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CLASS NUMBER 5, 6 AND 7

CHRISTIAN WAGNER

Abstract. We outline the determination of all imaginary quadratic fields with
class number 5, 6 or 7.

1. Introduction
1

In this paper we outline the proof that the following table contains all discrimi-
nants −d < 0 of imaginary quadratic fields with class number h = 5, 6 or 7.

Table 1. Fundamental discriminants with class number 5, 6 or 7

h d, −d (fundamental) discriminant,h(−d) = h

5 47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787,
947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683

6 87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707,
771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267,
1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443,
2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763

7 71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523,
1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187,
3907, 4603, 5107, 5923

Recently, S. Arno [1, 2] combined methods of H. Stark [16] for h = 2 and H. Mont-
gomery and P. Weinberger [11] for h = 2 and 3 to solve the class number-4 problem2.

Arno had to overcome the problem of d having up to three distinct prime divisors,
but could profit from the small number of leading coefficients of the reduced binary
quadatic forms. In our case, d is simplified to at most two prime divisors, but
the larger number of coefficients results in certain estimates being much worse.
Therefore, we have to combine the abovementioned methods in another way as
Arno. For h = 8 both items take a negative turn: up to four prime divisors and
eight coefficients, which makes this case seem impregnable.
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1General information on Gauss’ class number problem may be obtained from the articles by

S. Böcherer [3], D. Goldfeld [6], J. Oesterlé [13] and J.-P. Serre [14].
2As the referee pointed out to me, S. Arno has now extended some of these results. Arno has

treated the class number problem for all odd h from 5 to 23.
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2. Class number, discriminant and forms

The restriction of h to the values 5, 6 or 7 implies conditions that must be
fulfilled by the discriminants and the leading coefficients in their reduced (binary
quadratic) forms, which occur in certain formulas of the abovementioned methods.
In this section we list some of these conditions. This will help us later in reducing
the computer work for searching for discriminants with class number 5, 6 or 7.

We are interested in reduced forms f(x, y) = ax2 + bxy + cy2 with discriminant
−d, i.e., forms with −d = b2 − 4ac and −a < b ≤ a < c or 0 ≤ b ≤ a = c (which

implies a ≤
√
d/3). An example is the principal form

f1(x, y) =

{
x2 + d

4y
2 for d ≡ 0 (mod 4),

x2 + xy + d+1
4 y2 for d ≡ 3 (mod 4),

which is the only reduced form with 1 as leading coefficient a.
Throughout this paper we let fi(x, y) = aix

2 + bixy + ciy
2, i = 1, . . . , h, be

the reduced forms with discriminant −d, numbered in a way that their leading
coefficients 1, a2, a3, . . . , ah are in ascending order, i.e., 1 < a2 ≤ a3 ≤ · · · ≤ ah.

Lemma 2.1. Let f(x, y) = ax2 + bxy + cy2 be a reduced form with discriminant
−d. Then y 6= 0 implies f(x, y) ≥ c, and y = 0, x 6= 0 implies f(x, y) ≥ a.

Proof. See Stark [16, Lemma 3].

Lemma 2.2. Let h > 1. Then a2 is prime and a2 = min
{
p prime

∣∣∣(−dp ) 6= −1
}

.

Proof. The integer a2 is prime, otherwise choose p prime, p | a2, p < a2. The
number of representations of p with forms with discriminant −d is

R(p) =
∑
t|p

(
−d
t

)
= 1 +

(
−d
p

)
= 1 +

(
b22 − 4a2c2

p

)
= 1 +

(
b22
p

)
≥ 1.(1)

From Lemma 2.1 only the principal form can represent p. This can happen only
when y 6= 0. But then by Lemma 2.1

d

4
≤ p < a2 ≤

√
d

3
,(2)

consequently d < 16
3 and h = 1. This is a contradiction.

Now a2 is represented (by f2), so
(
−d
a2

)
6= −1. Let p be prime, p < a2,

(
−d
p

)
6=

−1. As in (1), R(p) ≥ 1, but because of (2), p cannot be represented. Contradiction.

Lemma 2.3 (Heilbronn). Let −d < 0 be a discriminant, h = h(−d), p a rational

prime number and
(
−d
p

)
= 1. Then p ≥

(
d
4

) 1
h .

Lemma 2.4 (Heilbronn). Let −d < 0 be a discriminant, a > 0 squarefree, a | d
and a ≤

(
d
4

) 1
2 . Then there is exactly one reduced form with discriminant −d and

leading coefficient a.
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2.1. Odd class number. Suppose h = 2n+ 1 with n ∈ N0. This is the simplest
case. By the theory of genera (2t−1 | h, where t is the number of distinct prime
divisors of d), −d is a prime discriminant, thus has the form −4,−8 or −p with
p ≡ 3 (mod 4) prime. It is easy to calculate h(−4) = h(−8) = 1; we confine
our analysis to the discriminants with d ≡ 3 (mod 4) prime. We will see that the
coefficients of the reduced forms behave well.

Lemma 2.5. Let h > 1 be odd, f(x, y) = ax2 + bxy + cy2 be a reduced form other
than the principal form with discriminant −d = b2 − 4ac. Then 0 < |b| < a < c.

Proof. We have b 6= 0, because d is odd. If |b| = a, then −d = a(a − 4c). With
a > 1 and d prime, this leads to a = d, a contradiction. If a = c, then b ≥ 0 and
−d = (b− 2a)(b+ 2a). This leads to b+ 2a = d and b− 2a = −1, so b = 2a− 1 > a,
a contradiction.

Remark 2.6. Let h > 1 be odd, f(x, y) = ax2 + bxy + cy2 with 0 < |b| < a < c.
Then obviously ax2− bxy+ cy2 is reduced too. So besides the principal form there
are respectively pairs of reduced forms, which differ only by the sign of b (but are
nonequivalent).

Corollary 2.7. Let h > 1 be odd. Then a2 = a3 and a2, a3 < a4, i.e., there is
exactly one pair of forms with a2 as leading coefficient.

Proof. The equalities a3 = a4(= a5) lead to R(a2) ≥ 4 (each form represents with
x = 1, y = 0). But because of Lemma 2.2 and (a2, d) = 1 we have R(a2) =

1 +
(
−d
a2

)
= 2.

Lemma 2.8. Let h > 1 be odd. Then a2 ≥
(
d
4

) 1
h .

Proof. From Lemma 2.2 and Lemma 2.3, because (a2, d) = 1.

Lemma 2.9. Let h > 3 be odd. Then a4 is prime or a4 = an2 with 1 < n ≤ h
2

log d
3

log d
4

.

The proofs of this lemma and of Lemma 2.11 are variations of the proof given
for Lemma 2.13 and are therefore omitted. The upper bound for n can be obtained
with the help of Lemma 2.8. We also omit the proof of Corollary 2.10, which works
like the one for Corollary 2.7.

Corollary 2.10. Let h = 5 or h = 7. Then a4 = a5 and in case of h = 7,
a4, a5 < a6, i.e., there is exactly one pair of forms with a4 as leading coefficient.

Lemma 2.11. Let h = 7. Then a6 is prime or a6 = an2a
m
4 with n,m ∈ N0,

1 < n+m < 4.

We can sum up the results of the preceding lemmas in a way which is useful for
us later.

Lemma 2.12. 1) In the case of h = 5 we have 1 < a2 = a3 < a4 = a5, in the case
of h = 7 we have 1 < a2 = a3 < a4 = a5 < a6 = a7.

2) Suppose a2 has a lower bound λ ∈ R. Let p2 < p4 < p6 be the three least
prime numbers ≥ λ. Then in the case of h = 5 or h = 7, a2 ≥ p2 and a4 ≥ p4;
moreover, in the case of h = 7 and λ ≥ 4, a6 ≥ p6.
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Proof. 1) From 2.6, 2.7 and 2.10.
2) We have a2 ≥ p2 because a2 is prime by Lemma 2.2. Now by Lemma 2.9

and 1), a4 ≥ p4 or a4 ≥ a2
2. Bertrand’s postulate yields a prime number p, a2 <

p < 2a2 ≤ a2
2, hence it is safe to take the first bound. Finally, in case h = 7, by

Lemma 2.11 and 1), a6 ≥ p6 or a6 ≥ a2
2. Bertrand’s postulate yields for a2 ≥ 4 two

prime numbers p, q, a2 < p < q < 4a2 ≤ a2
2, so it is safe to take the first bound.

The condition λ ≥ 4 is satisfied except for very small discriminants (cf. Lemma
2.8).

2.2. Even class number. Suppose (restrictively) that h = 2n with n odd (e.g.,
h = 6); then by the theory of genera the number t of distinct prime divisors of d
equals 2. This is because on the one hand, 2t−1 | h, so t ≤ 2, and on the other
hand, h is always odd for discriminants with t = 1 (prime discriminants). Further,
take into consideration that −d ≡ 1 (mod 4), or −d ≡ 0 (mod 4) and −d4 ≡ 2, 3
(mod 4); then d must have one of the forms

d =

 4p with p prime, p ≡ 1 (mod 4),
8p with p prime, p > 2,
pq with p, q prime, p ≡ 1 (mod 4), q ≡ 3 (mod 4).

When the class number is even, there are, unlike for odd class number, not
necessarily pairs of reduced forms (see Lemma 2.4). For the moment, we collect all
reduced forms with a2 as leading coefficient under the term f2.

Lemma 2.13. Let h ≥ 4 be even, f(x, y) = ax2 + bxy + cy2 be a reduced form
with −d = b2 − 4ac and a > a2. Suppose further that the leading coefficients of all
reduced forms other than the principal form and f2 with discriminant −d are ≥ a.
Then a is prime or a = an2 with n > 1.

Proof. Let d′ = d
a2

(∈ Q). Because a2 ≤
(
d
3

) 1
2 = a

1
2
2

(
d′

3

) 1
2

we have a
1
2
2 ≤

(
d′

3

) 1
2

.

Suppose a is not prime, say p | a, p < a, p prime. Like in (1), R(p) ≥ 1. By
Lemma 2.1 at most f1 and f2 can represent p. Like in (2) (with a instead of a2),
f1 does not represent p, therefore f2 must represent p. Here, with Lemma 2.1,
p = a2 or p ≥ c2. Thus, a has the form an2p1 · · · pm with n,m ∈ N0, pi prime,

pi ≥ c2 ≥ d
4a2

= d′

4 , i = 1, . . . ,m, and so

d′

3
≥ a

1
2
2

(
d′

3

) 1
2

=

(
d

3

) 1
2

≥ a ≥ an2
(
d′

4

)m
.

If m ≥ 2, then d′

3 ≥
(
d′

4

)2

, d′ ≤ 16
3 and a2 = 1. This is a contradiction. If m = 1,

then n ≥ 1, otherwise a is prime, which is contrary to the supposition. So d′

3 ≥ a2
d′

4
and a2 = 1. This is a contradiction.

Lemma 2.14. Let h = 6.

1) Suppose a2 - d. Then a2 ≥
(
d
4

) 1
6 and a3 = a2.

2) Suppose a2 | d. Then a3 is prime, a3 ≥
(
d
4

) 1
6 . Moreover, if a2 <

(
3
16d
) 1

2 ,
then a4 = a3.

Proof. 1) By Lemma 2.2,
(
−d
a2

)
6= −1; since a2 - d, we have

(
−d
a2

)
6= 0; hence,(

−d
a2

)
= 1. Here, on the one hand, a2 ≥

(
d
4

) 1
6 by Lemma 2.3, and on the other
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hand, the number of representations R(a2) = 1+
(
−d
a2

)
= 2. One form with leading

coefficient a2 yields only one representation. The form f1 cannot represent a2 (cf.
(2)). If a2 < a3, then the remaining forms cannot do so either (cf. Lemma 2.1).

2) We have
(
−d
a2

)
= 0, so R(a2) = 1, hence a3 > a2. By Lemma 2.13, a3 is prime

or a3 = an2 with n > 1. The latter yields R(a3) =
∑
t|a3

(−d
t

)
=
∑n
i=0

(
−d
a2

)
i = 1.

Consequently, a4 > a3 and in f3(x, y) = a3x
2 + b3xy + c3y

2 it must be that b3 = 0
or b3 = a3 (otherwise there are two forms with a3, and a4 = a3, cf. the remark
to Lemma 2.5). Both cases result in a contradiction: b3 = 0 gives −d = −4an2 c3,
b3 = a3 gives −d = an2 (an2 − 4c3), and −d is no discriminant. So a3 must be
prime. Because a2 already divides the discriminant, a3 cannot do the same, since
otherwise, depending on the form of the discriminant (see the beginning of this

section) and with the help of the inequalities d ≤
(
d
3

) 1
2
(
d
3

) 1
2 resp. d ≤ 8

(
d
3

) 1
2 , we

get a contradiction. Hence,
(
−d
a3

)
= ±1. Furthermore,

(
−d
a3

)
6= −1, because a3 is

trivially represented. Now Lemma 2.3 gives the second part of the assertion.

Finally let a2 <
(

3
16d
) 1

2 . We have R(a3) = 2 like above. One form with leading
coefficient a3 yields only one representation. The form f1 cannot represent a3 (cf.
(2)). If a3 < a4, at most a reduced form with a2 as leading coefficient can represent

a3 (cf. Lemma 2.1). But then (cf. Lemma 2.1),
(
d
3

) 1
2 ≥ a3 ≥ c2 ≥ d

4a2
and

a2 ≥
(

3
16d
) 1

2 . This is a contradiction.

Corollary 2.15. Let h = 6. Then a2 and a3 are prime, and a3 ≥
(
d
4

) 1
6 .

2.3. Integers having prescribed quadratic character. A result of D. H. Leh-
mer, E. Lehmer and D. Shanks [10] can be used to obtain effective lower bounds
for discriminants with “small” class number and “big” leading coefficients of the
associated binary quadratic forms. We will use this in §3 for class number 5.

Lemma 2.16. Let p be a prime, p > 2. Define

Mp = min

{
n ∈ N

∣∣∣∣(−nq
)

= −1 for all q prime, 2 ≤ q < p

}
.

Then a2 ≥ p implies d ≥Mp.
If d is a prime, then in the definition of Mp we restrict n to be prime, thus

obtaining possibly greater values of Mp, i.e., better lower bounds for d.

Proof. Let a2 ≥ p > 2. Recall that by Lemma 2.2, a2 is prime and
(
−d
q

)
= −1

for all prime q, 2 ≤ q < a2. Therefore, d ≥ Ma2 . The inequality Ma2 ≥ Mp holds
trivially.

The prime values for Mp we will use are M131 = 193310265163, M137,139 =
229565917267,M149 = 915809911867 and M191 = 30059924764123. They are taken
from D. H. Lehmer, E. Lehmer and D. Shanks [10]. It may be noted that our Mp

equals Lehmer’s Nq, if q is the greatest prime less than p. The value for N149 had
to be corrected, see [16]. The number M191 is N181 of [15].

3. Encircling the range

We apply the methods of Stark and Montgomery-Weinberger to “midsized” dis-
criminants. First, we restrict the size of d with the help of
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Theorem 3.1. Let −d < 0 be a discriminant with class number h. Then

h >
1

55

∏
p|d

∗

(
1−

[
2
√
p
]

p+ 1

)
log d,

where the * indicates that the greatest prime divisor of d must be omitted.

This theorem originates from the works of D. Goldfeld [4] in 1976, B. Gross and
D. Zagier [7] in 1983, and J. Oesterlé [12, 13] in 1984.

Lemma 3.2. Let −d < 0 be a discriminant. If h = 5, then d < 10120; if h = 6,
then d < 10574; if h = 7, then d < 10168.

Proof. If h = 5 or h = 7, then d is prime (cf. §2.1). If h = 6, then d has exactly
two distinct prime divisors (cf. §2.2). Now use Theorem 3.1.

Now we turn to d with order of magnitude up to 1011 . . . 1014 (depending on the
class number). They are searched with the use of a computer. It would be very time-
consuming, for example, to examine all discriminants in the range 1 ≤ d ≤ 1011 for
class number 5. However, Lemma 2.3 helps to reduce the work. Let p be a prime

and d > 4ph. Then by Lemma 2.3 we have
(
−d
q

)
6= 1 for all prime q, 2 ≤ q ≤ p.

This means that in a first step we can discard a certain quantity of d’s by looking
at their quadratic character modulo small primes. In a second step we examine the
remaining d for class number h by searching for reduced solutions (−a < b ≤ a < c
or 0 ≤ b ≤ a = c) of −d = b2 − 4ac.

Thus, in the range 1 ≤ d ≤ 1.33 · 1011 we obtain the d-values for h = 5 as listed
in Table 1. Using results of §2.3, we can slightly raise the bound 1.33 · 1011: for
d > 1.33 · 1011, by Lemma 2.8, we have a2 ≥ 131. By Lemma 2.16 this leads to
d ≥ M131 ≥ 1.9331 · 1011. Repeating this argument, we get sucessively a2 ≥ 139,
d ≥ M139 ≥ 2.2956 · 1011, a2 ≥ 149, d ≥ M149 ≥ 9.1580 · 1011, a2 ≥ 191, d ≥
M191 ≥ 3.0059 · 1013.

Lemma 3.3. Suppose h(−d) = 5; then d is one of the numbers listed in Table 1
or d > 3 · 1013.

In the case of h = 6 and h = 7, §2.3 cannot be used to reduce the range.

Lemma 3.4. Suppose h(−d) = 7; then d is one of the numbers listed in Table 1
or d > 8 · 1012.

Lemma 3.5. Suppose h(−d) = 6; then d is one of the numbers listed in Table 1
or in case of

1) 17923 - d, a2 = 2; d > 6.2 · 1013,
2) 17923 - d, a2 = 3; d > 3 · 1013,
3) 17923 - d, a2 ≥ 5; d > 2 · 1013,
4) 17923 | d; d > 1.1 · 1014.

We omit the programming details here and refer to [17]. The programs ran about
5 minutes for h = 5, 55 hours for h = 6, and 11 hours for h = 7 on the IBM 3090 of
the University of Freiburg i. Br. For control purposes the programs were also run
on the CRAY 2 of the University of Stuttgart.

The rest of the paper deals with the remaining “midsized” d.
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4. Basics of Stark’s method

Stark (for details, see [16]) starts from the following representation of the zeta
function ζK(s) = ζ(s)L(s, χ−d) of K = Q(

√
−d),

ζ(s)L(s, χ−d) = ζ(2s)
∑
f

a−s + ζ(2− 2s)
Γ(1− s)

Γ(s)

(
d

4π2

) 1
2−s∑

f

as−1

+
∑
f

h(s, f).(3)

The summation is over a complete system of nonequivalent binary quadratic
forms f = f(x, y) = ax2 + bxy + cy2 with discriminant b2 − 4ac = −d. The error
terms h(s, f) are

h(s, f) = a−s
∞∑
j=1

∫ ∞
−∞

(
x− [x]− 1

2

)
d

dx


((

x+
bj

2a

)2

+
dj2

4a2

)−s dx.(4)

For these error terms, Stark [16] gave estimates. We adopt them with slight
modifications.

Lemma 4.1. Let s = σ + iτ, σ ≥ 1
2 and k ∈ N, k ≥ 3. Then

|h(s, f)| < 2

(
4a

d

)σ− 1
2
(

2π

ak

) 1
2
(
k − 1

k − 2

)2|s|+ k−1
2

π
(
d
a2

) 1
2

k

exp

(
1

4k
+

√
2

3π3k2

)
.

Proof. See Stark [16, Lemma 1]. Simply change the estimate for ζ(m) to ζ(m) <√
(m− 1)/(m− 2) (m ≥ 3).

Lemma 4.2. Let a ≤
(
d
3

) 1
2 and s = 1

2 + iτ . Then for all J ∈ N

|h(s, f)| < 4|s|
(3d)

1
4

J−1∑
j=1

1

j
+

2
3τ + 0.77

3
√

3

∞∑
j=J

1

j2

 .

Proof. See Stark [16, Lemma 2]. We do not use the estimate for∣∣∣∣(2s+ 1)− 2s+ 2

u2 + 1

∣∣∣∣ ;(5)

instead, we let s = 1
2 + iτ in (5) and obtain∣∣∣∣∣∣

∫ ∞
−∞

(
x− [x]− 1

2

)
d

dx


((

x+
bj

2a

)2

+
dj2

4a2

)−sdx

∣∣∣∣∣∣
≤ 4a2|s|

3dj2

∫ π
2

0

√
((2− 3 cos2 x) cosx)2 +

(
2τ sin2 x cosx

)2
dx

≤ 4a2|s|
3dj2

(
4

3
sin

(
arccos

√
2

3

)
+

2

3
τ

)
.(6)
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5. Basics of Montgomery-Weinberger

Let −k < 0 be a discriminant with (d, k) = 1. Further, let θ be a complex
number with |θ| ≤ 1, the value of which depends on the context in which it occurs,
e.g., θ in Lemma 5.1 and θ in Lemma 5.3 need not be the same. Montgomery and
Weinberger [11] proceed from

Lemma 5.1. Let (d, k) = 1, t ≥ 0. Then

it L(1
2 + it, χk)L(1

2 + it, χkd) Γ(1
2 + it)

(
kd

1
2

2π

)it
= iM(t) sinϕ(t) + θtE(t),

(7)

in which

M(t) =
∣∣2t ζ(1 + 2it) Γ(1

2 + it)Pk(1
2 + it)A(1

2 + it)
∣∣ ,

ϕ(t) = arg

i ζ(1 + 2it) Γ(1
2 + it)Pk(1

2 + it)A(1
2 + it)

(
kd

1
2

2π

)it ,

with

Pk(s) =
∏
p|k

(1− p−2s), A(s) =
∑
f

χk(a)a−s,

and

E(t) =
4π

1
2

k

∑
f

a−
1
2

∞∑
n=1

K0

(
πnd

1
2

ak

)∑
y|n

∣∣∣∣∣∣
k∑
j=1

χk(f(j, y)) exp

(
2πijn

ky

)∣∣∣∣∣∣ ,
where K0 is the modified Bessel function of the second kind (note that E(t) ≥ 0).

If in (7) we let t be the imaginary part of a zero 1
2 + it of L(s, χk), then

|sinϕ(t)| ≤ t E(t)

M(t)
.(8)

This relation, with sufficiently large d and appropriate choice of k and t, may be
used to get a contradiction to the assumption of a small class number. The following
lemmas provide estimates for M(t), ϕ(t) and E(t). For proofs see [11].

Lemma 5.2. Let 0 < t ≤ 1
20 . Then M(t) ≥ 7

4

∏
p|k(1− p−1)

∣∣A(1
2 + it)

∣∣.
Lemma 5.3. Let 0 ≤ t ≤ 6. Then

ϕ(t) = t

(
C + log

(
kd

1
2

8π

))
+ 3θt3 + θt

c(h) + 2
∑
p|k

log p

p− 1

 ,

in which C = 0.577215664 . . . is Euler’s constant and c(h) ≤
∣∣∣A′A (1

2 + it)
∣∣∣.

Lemma 5.4. Let k ≥ 3060, 0 < t ≤ 1
4 . Define

δ(a) =
(a
d

) 1
2

exp

(
−πd

1
2

2ak

)
.
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Then, if all forms f are reduced,

E(t) ≤ 8

(
k

π

) 1
2

log k
∏
p|k

(2 + 3p−
3
2 )
∑
f

δ(a).

Proof. While proving Lemma 9 of [11], Montgomery and Weinberger get

E(t) ≤ 4
(π
k

) 1
2
∏
p|k

(2 + 3p−
3
2 )
∑
f

a−
1
2 g

(
πd

1
2

2ak

)
,

with g(x) = e−x

x

(
1 + log

(
1 + 1

x

))
. So the summands of the sum over f have the

form

2a
1
2 k

πd
1
2

exp

(
−πd

1
2

2ak

)(
1 + log

(
1 +

2ak

πd
1
2

))
.

The third factor, by means of the inequality a ≤
√

d
3 , is bounded uniformly for all

a by log k (for k ≥ 3060).

If a is not effectively known, we will use the last lemma either under the (non-

trivial) assumption a ≤
(
d
4

) 1
3 or under the (trivial) assumption a ≤

(
d
3

) 1
2 in δ(a).

6. Class number 5 and 7

In case of an odd class number both Stark’s and Montgomery-Weinberger’s
method can be applied. In [17] we used the first method for class number 5 and
the second method for class number 7. However, the adaption of Stark’s method
was somewhat more tedious, so for brevity here we proceed like in [11]. This is
straightforward; therefore, we can confine ourselves to a short survey. Details on
working with Montgomery-Weinberger’s method appear in §7.

For h = 5 we examine the range 2 · 1012 ≤ d ≤ 1052 and distinguish three
cases for the leading coefficients a2 (= a3) and a4 (= a5) of the reduced forms by

comparing them with
(
d
4

) 1
3 . If the ai are “small”, then Lemma 5.4 will give us a

“good” bound for E(t). If the ai are “big”, then the bounds for
∣∣A(1

2 + it)
∣∣ and

c(5) in Lemmas 5.2 and 5.3 will be “good”. In all cases we use k = 17923 and
t = 0.030986 (see Table 2). Finally, we examine d in the range 1052 . . . 10120, using
k = 115147 and t = 0.003158. The result is

Theorem 6.1. Suppose 2 · 1012 ≤ d ≤ 10120. Then h(−d) 6= 5.

Table 2. Zeros 1
2 + it of L(s, χk) for various k; from [11]

k t+ 10−6θ

17923 0.030986
28963 = 11 · 2633 0.033774
30895 = 5 · 37 · 167 0.018494
37427 = 13 · 2879 0.019505

115147 = 113 · 1019 0.003158
123204 = 4 · 3 · 10267 0.010650
139011 = 3 · 46337 0.012930



794 CHRISTIAN WAGNER

For h = 7 we examine the range 8 · 1012 ≤ d ≤ 10168 and distinguish four cases
for the leading coefficients a2 (= a3), a4 (= a5), a6 (= a7) of the reduced forms,
completely analogous to h = 5. We get

Theorem 6.2. Suppose 8 · 1012 ≤ d ≤ 10168. Then h(−d) 6= 7.

7. Class number 6

7.1. Results with Montgomery-Weinberger. We first turn to d ≤ 1052 and
distinguish certain cases for the coefficients a2, a3, . . . , a6 (like we did for h = 5, 7).
The problem is that a2 no longer needs to be relatively prime to d, and therefore
the lower bound of Lemma 2.8 will fail. We distinguish the cases 17923 - d and

17923 | d. In the first case we further distinguish a2 = 2, a2 = 3, 5 ≤ a2 <
(
d
4

) 1
6

and a2 ≥
(
d
4

) 1
6 , and in the latter case a2 = 17923 and a2 < 17923.

1. 17923 - d
1(a) a2 = 2

Here we restrict our argument to d being even, because if d is odd, then by

Lemmas 2.2 and 2.3, 2 ≥
(
d
4

) 1
6 . Further, by Lemma 2.14 we have a3 prime, a3 ≥(

d
4

) 1
6 and a4 = a3.

Lemma 7.1. Let 17923 - d, a2 = 2, and suppose 2.3 · 1014 ≤ d ≤ 1052, ai ≥
(
d
4

) 1
3 ,

i = 3, . . . , 6. Then h(−d) 6= 6.

Proof. A sample proof is given in the next lemma. We have ai ≥ 38598, i = 3, . . . , 6.
Take k = 17923 and t = 0.030986.

Lemma 7.2. Let 17923 - d, a2 = 2, and suppose 6.2 · 1013 ≤ d ≤ 1052, ai <
(
d
4

) 1
3 ,

i = 3, 4, ai ≥
(
d
4

) 1
3 , i = 5, 6. Then h(−d) 6= 6.

Proof. We have a3, a4 ≥ 163, a5, a6 ≥ 24934. Take k = 30895 = 5 · 37 · 167
((d, k) = 1, else d = (4p or 8p) ≤ 8 · 167) and t = 0.018494. Then

∣∣∣∣A(
1

2
+ it)

∣∣∣∣ ≥
∣∣∣∣∣∣∣∣1 +

(
−30895

2

)
︸ ︷︷ ︸

=1

2−
1
2−it

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≥1.707

− 2√
163
− 2√

24934
,

and thus M(t) ≥ 2.0820 by Lemma 5.2,

c(6) ≤
log 2√

2
+ 2 log 163√

163
+ 2 log 24934√

24934

1.707− 2√
163
− 2√

24934

≤ 0.9211

and E(t) ≤ 43.5542 by Lemma 5.4, |sinϕ(t)| ≤ 0.3869 by (8). But 0.3991 ≤ ϕ(t) ≤
1.2863 by Lemma 5.3.

Lemma 7.3. Let 17923 - d, a2 = 2, and suppose 6.2 · 1013 ≤ d ≤ 1052 and

1) ai <
(
d
4

) 1
3 , i = 3, 4, 5, a6 ≥

(
d
4

) 1
3 or

2) ai <
(
d
4

) 1
3 , i = 3, . . . , 6.

Then h(−d) 6= 6.

Proof. In both cases take k = 30895.
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In §7.2 we will use Stark’s method to close the gap 6.2 · 1013 ≤ d ≤ 2.3 · 1014,
which was left by Lemma 7.1; so for all d with a2 = 2 we will have the uniform
bound 6.2 · 1013.

1(b) a2 = 3

Here we have (for d > 2916) d ≡ 0 (mod 3) by Lemmas 2.2 and 2.3. Further, by

Lemma 2.14 we have a3 prime, a3 ≥
(
d
4

) 1
6 and a4 = a3.

Lemma 7.4. Let 17923 - d, a2 = 3, and suppose 3 · 1013 ≤ d ≤ 1052 and

1) ai ≥
(
d
4

) 1
3 , i = 3, . . . , 6, or

2) ai <
(
d
4

) 1
3 , i = 3, 4, ai ≥

(
d
4

) 1
3 , i = 5, 6, or

3) ai <
(
d
4

) 1
3 , i = 3, 4, 5, a6 ≥

(
d
4

) 1
3 , or

4) ai <
(
d
4

) 1
3 , i = 3, . . . , 6.

Then h(−d) 6= 6.

Proof. In all cases, let k = 37427 = 13 · 2879 ((d, k) = 1, else d = 3p ≤ 3 · 2879),
t = 0.019505 and use

(−37427
3

)
= 1 to estimate

∣∣A(1
2 + it)

∣∣.
1(c) 5 ≤ a2 <

(
d
4

) 1
6

Here, d ≡ 0 (mod a2) by Lemmas 2.2 and 2.3. Further, by Lemma 2.14, a3 is

prime, a3 ≥
(
d
4

) 1
6 and a4 = a3.

Lemma 7.5. Let 17923 - d, 5 ≤ a2 <
(
d
4

) 1
6 ; suppose 2 · 1013 ≤ d ≤ 1052 and

1) ai ≥
(
d
4

) 1
3 , i = 3, . . . , 6, or

2) ai <
(
d
4

) 1
3 , i = 3, 4, ai ≥

(
d
4

) 1
3 , i = 5, 6, or

3) ai <
(
d
4

) 1
3 , i = 3, 4, 5, a6 ≥

(
d
4

) 1
3 , or

4) ai <
(
d
4

) 1
3 , i = 3, . . . , 6.

Then h(−d) 6= 6.

Proof. In all cases, let k = 17923.

1(d) a2 ≥
(
d
4

) 1
6

Lemma 7.6. Let 17923 - d, 2 · 1013 ≤ d ≤ 1052 and

1) a2 ≥
(
d
4

) 1
3 , or

2)
(
d
4

) 1
6 ≤ a2 <

(
d
4

) 1
3 .

Then h(−d) 6= 6.

Proof. In both cases, take k = 17923.

2. 17923 | d

Here, d has exactly two distinct prime divisors. Without loss of generality we
may assume 17923 to be the smaller one, since otherwise d < 4 · 108. Further,

assume 17923 ≤
(
d
4

) 1
2 , since otherwise d < 2 · 109. Lemma 2.4 yields the existence
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of a reduced form with discriminant −d and 17923 as leading coefficient. Therefore,
a2 ≤ 17923.

2(a) a2 = 17923

Lemma 7.7. Let 17923 | d, a2 = 17923, and suppose 1.1 · 1014 ≤ d ≤ 1052. Then
h(−d) 6= 6.

Proof. Take k = 28963 = 11 · 2633.

2(b) a2 < 17923

Here, d 6≡ 0 (mod a2), else 17923 is not the smallest prime divisor of d. By

Lemma 2.14 it follows that a3 = a2. Both coefficients are prime and ≥
(
d
4

) 1
6 .

Lemma 7.8. Let 17923 | d, a2 < 17923; suppose 1.1 · 1014 ≤ d ≤ 1052 and

1) ai ≥
(
d
4

) 1
3 , i = 4, 5, 6, or

2) a4 <
(
d
4

) 1
3 , ai ≥

(
d
4

) 1
3 , i = 5, 6, or

3) ai <
(
d
4

) 1
3 , i = 4, 5, a6 ≥

(
d
4

) 1
3 , or

4) ai <
(
d
4

) 1
3 , i = 4, 5, 6.

Then h(−d) 6= 6.

Proof. In all cases, take k = 28963.

Finally, we consider d from 1052 to 10574. It is necessary to examine just two
cases.

Lemma 7.9. Suppose 1052 ≤ d ≤ 10574 and (d, 115147) = 1. Then h(−d) 6= 6.

Proof. Clearly, a2 ≥ 2. By Corollary 2.15 we have ai ≥
(
d
4

) 1
6 , i = 3, . . . , 6. Take

k = 115147 = 113 · 1019.

Lemma 7.10. Suppose 1052 ≤ d ≤ 10574 and (d, 115147) > 1. Then h(−d) 6= 6.

Proof. We have 113 | d or 1019 | d. But then (d, 123204 = 4 · 3 · 10267) = 1,
otherwise d is too small. Take k = 123204, t = 0.003158. We have ai ≥ 113,

i = 2, . . . , 6 (a2 < 113 ⇒ a2 <
(
d
4

) 1
6 ⇒ a2 | d ⇒ d too small; but a2 = 113 is

possible, cf. Lemma 2.4). We get M(t) ≥ 0.5282, c(6) ≤ 0.4956, E(t) ≤ 2 · 10−7

and |sinϕ(t)| ≤ 5 · 10−9. But 0.7024 ≤ ϕ(t) ≤ 7.1664. Therefore, ϕ = π+ θ10−8 or
ϕ = 2π+θ10−8. By Lemma 5.3 we see that 10122 < d < 10126 or 10250 < d < 10254

must hold.
However, we can also work with k = 139011 = 3 · 46337, t = 0.003158. Then we

get M(t) ≥ 1.0566, c(6) ≤ 0.4956, E(t) ≤ 4 · 10−8 and |sinϕ(t)| ≤ 5 · 10−10. But
also 0.8723 ≤ ϕ(t) ≤ 8.6843. Therefore, ϕ = π + θ10−8 or ϕ = 2π + θ10−8. By
Lemma 5.3, 10100 < d < 10103 or 10206 < d < 10208 must hold. The contradiction
of the results for the two k’s proves the lemma.

7.2. Results with Stark’s method. We will only examine the case a2 = 2,

ai ≥
(
d
4

) 1
3 , i = 3, . . . , 6, 6.2 · 1013 ≤ d ≤ 2.3 · 1014 (remember Lemma 7.1 and
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preceding remarks), which could not be treated with the method of Montgomery-
Weinberger. (The condition 17923 - d is insignificant here.)

Let φm = 1
2 + iτm be a zero of the Riemann zeta function ζ(s). Putting φm

in (3) gives(
d

4π2

)iτm1 +

∑
f h(1

2 + iτm, f)

ζ(1 + 2iτm)
(

1 + 2−
1
2−iτm + 2a

− 1
2−iτm

3 + a
− 1

2−iτm
5 + a

− 1
2−iτm

6

)


= −ζ(1− 2iτm)

ζ(1 + 2iτm)

Γ(1
2 − iτm)

Γ(1
2 + iτm)

(
1 + 2−

1
2 +iτm + 2a

− 1
2 +iτm

3 + a
− 1

2 +iτm
5 + a

− 1
2 +iτm

6

)
(

1 + 2−
1
2−iτm + 2a

− 1
2−iτm

3 + a
− 1

2−iτm
5 + a

− 1
2−iτm

6

) .
Define

αm ≡ π − 2 arg ζ(2φm)− 2 arg Γ(φm) (mod 2π), 0 ≤ αm < 2π,

An =
1

2π

(
τn
τ1
α1 − αn

)
.

Let |θ| ≤ 1 as in §5. For a3 ≥ 191 let

δm(a3, a5, a6) =
|h(φm, f1)|+|h(φm, f2)|+2|h(φm, f3)|+|h(φm, f5)|+|h(φm, f6)|

|ζ(2φm)|
(∣∣∣1 + 2−

1
2−iτm

∣∣∣− 2a
− 1

2
3 − a−

1
2

5 − a−
1
2

6

) .

Lemma 7.11. Suppose a2 = 2, a3 ≥ 191, δm(a3, a5, a6) < 1
2 . Then there is an

integer xm with

τm log

(
d

4π2

)
= αm + 2πxm

+ 2 arg
(

1 + 2−
1
2 +iτm + 2a

− 1
2 +iτm

3 + a
− 1

2 +iτm
5 + a

− 1
2 +iτm

6

)
+
π

3
δm(a3, a5, a6)θ.

Proof. Cf. Stark [16, Lemma 6].

Lemma 7.12. Suppose a2 = 2, a3 ≥ 751, δm(a3, a5, a6) < 1
2 for m = 1 and m = n.

Then

xn =
τn
τ1
x1 +An +

1

π

(
τn
τ1

arg
(

1 + 2−
1
2 +iτ1

)
− arg

(
1 + 2−

1
2 +iτn

))

+
θ

3

τn
τ1

2a
− 1

2
3 + a

− 1
2

5 + a
− 1

2
6∣∣∣1 + 2−

1
2 +iτ1

∣∣∣ +
2a
− 1

2
3 + a

− 1
2

5 + a
− 1

2
6∣∣∣1 + 2−

1
2 +iτn

∣∣∣


+
θ

6

(
τn
τ1
δ1(a3, a5, a6) + δn(a3, a5, a6)

)
.

Proof. Cf. Stark [16, Lemma 7]. However, here we use the relation

arg(1 + z + z′) = arg(1 + z) +
π

3
θ
|z′|
|1 + z| for

|z′|
|1 + z| ≤

1

2
.(9)
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Table 3. τm and related quantities; from Stark [16]

m τm+5 · 10−10θ αm
2π

+10−7θ |ζ(2φm)|+10−4θ τm
τ1

+5 · 10−10θ Am+5 · 10−10θ

1 14.134725142 0.189940085 1.9488 — —

2 21.022039639 0.744277023 0.8310 1.487262004 -0.461786352

Lemma 7.13. Suppose a2 = 2, a3 ≥ 191 and d ≥ 20000. Then

δm(a3, a5, a6) <

 10−27 + 200.0 d−
1
4

(
0.427−2a

−1
2

3 −a
− 1

2
5 −a

− 1
2

6

)−1

for m = 1,

10−27 + 807.4 d−
1
4

(
0.951−2a

−1
2

3 −a
− 1

2
5 −a

− 1
2

6

)−1

for m = 2.

Proof. For a1 = 1 and a2 = 2 we could use Lemma 4.1 (with d
a2 ≥ 5000) to get

|h(φm, f)| < 10−30 for m ≤ 2 (with k = 137). For a3, . . . , a6 we used Lemma 4.2

to get |h(φm, f)| < C d−
1
4 with C = 97.4 for m = 1 (with J = 2) and C = 167.7 for

m = 2 (with J = 3). By direct computation we obtained
∣∣∣1 + 2−

1
2−iτ1

∣∣∣ ≥ 0.427,∣∣∣1 + 2−
1
2−iτ2

∣∣∣ ≥ 0.951. See also Table 3.

Lemma 7.14. Suppose d > 6.2 · 1013, a2 = 2, a3 ≥
(
d
4

) 1
3 . Then

x1 > 2.249 logd− 8.543− 0.398
(

2−
1
2 + 2a

− 1
2

3 + a
− 1

2
5 + a

− 1
2

6

)
,

d > 41.39 exp
(

0.444 x1 − 0.177
(

2−
1
2 + 2a

− 1
2

3 + a
− 1

2
5 + a

− 1
2

6

))
.

Under the assumptions made, we always have x1 ≥ 63, and if x1 ≥ 67, then
d > 2.3 · 1014.

Proof. Analogous to [16, Lemma 8]. We have δ1(a3, a5, a6) < 1
2 by Lemma 7.13,

because a3, . . . , a6 ≥ 24934. Now use Lemma 7.11 and the inequality |arg(1 + z)| <
5
4 |z| for |z| ≤ 9

10 .

Lemma 7.15. Suppose d ≥ 6.2 · 1013, a2 = 2, ai ≥
(
d
4

) 1
3 , i = 3, . . . , 6. Then∣∣∣∣x2 −

τ2
τ1
x1 −A2 −

1

π

(
τ2
τ1

arg
(

1 + 2−
1
2 +iτ1

)
− arg

(
1 + 2−

1
2 +iτ2

))∣∣∣∣
< 10−27 +

2a
− 1

2
3 +a

− 1
2

5 +a
− 1

2
6

3

τ2
τ1

1∣∣∣1+2−
1
2

+iτ1

∣∣∣ + 1∣∣∣1+2−
1
2

+iτ2

∣∣∣


+ 1
6d
− 1

4

(
τ2
τ1

200.0

0.427−2a
− 1

2
3 −a

− 1
2

5 −a
− 1

2
6

+ 807.4

0.951−2a
− 1

2
3 −a

− 1
2

5 −a
− 1

2
6

)
.

Proof. Directly from Lemma 7.12, because δ1(a3, a5, a6) < 1
2 and δ2(a3, a5, a6) < 1

2
by Lemma 7.13.

Lemma 7.16. Suppose 6.2 · 1013 ≤ d ≤ 2.3 · 1014, a2 = 2, ai ≥
(
d
4

) 1
3 , i = 3, . . . , 6.

Then h(−d) 6= 6.
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Proof. We have ai ≥ 24934, i = 3, . . . , 6, and x1 ≥ 63 by Lemma 7.14. We want
to show that x1 ≥ 67, for then d > 2.3 · 1014 by Lemma 7.14. By Lemma 7.15 we
have∣∣∣∣x2 −

τ2
τ1
x1 −A2 −

1

π

(
τ2
τ1

arg
(

1 + 2−
1
2 +iτ1

)
− arg

(
1 + 2−

1
2 +iτ2

))∣∣∣∣ < 0.14.

But from

1

π

(
τ2
τ1

arg
(

1 + 2−
1
2 +iτ1

)
− arg

(
1 + 2−

1
2 +iτ2

))
= −0.5414 + 10−4θ

and τ2
τ1

= 1.487262004 + 5 · 10−10θ, A2 = −0.461786352 + 5 · 10−10θ (cf. Table 3)
it follows that∣∣∣∣x2 −

τ2
τ1
x1 −A2 −

1

π

(
τ2
τ1

arg
(

1 + 2−
1
2 +iτ1

)
− arg

(
1 + 2−

1
2 +iτ2

))∣∣∣∣ > 0.15

for x1 = 63, . . . , 66, because x2 is an integer.

In a last theorem we are summing up the results of this section.

Theorem 7.17. Suppose
1) 17923 - d, a2 = 2, 6.2 · 1013 ≤ d < 10574, or
2) 17923 - d, a2 = 3, 3 · 1013 ≤ d < 10574, or
3) 17923 - d, a2 ≥ 5, 2 · 1013 ≤ d < 10574, or
4) 17923 | d, 1.1 · 1014 ≤ d < 10574.

Then h(−d) 6= 6.
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