G(n)
w )π0, in other words, the functional applied

to the constant polynomial π0.
2. As shown by Golub and Welsch [9], the nodes of the quadrature formula are

the eigenvalues, and the weights are proportional to the squares of the first
components of the eigenvectors, of the symmetric tridiagonal matrix

α0

√
β1√

β1 α1

√
β2

. . .
. . .

. . .√
βn αn

.
The coefficients {αj, j = 0, 1, . . . , n} and {βj, j = 1, 2, . . . , n} are given by the

well-known formulas of Stieltjes:

αj =
(2I −G(n)

w )(xπ2
j )

(2I −G(n)
w )(π2

j )
, j = 0, 1, . . . , n;(8)

βj =
(2I −G(n)

w )(π2
j )

(2I −G(n)
w )(π2

j−1)
, j = 1, 2, . . . , n.(9)

The proper use of (7) in conjunction with (8–9) is normally a task requiring great
delicacy (thoroughly discussed by Gautschi in [6]), but in the present case the
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task is easy, since we shall show that the required coefficients may be obtained
trivially from the corresponding coefficients for the original linear functional I. In
the classical cases, the latter coefficients are known explicitly [1]; in others, the

software (e.g. [8]) used to compute G
(n)
w computes the recurrence coefficients as a

preliminary step. The details are as follows:
Let {pj} be the sequence of polynomials orthogonal to the original weight func-

tion w, which satisfy the recurrence relation

p−1(x) = 0,

p0(x) = 1,

pj+1(x) = (x− aj)pj(x)− bjpj−1(x), j = 0, 1, . . . .

As before, b0 = Ip0, and the other recurrence coefficients satisfy the relations

aj =
I(xp2

j)

I(p2
j )
, j = 0, 1, . . . ;

bj =
I(p2

j)

I(p2
j−1)

, j = 1, 2, . . . .

(10)

The crucial observation is that because of the property (3), (2I − G(n)
w )p = Ip

for p ∈ P2n−1, and therefore

αj = aj , j = 0, 1, . . . , n− 1;(11)

βj = bj, j = 0, 1, . . . , n− 1;(12)

πj = pj, j = 0, 1, . . . , n.(13)

We need only compute αn and βn. Since the points xi, i = 1, 2, . . . , n, in (1) are

the zeros of πn, the result of applying G
(n)
w to any expression which contains πn as

a factor is 0. Using this observation, as well as the fact that the degree of π2
n−1 is

less than 2n− 1, we find that

αn =
2I(xπ2

n)

2I(π2
n)

(14)

= an;(15)

βn =
2I(π2

n)

I(π2
n−1)

(16)

= 2bn.(17)

In other words, we take precisely the same set of recurrence coefficients as when

computing the Gauss-Christoffel formula G
(n+1)
w , except that the last coefficient βn

is doubled. The rest of the computation proceeds exactly as usual.

3. Theoretical properties

Theorem 1. The anti-Gaussian formula H
(n+1)
w has the following properties.

1. The weights λi > 0, i = 1, 2, . . . , n+ 1.
2. The nodes ξi, i = 1, 2, . . . , n+ 1, are all real, and are interlaced by those of

the Gaussian formula G
(n)
w , i.e.,

ξ1 < x1 < ξ2 < x2 < · · · < xn < ξn+1.
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3. The inner nodes are in the integration interval, i.e.

ξ2, ξ3, . . . , ξn ∈ [a, b].

4. ξ1 ∈ [a, b] if and only if pn+1(a)
pn−1(a) ≥ bn, and ξn+1 ∈ [a, b] if and only if

pn+1(b)
pn−1(b) ≥ bn, where pj , j = 0, 1, . . . , n + 1, are the orthogonal polynomials

and bj , j = 1, 2, . . . , n, the recurrence coefficients corresponding to the origi-
nal weight function as in (10).

Proof. Since bn > 0,
√

2bn is real, and the nodes are therefore eigenvalues of a
real symmetric matrix, thus real. The weights are trivially positive since they are
formed as squares of real quantities in the Golub-Welsch algorithm. The interlacing

property of the nodes follows from the fact that the recurrence coefficients for G
(n)
w

are equal to the first n recurrence coefficients for H
(n+1)
w . Therefore the Gaussian

nodes xi are the eigenvalues of the n × n leading submatrix of the symmetric
tridiagonal matrix with eigenvalues ξi, and Cauchy’s interlace theorem (see e.g.
[15, p.186]) can be applied.

From the interlacing property it follows that all the inner nodes are in the interval
[a, b]. We derive the condition for xn+1 to be in [a, b] : the derivation for x1 is similar.

Any real polynomial with leading coefficient 1 and having at most one zero to
the right of b is negative, zero, or positive at b according to whether it has one
zero greater than b, a zero at b, or no zeros greater than or equal to b. Therefore,
pn−1(b) and pn+1(b) are both positive; and πn+1(b) is positive if and only if it has
no zeros ≥ b. (πn+1 cannot have more than one zero ≥ b because of the interlacing
property.) From the equations (obtained by using (7), (10), (13), (15) and (17))

pn+1(x) = (x− an)pn(x) − bnpj−1(x),

πn+1(x) = (x− an)pn(x) − 2bnpj−1(x),

we note that πn+1 = pn+1− bnpn−1. Therefore, πn+1(b) > 0 if and only if pn+1(b)
pn−1(b) >

bn.

For the classical weight functions, the recurrence coefficients and the values of
the orthogonal polynomials at the end points are explicitly known. We thus obtain
the following corollary of Theorem 1.

Theorem 2. The anti-Gaussian formulas corresponding to the following weight
functions are internal and positive:

1. w(x) = (1−x2)α over [−1, 1] with α ≥ − 1
2 (Gegenbauer), including the special

cases
(a) w(x) = 1 over [−1, 1] (Legendre),

(b) w(x) = (1− x2)−
1
2 over [−1, 1] (Chebyshev),

(c) w(x) = (1− x2)
1
2 over [−1, 1] (Chebyshev, second kind).

2. w(x) = xαe−x over [0,∞) with α > −1 (generalized Laguerre).

3. w(x) = |x|αe−x2

over (−∞,∞) with α > −1 (generalized Hermite).

Proof. The Gegenbauer weight is a special case of the Jacobi weight, treated be-
low. For the generalized Hermite weight, the result is trivial, since the integration
interval contains all real numbers. For the generalized Laguerre weight, we use Ta-
bles 22.3 (leading coefficients), 22.4 (special values), and 22.7 (recurrence relations)
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from [1], to obtain

bn = n(n+ α),

pn(0) = (−1)nn!

(
n+ α

n

)
,

and hence
pn+1(0)

pn−1(0)
= (n+ α)(n + α+ 1) > bn

since α > −1.

In the case of the Jacobi weight function, the characterization is not so simple.

Theorem 3. The anti-Gaussian formula H
(n+1)
w with n ≥ 1 corresponding to

w(x) = (1− x)α(1 + x)β with α, β > −1 is internal if and only if

(2α+1)n2+(2α+1)(α+β+1)n+ 1
2 (α+1)(α+β)(α+β+1) ≥ 0(18)

and

(2β+1)n2+(2β+1)(α+β+1)n+ 1
2 (β+1)(α+β)(α+β+1) ≥ 0.(19)

Proof. Using the same tables from [1], we obtain

bn =
4n(n+ α)(n + β)(n+ α+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)
,

pn(1) =
2n
(
n+α
n

)(
2n+α+β

n

) ,
and hence

pn+1(1)

bnpn−1(1)
=

(n+ α+ 1)(n+ α+ β + 1)(n+ α+β
2 )

n(n+ β)(n+ α+β
2 + 1)

= 1 +
(2α+ 1)n(n+ α+ β + 1) + 1

2 (α+ 1)(α+ β)(α + β + 1)

n(n+ β)(n+ α+β
2 + 1)

.

Since the denominator in the last fraction and bn are both positive, by Theorem 1

the largest node of H
(n+1)
w is in the interval if and only if the numerator is positive.

The proof for the leftmost node is similar.

Theorem 3, while precise, is not very enlightening. We therefore offer a weaker
corollary.

Theorem 4. The anti-Gaussian formulas H
(n+1)
w , n = 1, 2, . . . , for the Jacobi

weight w(x) = (1− x)α(1 + x)β are internal and positive when α and β satisfy the
following four inequalities:

α ≥ − 1
2 ,(20)

β ≥ − 1
2 ,(21)

(2α+ 1)(α+ β + 2) +
1

2
(α+ 1)(α+ β)(α + β + 1) ≥ 0,(22)

(2β + 1)(α+ β + 2) +
1

2
(β + 1)(α+ β)(α + β + 1) ≥ 0.(23)
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Figure 1. Anti-Gaussian formulas for the Jacobi weight are in-
ternal for all n when α and β are within the unbounded region to
the north-east of the heavy lines

Proof. When (20–21) are satisfied, the coefficients of n2 and n in the quadratic
polynomials are positive. These polynomials are therefore increasing functions of
n, and we need merely test whether they are positive when n = 1. Inequalities
(22–23) are obtained by putting n = 1 in (18–19).

When α = β, inequality (22) reduces to (α + 1)(2α + 1)(2 + α) ≥ 0, which is
satisfied when α ≥ − 1

2 , thus proving Case 1 of Theorem 2.
Figure 1 shows the region in the (α, β) plane in which the conditions of Theorem

4 are satisfied. Outside that region, the anti-Gaussian formula for at least one value
of n has an exterior node.

Some sufficient conditions for an anti-Gaussian formula for the Jacobi weight to
require exterior nodes can be deduced from Theorem 3. We mention only cases
with α < β : other cases can be obtained by interchanging α and β. Denote the
left-hand side of (18) by f(n, α, β); we have:

1. For α < − 1
2 , the formulas for sufficiently large n require an exterior node,

because the coefficient of n2 is negative.
2. For α = − 1

2 and β = 0, the formulas require an exterior node for all n, because

f(n,− 1
2 , 0) = − 1

8 .
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3. For β2 < 1
4 and α close enough to − 1

2 , the formulas require an exterior node

for n small enough, because f(n,− 1
2 + ε, β) has zeros at

n = 1
2 (− 1

2 − β − ε±
√

∆),

where

∆ = 1
2 (1 + ε+ (1

4 − β
2)/ε).

The positive zero is therefore O(ε−1/2).

We conclude with the remark that when |α| = |β| = 1
2 , the averaged Gaussian

formula L
(2n+1)
w = (G

(n)
w +H

(n+1)
w )/2 actually is the same as the Kronrod formula

K
(2n+1)
w . This property follows from the facts that the Kronrod formula in its turn

is the same as a formula of higher degree, that is, a (2n+1)-point Gaussian, Lobatto
or Radau formula, as the case may be [7], and that in those cases the weights of
the old points are precisely half of their previous values.
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