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A FAST ITERATIVE METHOD TO COMPUTE THE FLOW

AROUND A SUBMERGED BODY

JOHAN F. MALMLIDEN AND N. ANDERS PETERSSON

Abstract. We develop an efficient iterative method for computing the steady
linearized potential flow around a submerged body moving in a liquid of fi-
nite constant depth. In this paper we restrict the presentation to the two-
dimensional problem, but the method is readily generalizable to the three-
dimensional case, i.e., the flow in a canal. The problem is indefinite, which
makes the convergence of most iterative methods unstable. To circumvent this
difficulty, we decompose the problem into two more easily solvable subprob-
lems and form a Schwarz–type iteration to solve the original problem. The
first subproblem is definite and can therefore be solved by standard iterative
methods. The second subproblem is indefinite but has no body. It is there-
fore easily and efficiently solvable by separation of variables. We prove that
the iteration converges for sufficiently small Froude numbers. In addition,
we present numerical results for a second-order accurate discretization of the
problem. We demonstrate that the iterative method converges rapidly, and
that the convergence rate improves when the Froude number decreases. We
also verify numerically that the convergence rate is essentially independent of
the grid size.

1. Introduction

The subject of this paper is an efficient, Schwarz–type, iterative method for
computing the steady linearized potential flow around a submerged body moving
in a liquid of finite constant depth. Let the depth of the liquid be d, the speed
of the body be U and the acceleration of gravity be g. After scaling the physical
quantities by the length d and the velocity

√
gd, we get the problem depicted in

Figure 1. The total velocity potential is split into the sum of a free stream potential
and a perturbation potential; Φ(x, z) = µx + φ(x, z), where µ = U/

√
gd is the

Froude number. The perturbation potential is governed by, cf. [18, pp. 431–448],

∆φ = 0, −∞ < x <∞, −1 < z < 0,(1)

together with the boundary conditions
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Figure 1. The linearized problem

µ2φxx + φz = 0, −∞ < x <∞, z = 0,
φz = 0, −∞ < x <∞, z = −1,

∂φ/∂n+ µ cos θ = 0, on the body.
(2)

Here, ∂/∂n denotes the outward normal derivative and θ is the angle between
the normal and the x-axis. We are looking for a solution where the perturbation
potential tends to zero at large distances in front of the body. This condition is
called the upstream condition,

lim
x→−∞

φ = 0, −1 < z < 0.(3)

Three main classes of numerical techniques have previously been used to solve
the present problem. These are based on boundary integral methods, finite ele-
ment techniques and finite difference formulations. There are two different types
of boundary integral methods. The first uses a kernel which satisfies the bound-
ary condition on the free surface and the upstream condition, cf. [7, 14]. In this
method, there are only dependent variables along the surface of the body. However,
the kernel is rather difficult and expensive to evaluate numerically [15]. The second
boundary integral method employs a kernel which does not satisfy any boundary
conditions but is easy and inexpensive to evaluate, cf. [6, 9, 20]. Here, the dependent
variables are located along the boundary of the body and on the infinite surface,
which needs to be truncated in the numerical approximation. A number of imple-
mentations of these two boundary integral approaches were competitively compared
to towing-tank experimental data in [11]. The finite element techniques are based
on dividing the fluid domain into two subdomains, one close to the body and one
outer domain. The domain close to the body is discretized by finite elements and
analytical solutions are used ahead of and behind the body. This approach, called
the hybrid or localized finite element method, is pursued in [3, 10, 13, 19]. Similar
to the finite element technique, the finite difference methods [16, 17] divide the
infinite domain into one region close to the hull, where the solution is computed
numerically, coupled to the outer domain by far-field boundary conditions.

All the previous methods have in common that they must solve the linear system
that emanates from the discretization procedure. In the boundary integral method,
the matrix is full and has dimension equal to the number of boundary points. In
the finite element technique and the finite difference method, the discretization
procedure yields a sparse matrix with dimension equal to the number of points in
the flow field. Owing to memory and work requirements, it is very expensive to solve
these linear systems by a direct method like Gaussian elimination, especially in the
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three–dimensional counterpart of the present problem. The continuous problem
(1–3) is indefinite, which implies that also the linear system is indefinite, regardless
of the discretization method. This makes the convergence of most iterative methods
unstable. To circumvent this difficulty, we propose a novel iterative technique where
the problem is decomposed into two more easily solvable subproblems that are
coupled by a Schwarz–type iteration such that the original problem is solved upon
convergence. In this paper we expound the method for the two-dimensional case,
but the technique is readily generalizable to the three-dimensional problem [12].

The first subproblem, which will be referred to as the definite subproblem, is
defined by

∆φI = 0, −∞ < x <∞, −1 < z < 0,(4)

together with the boundary conditions

φIz = 0, −∞ < x <∞, z = 0,(5)

φIz = 0, −∞ < x <∞, z = −1,(6)

∂φI/∂n = h, on the body.(7)

To fix the undetermined constant in this Neumann problem we enforce

lim
x→−∞

φI = 0, −1 < z < 0.(8)

The second subproblem, which will be called the indefinite subproblem, does not
have a submerged body in the interior of the domain. It is governed by

∆φII = 0, −∞ < x <∞, −1 < z < 0,(9)

subject to the boundary conditions

µ2φIIxx + φIIz = t, −∞ < x <∞, z = 0,(10)

φIIz = 0, −∞ < x <∞, z = −1.(11)

In order to make the solution unique, we enforce the upstream condition,

lim
x→−∞

φII = 0, −1 < z < 0.(12)

The first subproblem is definite and can therefore be solved by standard iterative
methods. The second subproblem is indefinite but has no body. It is therefore easily
and efficiently solvable by separation of variables. That solution method will be
described in §2.

The solutions of the subproblems are well defined once the forcing functions h
and t are determined. It is clear that φI + φII will solve (1–3) if we can find
functions t and h that simultaneously satisfy t(x) = −µ2φIxx(x, 0) and h(s) =
−µ cos θ(s) − ∂φII/∂n(xb(s), zb(s)), where the boundary of the body is described
by x = xb(s), z = zb(s), 0 ≤ s ≤ 1. We compute t and h by iteration. We take the
initial guess to be φII(0)(x, z) ≡ 0 and iterate according to

1. Set h(i)(s) = −µ cos θ(s) − ∂φII(i−1)/∂n(xb(s), zb(s)) and solve the definite
subproblem for φI(i).

2. Set t(i)(x) = −µ2φ
I(i)
xx (x, 0), and solve the indefinite subproblem for φII(i).

The main result of this paper, which is proven in §3, is that the iteration con-
verges for sufficiently small Froude numbers. In order to demonstrate the conver-
gence numerically, we truncate the infinite domain and introduce far-field boundary
conditions in §4 to carry out the practical computation. In §5 we present numerical
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results for a second-order accurate discretization of (1–3). We show that the iter-
ative method converges rapidly, and that the convergence rate improves when the
Froude number decreases. We also verify numerically that the convergence rate is
essentially independent of the grid size. Perhaps more surprising is that the itera-
tive method requires less CPU-time than the direct solver described in [17], already
for two-dimensional problems.

2. The indefinite subproblem

To solve the indefinite subproblem, we split the solution according to φII =
φa+φs. The idea is to use φa to move the inhomogeneity from the surface boundary
condition to an inhomogeneity for the Laplace equation and then solve the resulting
problem for φs by separation of variables. Henceforth, we assume that (9) is satisfied
on the boundary z = 0 and make the substitution φIIxx = −φIIzz in (10). The auxiliary
function φa must satisfy

−µ2φazz + φaz = t, −∞ < x <∞, z = 0,
φaz = 0, −∞ < x <∞, z = −1.

(13)

In the interior, φa is only required to be smooth. We will use the following simple
solution:

φa(x, z) =
t(x)

2(1− µ2)
(1 + z)2.(14)

In order to make φa + φs satisfy (9–12), we must have

∆φs = f, −∞ < x <∞, −1 < z < 0,(15)

where f(x, z) = −∆φa(x, z), together with the boundary conditions

−µ2φszz + φsz = 0, −∞ < x <∞, z = 0,
φsz = 0, −∞ < x <∞, z = −1.

(16)

To separate variables, we make the ansatz

φs(x, z) =
∞∑
k=0

R(k)(x)S(k)(z),(17)

where

S(0)(z) = 1,

S(1)(z) = cosh
√
λ(1 + z),

S(k)(z) = cos
√
κk(1 + z), k = 2, 3, . . . .

(18)

By studying dS(k)/dz, cf. [16], it is easy to see that {S(k)} form a complete set in
L2[−1, 0]. Furthermore, they are orthogonal in the sense∫ 0

−1

dS(p)

dz

dS(q)

dz
dz = 0, p 6= q.(19)

The eigenvalues are given by the relations

µ2
√
λ = tanh

√
λ, µ2√κk = tan

√
κk, k = 2, 3, . . . .(20)

Henceforth, we assume that 0<µ<1. This implies a real
√
λ. The functions cosh z

and cos z are symmetric in z; we will therefore only consider positive
√
λ and

√
κk.
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If we enter the ansatz (17) into (15) and expand the right-hand side according
to

f(x, z) =
∞∑
k=0

f̂ (k)(x)S(k)(z),(21)

we arrive at the following system of ordinary differential equations:

d2R(0)

dx2
= f̂ (0)(x),(22)

d2R(1)

dx2
+ λR(1) = f̂ (1)(x),(23)

d2R(k)

dx2
− κkR(k) = f̂ (k)(x), k = 2, 3, . . . .(24)

Next, we express the functions f̂ (k)(x) in terms of t(x). To clarify the notation,
we define ζ(k) := dS(k)/dz, k = 1, 2, 3, . . . . We also define the inner product and
norm in the z-direction,

〈a, b〉z =

∫ 0

−1

āb dz, ‖a‖2z = 〈a, a〉z .(25)

By differentiating (21) in the z-direction we get

fz(x, z) =
∞∑
k=1

f̂ (k)(x)ζ(k)(z).(26)

The orthogonality relation (19) yields

f̂ (k)(x) =
〈fz(x, ·), ζ(k)〉z
‖ζ(k)‖2z

, k = 1, 2, 3, . . . .(27)

By inserting (14) into fz(x, z) = −∆φaz(x, z) and evaluating the scalar products
and norms analytically, we get

f̂ (1)(x) =
−4t′′(x)

1− µ2
· sinh

√
λ−
√
λ cosh

√
λ

2λ3/2 − λ sinh 2
√
λ

=
−2t′′ cosh

√
λ

λ(µ2 cosh2
√
λ− 1)

,(28)

f̂ (k)(x) =
−4t′′(x)

1− µ2
· sin

√
κk −

√
κk cos

√
κk

2κ
3/2
k − κk sin 2

√
κk

=
2t′′ cos

√
κk

κk(1− µ2 cos2
√
κk)

.(29)

We cannot use the same technique to evaluate f̂ (0), because dS(0)/dz ≡ 0. In-

stead we use (21) and compute f̂ (0) once the other coefficients are known, i.e.,

f̂ (0)(x) = f(x, z)−
∞∑
k=1

f̂ (k)(x)S(k)(z).

This equation is valid for all values of z, but the choice z = −1 makes the occurring
expressions particularly simple. By inserting (28) and (29) we get

f̂ (0)(x) = − t(x)

1− µ2
− 2t′′(x)Q,(30)
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where

Q =
− cosh

√
λ

λ(µ2 cosh2
√
λ− 1)

+
∞∑
k=2

cos
√
κk

κk(1− µ2 cos2
√
κk)

.(31)

3. Analysis of the iteration

In this section we prove convergence of the iteration for sufficiently small Froude
numbers. The proof consists of estimates of the solutions to the two subproblems.
In §3.1, we estimate the x–derivatives of the solution to the definite problem at the
surface in terms of the forcing h on the body. Thereafter, in §3.2, we derive estimates
for the x– and z–derivatives of the solution to the indefinite problem in terms of
the forcing t along the surface. These estimates will be used to bound the normal
derivative of the solution to the indefinite problem along the fictitious boundary of
the body. These two estimates are combined in §3.3 to prove convergence of the
iteration.

Henceforth, C will denote a generic constant which is independent of µ.

3.1. Estimate for the definite subproblem. To begin with, we define the max-
imum norm along the boundary of the body according to

|f |∞,body = sup
0≤s≤1

|f(xb(s), zb(s))|.(32)

Furthermore, we denote the maximum norm of a function of one or two independent
variables by | · |∞.

It is well known, cf. [5], that the x-derivatives of φI along the surface can be
estimated in terms of the forcing h. We make this statement more precise in

Lemma 1. There holds∣∣∣∣∂pφI(i)∂xp
(·, 0)

∣∣∣∣
∞
≤ Cp|h(i)|∞,body, p = 1, 2, . . . ,

where Cp are constants independent of h(i).

In the domains ahead of and behind the body, the solution of the definite sub-
problem can be found by separation of variables. Let the body be contained in
−β ≤ x ≤ β. Expanding the solution in a Fourier series in the vertical direction
yields

φI(x, z) =
∞∑
k=0

αke
−ωk|x| cosωkz, ωk = kπ,(33)

for |x| > β. Hence, the forcing function t(x) satisfies

t(x) =
∞∑
k=1

αkω
2
ke
−ωkx ≤ Ce−π|x|, |x| > β.(34)

3.2. Estimates for the indefinite subproblem. The purpose of this section is
to derive bounds for the maximum norm of the x– and z–derivatives of φII in terms
of the forcing t. To bound φII = φa + φs, we bound φa and φs separately and add
the results. Differentiating the solution formula (14) yields
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Lemma 2. We have

|φax|∞ ≤
|t′|∞

2(1− µ2)
, |φaz |∞ ≤ |t|∞(1− µ2).(35)

We now consider φs. We estimate φsx and φsz in three steps. First we bound

the functions f̂ (k) in terms of the forcing t(x). Then we estimate the solution of

the ordinary differential equations (22–24) in terms of the right-hand sides f̂ (k).
Finally, we bound φsx and φsz by summing the bounds for all the modes.

Bounding f̂ (k). The eigenvalue relation (20) implies
√
λ < µ−2. In addition,

√
λ→

µ−2, when µ → 0. We have µ2 cosh2
√
λ > 1 for all 0 < µ < 1. Therefore, (28)

yields

|f̂ (1)|∞ ≤ C
µ2

coshµ−2
|t′′|∞,(36)

where C → 1 when µ→ 0. Inspection of (29) yields directly

|f̂ (k)|∞ ≤
2|t′′|∞

κk(1− µ2)
, k = 2, 3, . . . .(37)

To bound f̂ (0), we need to estimate Q in (31). For the eigenvalues
√
κk we have

π(k − 1) ≤ √κk ≤ π(k − 1/2), k = 2, 3, . . . .(38)

Hence,

∞∑
k=2

κ−1
k ≤

1

π2

(
1 +

∫ ∞
1

k−2 dk

)
=

2

π2
.(39)

Therefore, (30) gives

|f̂ (0)|∞ ≤
C

1− µ2
(|t|∞ + |t′′|∞) .(40)

Bounding R(k). We begin by writing down the analytical solutions of (22–24). By
integrating (22) twice we find

R(0)(x) = C1 + C2x+

∫ x

−∞

∫ ζ

−∞
f̂ (0)(ξ) dξdζ.(41)

The upstream condition (12) implies C1 = C2 = 0. The general solution of (23)
can be written as:

R(1)(x) = C3e
i
√
λx + C4e

−i
√
λx

+
i

2
√
λ

∫ x

−∞
ei
√
λ(ξ−x)f̂ (1)(ξ) dξ

− i

2
√
λ

∫ x

−∞
e−i
√
λ(ξ−x)f̂ (1)(ξ) dξ.

(42)
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Again, (12) yields C3 = C4 = 0. Finally, the general solution of (24) can be
expressed according to

R(k)(x) = C
(k)
5 e

√
κkx − C(k)

6 e−
√
κkx

− 1

2
√
κk

∫ ∞
x

e−
√
κk(ξ−x)f̂ (k)(ξ) dξ

− 1

2
√
κk

∫ x

−∞
e
√
κk(ξ−x)f̂ (k)(ξ) dξ.

(43)

By assuming the solution to be bounded at infinity we get C
(k)
5 = C

(k)
6 = 0.

The decay of t(x) given by (34) implies that the forcing functions f̂ (k) will all
satisfy

|f̂ (k)(x)| ≤ |f̂ (k)|∞e−π|x|, k = 0, 1, 2, . . . ,(44)

in |x| > β.
In the following, the horizontal length of the body will be denoted L = 2β.
We bound dR(0)/dx by differentiating (41) once. This gives,∣∣∣∣dR(0)

dx

∣∣∣∣
∞
≤ CL|f̂ (0)|∞.(45)

The solution formula (42) yields the following bounds for R(1) and dR(1)/dx:

|R(1)|∞ ≤ CLµ2|f̂ (1)|∞,
∣∣∣∣dR(1)

dx

∣∣∣∣
∞
≤ CL|f̂ (1)|∞.(46)

In the same way, (43) yields the following estimates for R(k) and dR(k)/dx:

|R(k)|∞ ≤
CL√
κk
|f̂ (k)|∞,

∣∣∣∣dR(k)

dx

∣∣∣∣
∞
≤ CL|f̂ (k)|∞,(47)

where k = 2, 3, 4, . . . .

Bounding φsx. By differentiating (17) with respect to x we find

φsx =
∞∑
k=0

dR(k)(x)

dx
S(k)(z).(48)

We combine (40) and (45) to get∣∣∣∣dR(0)

dx

∣∣∣∣
∞
≤ CL

1− µ2
(|t|∞ + |t′′|∞).(49)

The term dR(1)/dx is bounded by using (36) and (46),∣∣∣∣dR(1)

dx
S(1)(z)

∣∣∣∣
∞
≤ CLµ2

(1− µ2) coshµ−2
|t′′|∞.(50)

By entering (37) into (47) and using the bound (39) we arrive at∣∣∣∣∣
∞∑
k=2

dR(k)

dx
S(k)(z)

∣∣∣∣∣
∞

≤ CL

1− µ2
|t′′|∞

∞∑
k=2

(κk)−1 ≤ CL

1− µ2
|t′′|∞.(51)

Combining (49), (50) and (51) gives
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Lemma 3. There holds

|φsx(·, z)|∞ ≤
CL

1− µ2
(|t|∞ + |t′′|∞).

Bounding φsz. To get an equation for φsz , we differentiate (17) once in the z–
direction,

φsz(x, z) =
∞∑
k=1

R(k)(x)ζ(k)(z).(52)

By combining (36) and (46) and noting that |ζ(1)| ≤ Cµ2, the first term in the sum
satisfies

|R(1)ζ(1)(z)|∞ ≤
CLµ2

(1− µ2) coshµ−2
|t′′|∞.(53)

We get an estimate of the remaining terms by using (37) and (47). This yields,∣∣∣∣∣
∞∑
k=2

R(k)ζ(k)(z)

∣∣∣∣∣
∞

≤ CL

1− µ2
|t′′|∞.(54)

By inserting (53) and (54) into (52) we find

Lemma 4. There holds

|φsz(·, z)|∞ ≤
CL

1− µ2
|t′′|∞.

Bounding φIIx and φIIz . By adding the bound for φax from Lemma 2 and the bound
for φsx from Lemma 3, we get

|φIIx (·, z)|∞ ≤
CL

1− µ2
(|t|∞ + |t′|∞ + |t′′|∞).(55)

Similarly, φIIz is estimated by adding the bounds for φaz from Lemma 2 and the
bound for φsz from Lemma 4,

|φIIz (·, z)|∞ ≤
CL

1− µ2
(|t|∞ + |t′′|∞).(56)

Hence, the sum of φIIx and φIIz is bounded by

|φIIx (·, z)|∞ + |φIIz (·, z)|∞ ≤
CL

1− µ2
(|t|∞ + |t′|∞ + |t′′|∞).(57)

The definition of the forcing t(x) yields

Lemma 5. We have

|φII(i)x (·, z)|∞ + |φII(i)z (·, z)|∞ ≤ CL
µ2

1− µ2

4∑
p=2

∣∣∣∣∂pφI(i)∂xp
(·, 0)

∣∣∣∣
∞
.
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3.3. Convergence of the iteration. To simplify the notation, we introduce

ΨI(i)(x, z) = φI(i)(x, z)− φI(i−1)(x, z),(58)

ΨII(i)(x, z) = φII(i)(x, z)− φII(i−1)(x, z).(59)

We can now prove

Theorem 1. For a sufficiently small µ, the iterative method converges uniformly
to limi→∞ φI(i) → φI and limi→∞ φ

II(i) → φII , where φI + φII is a solution of
(1–3).

Proof. From Lemma 1 and the definition of h(i) we have

4∑
p=2

∣∣∣∣∂pΨI(i)

∂xp
(·, 0)

∣∣∣∣
∞
≤ C

∣∣∣h(i) − h(i−1)
∣∣∣
∞,body

= C

∣∣∣∣∂ΨII(i−1)

∂n

∣∣∣∣
∞,body

.

(60)

The triangle inequality yields∣∣∣∣∂ΨII(i)

∂n

∣∣∣∣
∞,body

≤ |ΨII(i)
x |∞,body + |ΨII(i)

z |∞,body

≤ |ΨII(i)
x |∞ + |ΨII(i)

z |∞.
(61)

Therefore, Lemma 5 and (60) imply∣∣∣∣∂ΨII(i)

∂n

∣∣∣∣
∞,body

≤ CL µ2

1− µ2

4∑
p=2

∣∣∣∣∂pΨI(i)

∂xp
(·, 0)

∣∣∣∣
∞

≤ CL µ2

1− µ2

∣∣∣∣∂ΨII(i−1)

∂n

∣∣∣∣
∞,body

.

(62)

By choosing µ so that δ = CLµ2/(1 − µ2) < 1, the contraction mapping prin-
ciple ensures uniform convergence, i.e., limi→∞ ∂φII(i)/∂n = ∂φII/∂n. Hence,
limi→∞ h(i) = h, so limi→∞ φI(i) → φI , and therefore also limi→∞ φII(i) → φII . It
follows by inspection that φI + φII is a solution of (1–3).

4. Far-field boundary conditions

It is necessary to bound the computational domain and introduce artificial
boundary conditions at the far-field boundaries to carry out the practical calcu-
lation. Here, we truncate the domain to −b < x < b, see Figure 2. In this section,
we will only present the boundary conditions. Their effect on the solution will not
be analyzed. We will instead perform numerical experiments to verify that their
influence is small if the computational domain is sufficiently large.

For the definite subproblem, we enforce the following artificial boundary condi-
tions:

φI(−b, z) = 0,(63)

φIx(b, z) = 0.(64)

These conditions are local, which makes an iterative solver easy to apply.
In order to solve the indefinite subproblem numerically, we must replace t(x) by a

smooth function t̃(x) := P (x)t(x) which has compact support in the computational
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Figure 2. The computational domain

domain. In addition, P (x) must have two continuous derivatives, so that t̃′′ is well
defined. A cutoff function having these properties is given by

P (x) =


0, −∞ <x≤ −b,
p1((−b+ α− x)/α), −b <x< −b+ α,
1, −b+ α ≤x≤ b− α,
p1((−b+ α+ x)/α), b− α <x< b,
0, b ≤x<∞,

(65)

where α > 0 and p1(ξ) = 1 − 10ξ3 + 15ξ4 − 6ξ5. We will denote the solution

of (22–24) corresponding to the modified forcing by R̃(k). In the domains where
t̃ = 0, we can solve (22–24) analytically. These analytical solutions are used to form
relations between the solution and its normal derivative, which must be satisfied
by any solution that is bounded at infinity and fulfills the radiation condition (12).
These relations are used as far-field boundary conditions. They are given by

R̃(0) = 0,
dR̃(0)

dx
= 0, x = −b,(66)

R̃(1) = 0,
dR̃(1)

dx
0, x = −b,(67)

dR̃(k)

dx
−√κkR̃(k)0, x = −b, k = 2, 3, . . . ,(68)

dR̃(k)

dx
+
√
κkR̃

(k)0, x = b, k = 2, 3, . . . .(69)

The boundary conditions are exact in the sense that they do not affect the solu-
tion at all. The difference between R(k) and R̃(k), therefore, only depends on the
difference between t(x) and t̃(x).

5. Numerical results

In this section we present numerical results for a second-order accurate dis-
cretization of (1–3). In §5.1 and §5.2 we comment on the numerical methods that
were used to solve the subproblems. Thereafter, in §5.3, we study a number of
test cases. We show that the iterative method converges rapidly, and that the
convergence rate improves when the Froude number decreases. We also compare
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the solution with previous results obtained with a direct method [17] to indicate
that the iteration converges to the correct solution. We verify numerically that the
convergence rate is essentially independent of the grid size. It is demonstrated that
the iterative method is efficient from a computational point of view; it requires less
runtime than the direct solver already for two-dimensional problems. In addition,
we show that the error committed by truncating the domain and introducing far-
field boundary conditions decays exponentially with the size of the computational
domain.

5.1. Solving the definite subproblem. We discretize the definite subproblem by
second-order accurate finite differences on a composite overlapping grid. To apply
the method, we divide the domain into simple overlapping subdomains and cover
each subdomain with a component grid, see Figure 3. The subdomain close to the

Figure 3. The composite overlapping grid

body is covered with a curvilinear grid and the surrounding sea is covered with a
Cartesian grid. The main advantage with this method compared to discretizing the
whole domain with one single grid is that each component grid can be made logically
rectangular and without singularities. The grid functions on the component grids
are coupled by continuity requirements, which are enforced by applying sufficiently
accurate, in this case quadratic, interpolation relations between the grid functions
at the interior boundaries where the component grids overlap. A comprehensive
description of this approach for a similar problem is given in [17].

We use the program CMPGRD to construct the composite grids. Many aspects
of composite grids and how to use this program are described in [2, 1, 4]. We would
like to point out that this program is capable of constructing three–dimensional
composite grids, so this method can also be used in three dimensions.

The resulting linear system of equations is solved by the YALE sparse matrix
package [8]. This method requires of the orderO(n2) operations, where n equals the
number of grid points in the composite grid. However, for two-dimensional problems
of moderate size, it turns out to be faster than multigrid or the conjugated gradient
method, which are asymptotically faster.

5.2. Solving the indefinite subproblem. The number of terms in the series
expansion (17), which equals the number of ordinary differential equations (22–
24) that must be solved, has to be limited in order to carry out the numerical
calculation. We found by numerical experiments that it is sufficient to retain the
first ten terms. This is related to the fact that the solution is smooth.
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We approximate the ordinary differential equations (22–24) by second-order ac-
curate central differences. For simplicity, we use the same size of the computational
domain and the same grid as for the definite subproblem. The tridiagonal systems
of equations involved are solved by the subroutine DNBSL in the SLATEC package.
The work needed to obtain a solution to the indefinite subproblem is of the order
O(n1), where n1 is the product of the number of gridpoints in the discretization of
one ordinary differential equation and the number of terms we retain in the series
expansion.

5.3. Test runs. A circle with radius 0.1 was used as test body. The center of the
circle was submerged 0.5 below the free surface and located at x = 0, see Figure 4.
The Froude number was 0.4 unless otherwise stated. The cutoff function (65) had
α = 7/33.

Figure 4. The test body; a circle with radius 0.1

To show an example of the solution, we present the surface elevation above
the test body in Figure 5. We also show the perturbation potential in the whole
computational domain in Figure 6.

Figure 5. The surface elevation above the test body, µ = 0.4
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Figure 6. The perturbation potential around the test body, µ = 0.4

In the following, we will compare solutions in the maximum norm over the part
of the surface in the computational domain,

|f |∞,sur = sup
−b<x<b

|f(x, 0)|.(70)

To find the order of accuracy of the iterative method, we compare solutions
obtained with grid sizes 2h,

√
2h and h. The corresponding solutions are denoted

by φ2h, φ√2h and φh, respectively. The length of the computational domain is 4.5
(b = 2.25). The number of grid points in the Cartesian grids is 17 × 86, 24× 132
and 33 × 172, respectively, and in the grid around the body 17 × 6, 23 × 8 and
33× 11, respectively. The results, which are presented in Table 1, indicate that the
method is second-order accurate.

To ensure that the iteration converges to the right solution, we compare the itera-
tive solution with the solution computed by the direct method described in [17]. We
cannot expect perfect agreement, because even though both methods are second-
order accurate, they correspond to different sets of discrete approximations. Fur-
thermore, the far-field boundary conditions are not the same in the two approaches.
Hence, the difference between the solutions will only tend to zero as h2 if the com-
putational domain is sufficiently large, so that effects from the far-field boundaries
can be neglected. We use the same grids as described above. The solutions ob-
tained with the direct solver are denoted φd2h,φd√

2h
and φdh, respectively. The results,

cf. Table 2, show that the difference between the solutions corresponding to the two
methods tends to zero approximately as h2. The cpu-time required for solving these
problems on a Sun 4/20 with 8 megabyte memory can be found in Table 3.

Next, we study the convergence rate of the iterative method. In Tables 4–9 we
present |φ(k)−φ(k−1)|∞,sur/|φ|∞,sur as function of k for different values of µ and for

Table 1. Comparison between solutions computed with different
grid sizes

|φ2h − φh|∞,sur |φ√2h − φh|∞,sur

1.146× 10−2 4.609× 10−3
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Table 2. Comparison between solutions computed with the iter-
ative method and the direct method for different grid sizes

|φd2h − φ2h|∞,sur |φd√
2h
− φ√2h|∞,sur |φdh − φh|∞,sur

4.795× 10−3 2.497× 10−3 1.343× 10−3

Table 3. Cpu-time comparison between the iterative method and
the direct method (seconds)

2h
√

2h h
# of equations 1178 2202 4390
iterative 13.1 25.1 53.9
direct 16.6 102.4 826

Table 4. Convergence rate, µ = 0.8

iteration φ2h φ√2h φh
1 9.336× 10−1 9.264× 10−1 9.216× 10−1

2 5.835× 10−2 6.283× 10−2 7.398× 10−2

3 9.789× 10−3 1.097× 10−2 4.748× 10−3

4 9.344× 10−4 5.336× 10−3 5.336× 10−4

Table 5. Convergence rate, µ = 0.7

iteration φ2h φ√2h φh
1 9.502× 10−1 9.547× 10−1 9.554× 10−1

2 5.509× 10−2 5.083× 10−2 4.879× 10−2

3 3.756× 10−3 3.306× 10−3 3.174× 10−3

4 3.447× 10−4 4.883× 10−4 1.207× 10−3

5 * * 7.231× 10−4

Table 6. Convergence rate, µ = 0.6

iteration φ2h φ√2h φh
1 9.561× 10−1 9.619× 10−1 9.561× 10−1

2 4.008× 10−2 4.361× 10−2 4.910× 10−2

3 2.209× 10−3 2.597× 10−3 3.211× 10−3

4 1.541× 10−4 1.029× 10−4 1.462× 10−4

different grid sizes. The iteration is truncated when this quantity becomes less than
10−3. The results confirm that the convergence rate improves when µ decreases and
that it is essentially independent of the grid size.

In order to examine the effect of the far-field boundary conditions in the defi-
nite subproblem and the truncation of the forcing function t(x) in the indefinite
subproblem, we study how the solution depends on the size of the computational
domain. We consider the lengths 1.2, 3.2 and 5.2, i.e., b = 0.6, 1.6, 2.6, respectively,
and we denote the solutions on these grids by φ1.2, φ3.2 and φ5.2, respectively. The
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Table 7. Convergence rate, µ = 0.5

iteration φ2h φ√2h φh
1 9.468× 10−1 9.540× 10−1 9.588× 10−1

2 4.965× 10−2 4.351× 10−2 3.769× 10−2

3 5.370× 10−3 4.544× 10−3 3.860× 10−3

4 1.810× 10−4 3.459× 10−4 6.479× 10−4

Table 8. Convergence rate, µ = 0.4

iteration φ2h φ√2h φh
1 9.737× 10−1 9.764× 10−1 9.783× 10−1

2 2.662× 10−2 2.347× 10−2 2.164× 10−2

3 6.189× 10−4 3.799× 10−4 2.982× 10−4

Table 9. Convergence rate, µ = 0.3

iteration φ2h φ√2h φh
1 9.905× 10−1 9.913× 10−1 9.916× 10−1

2 9.861× 10−3 9.022× 10−3 8.111× 10−3

3 6.724× 10−5 2.556× 10−4 7.020× 10−4

Table 10. Comparison between solutions corresponding to differ-
ent lengths of the computational domain

|φ5.2 − φ1.2|∞,sur |φ5.2 − φ3.2|∞,sur

8.455× 10−3 5.220× 10−4

grid size in both directions of the the Cartesian grid was 1/33. We used 33 × 11
grid points in the grid around the body. The results, given in Table 10, suggest
that the influence of the far-field boundary conditions decays exponentially with
the length of the computational domain.
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