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STIELTJES POLYNOMIALS AND RELATED QUADRATURE

FORMULAE FOR A CLASS OF WEIGHT FUNCTIONS

WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS

Abstract. Consider a (nonnegative) measure dσ with support in the interval
[a, b] such that the respective orthogonal polynomials, above a specific index
`, satisfy a three-term recurrence relation with constant coefficients. We show
that the corresponding Stieltjes polynomials, above the index 2` − 1, have a
very simple and useful representation in terms of the orthogonal polynomials.
As a result of this, the Gauss-Kronrod quadrature formulae for dσ have all
the desirable properties, namely, the interlacing of nodes, their inclusion in
the closed interval [a, b] (under an additional assumption on dσ), and the
positivity of all weights. Furthermore, the interpolatory quadrature formulae
based on the zeros of the Stieltjes polynomials have positive weights, and both
of these quadrature formulae have elevated degrees of exactness.

1. Introduction

Consider a (nonnegative) measure dσ with support in the interval [a, b], and let
πn( · ) = πn( · ; dσ) be the respective monic orthogonal polynomial of degree n. The
corresponding monic Stieltjes polynomial π∗n+1( · ) = π∗n+1( · ; dσ), of degree n + 1,
can be uniquely defined by the orthogonality condition∫ b

a

π∗n+1(t)tkπn(t)dσ(t) = 0, k = 0, 1, . . . , n(1.1)

(see [2, §4]), that is, π∗n+1 is orthogonal to all polynomials of lower degree relative
to the variable-sign distribution dσ∗(t) = πn(t)dσ(t).

Related to π∗n+1 is the Gauss-Kronrod quadrature formula for dσ,∫ b

a

f(t)dσ(t) =
n∑
ν=1

σνf(τν) +
n+1∑
µ=1

σ∗µf(τ∗µ) +RKn (f),(1.2)

where τν = τ
(n)
ν are the zeros of πn, and the nodes τ∗µ = τ

∗(n)
µ and all weights

σν = σ
(n)
ν , σ∗µ = σ

∗(n)
µ are chosen such that (1.2) has maximum degree of exactness

(at least) 3n + 1, i.e., RKn (f) = 0 for all f ∈ P3n+1. A necessary and sufficient
condition for this is that the τ∗µ be the zeros of π∗n+1 (see [5, Corollary]).
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Also connected with π∗n+1 is the interpolatory quadrature formula∫ b

a

f(t)dσ(t) =
n+1∑
µ=1

w∗µf(τ∗µ) +RSn(f),(1.3)

where τ∗µ = τ
∗(n)
µ are the zeros of π∗n+1. This kind of quadrature formula was first

considered by Monegato in [10, Part II.1] for the Legendre measure dσ(t) = dt on
[−1, 1]; he conjectured, in this case, that the w∗µ are all positive.

We now assume that the orthogonal polynomials relative to dσ satisfy a three-
term recurrence relation of the following kind,

πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

αn = α, βn = β for n ≥ `,
(1.4)

where αn ∈ R, βn > 0, ` ∈ N, and π0(t) = 1, π−1(t) = 0. Thus, the coefficients
αn and βn are constant equal, respectively, to some α ∈ R and β > 0 for n ≥ `.
Any such measure dσ is known to be supported on a finite interval [8, Theorem
10], say [a, b], and we indicate this, together with the property (1.4), by writing

dσ ∈ M(α,β)
` [a, b]. We show in §2 that, if dσ ∈ M(α,β)

` [a, b], then π∗n+1( · ; dσ) has a
very simple and convenient representation (see (2.13)) in terms of πn+1( · ; dσ) and
πn−1( · ; dσ), provided that n ≥ 2`− 1. Subsequently in § 3, this representation is
used to derive a number of properties for the Gauss-Kronrod formula (1.2), namely
that the nodes τ∗µ interlace with the nodes τν , all nodes τν , τ

∗
µ are contained in

[a, b] (under an additional assumption on dσ), all weights σν , σ
∗
µ are positive, and

the degree of exactness is at least 4n− 2`+ 2. Moreover, in § 4 we show that the
interpolatory formula (1.3) has positive weights and degree of exactness 2n− 1.

Among the many orthogonal polynomials satisfying (1.4) we mention the four
Chebyshev-type polynomials and their modifications discussed in Allaway’s thesis
[1, Ch. 4], as well as those associated with the Bernstein-Szegö measures. For
many of these, the Stieltjes polynomials have previously been expressed explicitly
in terms of Chebyshev polynomials, and the corresponding Gauss-Kronrod formulae
have been shown to possess the desirable properties mentioned above (see [6, 7, 10,
11, 12]). In addition, it has been shown in [12] that, for a class of Bernstein-Szegö
measures, the weights in the interpolatory formula (1.3) are all positive.

2. The Stieltjes polynomials

We now present, assuming dσ ∈ M(α,β)
` [a, b], the explicit formula for π∗n+1( · ; dσ)

in terms of the respective orthogonal polynomials πm( · ) = πm( · ; dσ). We begin
with two preliminary lemmas, which play an important role in the subsequent
development. Both make reference to the expansion of tkπn(t) for k = 0, 1, . . . , n
in terms of the πm’s, which we write in the form

tkπn(t) =
k∑

i=−k
cni,kπn+i(t), k = 0, 1, . . . , n; n ≥ 1.(2.1)

Note that the terms πn+i with i < −k are absent in (2.1) because of orthogonality
of the πm.
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Lemma 2.1. Consider a measure dσ ∈ M(α,β)
` [a, b]. For a given n ≥ `, the corre-

sponding Stieltjes polynomial has the form

π∗n+1(t) = πn+1(t)− βπn−1(t)(2.2)

if and only if in (2.1) we have

cn−1,k = βcn1,k, k = 1, 2, . . . , n.(2.3)

Proof. Sufficiency. Assume that (2.3) holds. To prove (2.2), it suffices to show,
by virtue of (1.1), that∫ b

a

[πn+1(t)− βπn−1(t)]tkπn(t)dσ(t) = 0, k = 0, 1, . . . , n.(2.4)

For k = 0, this is true by orthogonality. When k = 1, 2, . . . , n, we obtain from (2.1),
(2.3) and orthogonality

∫ b

a

[πn+1(t)− βπn−1(t)]tkπn(t)dσ(t)

=

∫ b

a

[πn+1(t)− βπn−1(t)][ · · ·+cn1,kπn+1(t) + cn0,kπn(t)+βcn1,kπn−1(t)+ · · · ]dσ(t)

= cn1,k

[∫ b

a

π2
n+1(t)dσ(t) − β2

∫ b

a

π2
n−1(t)dσ(t)

]

= cn1,k
(
‖πn+1‖2 − β2‖πn−1‖2

)
,

(2.5)

where ‖·‖ is the L2-norm. Since n ≥ `, there follows from (1.4) that βn = βn+1 = β,
or equivalently,

‖πn‖2
‖πn−1‖2

=
‖πn+1‖2
‖πn‖2

= β(2.6)

(cf. [4, Eq. (5.3)]). This yields

‖πn+1‖2
‖πn−1‖2

= β2,

which, inserted in the last equality of (2.5), proves (2.4) for k = 1, 2, . . . , n.
Necessity. Assume that the Stieltjes polynomial is given by (2.2). Then we

have, by virtue of (1.1) and (2.1),∫ b

a

[πn+1(t)−βπn−1(t)][ · · ·+cn1,kπn+1(t)+cn0,kπn(t)+cn−1,kπn−1(t)+· · · ]dσ(t) = 0,

k = 1, 2, . . . , n,

which by orthogonality gives

cn1,k

∫ b

a

π2
n+1(t)dσ(t) − βcn−1,k

∫ b

a

π2
n−1(t)dσ(t) = 0, k = 1, 2, . . . , n,

or equivalently,

cn1,k‖πn+1‖2 − βcn−1,k‖πn−1‖2 = 0, k = 1, 2, . . . , n.
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In view of (2.6), this yields

‖πn‖2(βcn1,k − cn−1,k) = 0, k = 1, 2, . . . , n,

and since ‖πn‖2 6= 0, there follows (2.3).

Lemma 2.2. Consider a measure dσ ∈ M(α,β)
` [a, b] with ` = 1. Then in (2.1)

there holds

cn−i,k = βicni,k(2.7)

for i = 0, 1, . . . , k, and all k = 0, 1, . . . , n, n ≥1.

Proof. We apply induction on n. For n = 1, the induction claim holds trivially
when k = 0, and by means of (1.4) when k = 1, since

tπ1(t) = π2(t) + απ1(t) + βπ0(t),

that is, c11,1 = 1, c1−1,1 = β.
Assume now that the claim is true for some index n, that is,

tkπn(t) = cnk,kπn+k(t) + cnk−1,kπn+k−1(t) + · · ·+ cni,kπn+i(t) + · · ·+ cn0,kπn(t)

(2.8)

+ · · ·+ βicni,kπn−i(t) + · · ·+ βk−1cnk−1,kπn−(k−1)(t)

+ βkcnk,kπn−k(t), k = 0, 1, . . . , n;

we want to prove it for the index n + 1. The expansion of tkπn(t) in terms of the
πm’s results from applying k times (1.4), solved for the term tπn. Since (1.4) is
assumed to hold with ` = 1, we have

tπm(t) = πm+1(t) + απm(t) + βπm−1(t)(2.9)

for all m ≥ 1. It follows that the coefficients in (2.8) depend only on α, β and k, and
not on n. Therefore, replacing n in πn by n+ 1 gives the corresponding expansion
for tkπn+1(t), k = 0, 1, . . . , n, that is,

tkπn+1(t) = cnk,kπn+1+k(t) + cnk−1,kπn+1+k−1(t) + · · ·+ cni,kπn+1+i(t)

(2.10)

+ · · ·+ cn0,kπn+1(t) + · · ·+ βicni,kπn+1−i(t)

+ · · ·+ βk−1cnk−1,kπn+1−(k−1)(t) + βkcnk,kπn+1−k(t),

k = 0, 1, . . . , n.

This proves the induction claim for the index n+1 when k = 0, 1, . . . , n. It remains
to show the claim for k = n + 1. The expansion for tn+1πn+1(t) is obtained by
multiplying the expansion for tnπn+1(t) by t, and then applying (2.9) to each term
in the expansion. This yields, in the notation of (2.1),

cn+1
i,n+1 =


βcn+1
i+1,n + αcn+1

i,n + cn+1
i−1,n, i = 1, 2, . . . , n− 1,

αcn+1
n,n + cn+1

n−1,n, i = n,
cn+1
n,n , i = n+ 1

(2.11)
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and

cn+1
−i,n+1 =


βcn+1
−(i−1),n + αcn+1

−i,n + cn+1
−(i+1),n, i = 0, 1, . . . , n− 1,

βcn+1
−(n−1),n + αcn+1

−n,n, i = n,

βcn+1
−n,n, i = n+ 1.

(2.12)

From (2.10), with k = n, there follows

cn+1
−i,n = βicn+1

i,n , i = 0, 1, . . . , n,

which, combined with (2.11) and (2.12), gives

cn+1
−i,n+1 = βicn+1

i,n+1, i = 0, 1, . . . , n+ 1.

This proves the induction claim for k = n+ 1, and completes the induction.

Theorem 2.3. Consider a measure dσ ∈ M(α,β)
` [a, b]. Then the corresponding

Stieltjes polynomials are given by

π∗n+1(t) = πn+1(t)− βπn−1(t) for n ≥ 2`− 1.(2.13)

Proof. In order to prove (2.13), it suffices to show, in view of Lemma 2.1, that
if (1.4) holds for all n ≥ `, then so does (2.3) for all n ≥ 2`−1. To this end we apply
induction on `. This requires us to compare the coefficients in the expansion (2.1)

in the orthogonal polynomials associated with a dσ` ∈ M(α,β)
` [a, b] with those of

the analogous expansion in the (different) orthogonal polynomials associated with a

dσ`+1 ∈ M(α,β)
`+1 [a′, b′]. This we do by starting from the trivial identity πn(t) = πn(t)

for the polynomial in question and then multiplying both sides repeatedly by t,
whereby on the right we continuously use (2.9) or the analogous relation from (1.4)
(whichever is appropriate) to express the result in terms of higher- and lower-degree
polynomials πr.

The induction claim for ` = 1 follows from Lemma 2.2 with i = 1. Assume
now that the claim is true for some index `; we want to prove it for the index
` + 1. Replacing ` in (1.4) by ` + 1 has the effect that the recursion coefficients
α` and β` may no longer be equal to α and β, respectively. As a consequence,
the coefficients cn±i,k in (2.1) generated by the above procedure will eventually
change as well. In order to prove the induction claim for the index `+ 1, we must
show that for all n ≥ 2` + 1, the coefficients cn±1,k that evolve are not affected

by the replacement of ` in (1.4) by ` + 1, i.e., α` and β` do not become involved
in determining these coefficients. This will be the case for all k = 0, 1, . . . , n − `
since (2.9) still holds for m ≥ ` + 1. When k = n − ` + 1, then α` and β` enter
the picture for the first time as parts of the coefficients of π`, π`−1, and they, as
well as lower-order coefficients αλ, βλ with λ < `, continue to be involved for the
remaining values of k = n− `+ 2, n− `+ 3, . . . , n. When k = n, then αλ, βλ with
λ ≤ ` are involved in the expansion coefficients of π2`−1, π2`−2, . . . , π0. Since the
highest-degree polynomial so affected is π2`−1, it is clear that when n ≥ 2`+ 1, the
expansion coefficients associated with πn−1 and πn+1, that is, cn±1,k, 1 ≤ k ≤ n, are
independent of αλ, βλ with λ ≤ `. This proves the induction claim for the index
`+ 1, and completes the induction.

The following proposition will be useful in the development of §3.
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Proposition 2.4. Consider a measure dσ ∈M(α,β)
` [a, b] and let τν be the zeros of

the corresponding orthogonal polynomial πn. Then

πn+1(τν) =
1

2
π∗n+1(τν), ν = 1, 2, . . . , n,(2.14)

for all n ≥ 2`− 1.

Proof. Let n ≥ 2`− 1. First, (2.13) gives

π∗n+1(τν) = πn+1(τν)− βπn−1(τν).(2.15)

Since τν is a zero of πn, we have by (1.4) that

βπn−1(τν) = −πn+1(τν),

which, inserted into (2.15), yields (2.14).

3. Gauss-Kronrod quadrature formulae

The Gauss-Kronrod formula (1.2) is said to have the interlacing property if the
nodes τν , τ

∗
µ are real and satisfy, when ordered decreasingly,

τ∗n+1 < τn < τ∗n < · · · < τ∗2 < τ1 < τ∗1 .(3.1)

Formula (1.2) is said to have the inclusion property if all nodes τν , τ
∗
µ are con-

tained in the closed interval [a, b]. Clearly, if (3.1) holds, the inclusion property is
equivalent to

a ≤ τ∗n+1 and τ∗1 ≤ b.(3.2)

If dσ ∈ M(α,β)
` [a, b], then trivially αn → α, βn → β as n → ∞, and it follows

[3, p. 121] that

[α− 2
√
β, α+ 2

√
β ](3.3)

is the “limiting spectral interval” of dσ. It may well be, however, that dσ has
support points outside the interval (3.3) (cf. [3, Exercise 4.6, p. 128]), but for
inclusion results we will assume the following property.

Property A. The measure dσ ∈M(α,β)
` [a, b] is such that

a = α− 2
√
β, b = α+ 2

√
β.(3.4)

Before we state and prove the properties of the quadrature formula (1.2) announced
in §1, we add another lemma in the spirit of Lemma 2.2 and Theorem 2.3.

Lemma 3.1. Consider a measure dσ ∈ M(α,β)
` [a, b]. Then in (2.1) there holds,

for all n ≥ 2`− 1,

cn−i,n = βicni,n, i = 0, 1, . . . , n− 2`+ 2.(3.5)

Proof. For ` = 1, this is Lemma 2.2 with k = n. The proof for general ` is again
by induction, very much along the lines of the proof of Theorem 2.3. The details
are left to the reader.

Theorem 3.2. Consider a measure dσ ∈M(α,β)
` [a, b]. Then the following holds :

(a) The Gauss-Kronrod formula (1.2) has the interlacing property for all n ≥
2`− 1.

(b) If dσ has Property A, then the inclusion property holds for all n ≥ 2`− 1.
(c) All weights σν , σ

∗
µ in (1.2) are positive for each n ≥ 2`− 1.

(d) The formula (1.2) has degree of exactness (at least) 4n−2`+2 if n ≥ 2`−1.
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Remark. In part (b) of this theorem, Property A can be replaced by assuming the
two inequalities in (3.8).

Proof. (a) Let n ≥ 2`− 1. Proposition 2.4, in view of the separation property for
the zeros of πn and πn+1 (see [13, Theorem 3.3.2]), implies

sign π∗n+1(τν) = sign πn+1(τν) = (−1)ν , ν = 1, 2, . . . , n.(3.6)

In addition, it is clear that

lim
t→∞

π∗n+1(t) =∞,

lim
t→−∞

π∗n+1(t) = (−1)n+1∞.
(3.7)

From (3.6) and (3.7) there follows that the τ∗µ are real and satisfy (3.1). This proves
the interlacing property.

(b) Let n ≥ 2` − 1. Since (3.1) is true, the inclusion property comes down to
showing that (3.2) holds. A necessary and sufficient condition for that is

(−1)n+1π∗n+1(a) ≥ 0 and π∗n+1(b) ≥ 0,

which, on account of (2.13), is equivalent to

β ≤ πn+1(a)

πn−1(a)
and β ≤ πn+1(b)

πn−1(b)
.(3.8)

Assuming Property A, we now prove both these inequalities. Beginning with the
second, we set t = b in (1.4), to get, using the second relation in (3.4),

πn+1(b) = 2
√
βπn(b)− βπn−1(b), n ≥ `.(3.9)

Dividing both sides of (3.9) by πn(b), and letting qn = πn(b)/πn−1(b), we obtain

qn+1 = 2
√
β − β

qn
, n ≥ `.

Subtracting qn from both sides gives

qn+1 − qn = − (qn −
√
β )2

qn
, n ≥ `.(3.10)

Since qn > 0 for n ≥ 1, there follows from (3.10) that qn is a decreasing sequence
for n ≥ ` and hence converges to, say, q as n → ∞. Thus, qn ≥ q for n ≥ `.
Multiplying both sides of (3.10) by qn, and then taking the limit as n → ∞, we
immediately obtain q =

√
β, hence

qn ≥
√
β, n ≥ `.(3.11)

Now,

πn+1(b)

πn−1(b)
=
πn+1(b)

πn(b)
· πn(b)

πn−1(b)
= qn+1qn,

which by (3.11) yields the second inequality in (3.8).
For the first inequality, the proof is analogous. One now defines qn by qn =

πn(a)/πn−1(a) and shows that qn for n ≥ ` is a (negative) increasing sequence
converging to −

√
β, hence,

qn ≤ −
√
β, n ≥ `,

from which the first inequality in (3.8) follows as before.
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(c) The weights σν are given by the formula

σν = λν +
‖πn‖2

π′n(τν)π∗n+1(τν)
, ν = 1, 2, . . . , n(3.12)

(see [9, Theorem 2]), where λν = λ
(n)
ν are the weights of the n-point Gauss formula

relative to dσ, known to be all positive, and ‖ · ‖ denotes the L2-norm. Also, the
λν can be represented by

λν = − ‖πn‖2
π′n(τν)πn+1(τν)

, ν = 1, 2, . . . , n(3.13)

(see [13, Eq. (3.4.7)]). Let n ≥ 2`− 1. Then (3.12), by virtue of (2.14) and (3.13),
yields

σν =
1

2
λν , ν = 1, 2, . . . , n,(3.14)

from which the positivity of the σν follows immediately.
The positivity of the σ∗µ is equivalent to the interlacing property (see [9, Theorem

1]) already proved in (a).
(d) Let n ≥ 2`−1. To prove that the degree of exactness is (at least) 4n−2`+2,

it suffices to show∫ b

a

π∗n+1(t)tkπn(t)dσ(t) = 0, k = 0, 1, . . . , 2n− 2`+ 1(3.15)

(see [5, Corollary]). By (1.1), this is true for k = 0, 1, . . . , n. For the remaining
values k = n+ 1, n+ 2, . . . , 2n− 2`+ 1 we can write (3.15) in view of (2.13) as

∫ b

a

tk[πn+1(t)− βπn−1(t)]tnπn(t)dσ(t) = 0, k = 0, 1, . . . , n− 2`+ 1.

(3.16)

By Lemma 3.1, we can write

tnπn(t) = cnn,nπ2n(t) + · · ·+ cnn−2`+2,nπ2n−2`+2(t) + · · ·+ cni,nπn+i(t)

(3.17)

+ · · ·+ cn0,nπn(t) + · · ·+ βicni,nπn−i(t)

+ · · ·+ βn−2`+2cnn−2`+2,nπ2`−2(t) + · · ·+ cn−n,nπ0(t),

n ≥ 2`− 1.

Similarly, in the expansion

tk[πn+1(t)− βπn−1(t)] =
k+1∑

i=−(k+1)

dni,k+1πn+i

we have dn0,k+1 = 0, and dn−i,k+1 = −βidni,k+1 for each i = 1, 2, . . . , k + 1, and for
all k = 0, 1, . . . , n − 2` + 1, n ≥ 2` − 1. The proof goes by induction on `. Let
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` = 1. First, we have from Lemma 2.2

tkπn−1(t) = cn−1
k,k πn−1+k(t) + cn−1

k−1,kπn−1+k−1(t) + · · ·+ cn−1
i+1,kπn−1+i+1(t)

(3.18)

+ cn−1
i,k πn−1+i(t) + cn−1

i−1,kπn−1+i−1(t) + · · ·+ cn−1
2,k πn+1(t)

+ cn−1
1,k πn(t) + cn−1

0,k πn−1(t) + βcn−1
1,k πn−2(t) + β2cn−1

2,k πn−3(t)

+ · · ·+ βi−1cn−1
i−1,kπn−1−(i−1)(t) + βicn−1

i,k πn−1−i(t)

+ βi+1cn−1
i+1,kπn−1−(i+1)(t) + · · ·+ βk−1cn−1

k−1,kπn−1−(k−1)(t)

+ βkcn−1
k,k πn−1−k(t), k = 0, 1, . . . , n− 1, n ≥ 1.

Since (1.4), with ` = 1, holds for all n ≥ 1, the coefficients in this expansion are
given in terms of α, β and k only. Therefore, replacing n−1 in πn−1 by n+ 1 gives
the corresponding expansion for tkπn+1(t), k = 0, 1, . . . , n− 1, that is,

tkπn+1(t) = cn−1
k,k πn+1+k(t) + cn−1

k−1,kπn+1+k−1(t) + · · ·+ cn−1
i+1,kπn+1+i+1(t)

(3.19)

+ cn−1
i,k πn+1+i(t) + cn−1

i−1,kπn+1+i−1(t) + · · ·+ cn−1
2,k πn+3(t)

+ cn−1
1,k πn+2(t) + cn−1

0,k πn+1(t) + βcn−1
1,k πn(t) + β2cn−1

2,k πn−1(t)

+ · · ·+ βi−1cn−1
i−1,kπn+1−(i−1)(t) + βicn−1

i,k πn+1−i(t)

+ βi+1cn−1
i+1,kπn+1−(i+1)(t) + · · ·+ βk−1cn−1

k−1,kπn+1−(k−1)(t)

+ βkcn−1
k,k πn+1−k(t), k = 0, 1, . . . , n− 1, n ≥ 1

(see also the proof of Lemma 2.2). Adding (3.18) multiplied by −β to (3.19), we
get

tk[πn+1(t)− βπn−1(t)] = cn−1
k,k πn+k+1(t) + cn−1

k−1,kπn+k(t)

+ · · ·+ (cn−1
i−1,k − βc

n−1
i+1,k)πn+i(t) + · · ·+ (cn−1

0,k − βc
n−1
2,k )πn+1(t)

+ (βcn−1
1,k − βc

n−1
1,k )πn(t) + (β2cn−1

2,k − βc
n−1
0,k )πn−1(t)

+ · · ·+ (βi+1cn−1
i+1,k − β

icn−1
i−1,k)πn−i(t) + · · · − βkcn−1

k−1,kπn−k(t)

− βk+1cn−1
k,k πn−(k+1)(t),

or equivalently,

tk[πn+1(t)− βπn−1(t)] = cn−1
k,k πn+k+1(t) + cn−1

k−1,kπn+k(t)

+ · · ·+ (cn−1
i−1,k − βc

n−1
i+1,k)πn+i(t) + · · ·+ (cn−1

0,k − βc
n−1
2,k )πn+1(t)

− β(cn−1
0,k − βc

n−1
2,k )πn−1(t)− βi(cn−1

i−1,k − βc
n−1
i+1,k)πn−i(t)

− · · · − βkcn−1
k−1,kπn−k(t)− βk+1cn−1

k,k πn−(k+1)(t),

k = 0, 1, . . . , n− 1, n ≥ 1,

which proves the induction claim for ` = 1.
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Assume that the claim is true for some index `, that is,

tk[πn+1(t)− βπn−1(t)] = dnk+1,k+1πn+k+1(t) + · · ·+ dni,k+1πn+i(t)

+ · · ·+ dn1,k+1πn+1(t)− βdn1,k+1πn−1(t)− · · · − βidni,k+1πn−i(t)

− · · · − βk+1dnk+1,k+1πn−(k+1)(t),

k = 0, 1, . . . , n− 2`+ 1, n ≥ 2`− 1;

(3.20)

we want to prove it for the index `+1. Replacing ` in (1.4) by `+1 has the effect of
making the recursion coefficients α` and β` in general different from α and β, respec-
tively. As a consequence, the coefficients in the expansion of tk[πn+1(t)−βπn−1(t)]
change as well, and α` and β` enter these coefficients as k advances. Indeed,
for k = 0, 1, . . . , n − ` − 1, the coefficients are the same as before the replace-
ment. When k = n − `, then α` and β` enter the scene for the first time as
parts of the coefficients of π`, π`−1 (see also the proof of Theorem 2.3). How-
ever, n − ` > n − 2` + 1 for ` > 1. Hence, the expansion coefficients in (3.20)
are independent of α` and β`, and therefore the coefficients in the expansion of
tk[πn+1(t)− βπn−1(t)], k = 0, 1, . . . , n− 2`− 1, n ≥ 2`+ 1, are the same as before
the replacement of ` in (1.4) by ` + 1. This proves the induction claim for index
`+ 1, and completes the induction.

Now, (3.16) can be verified by multiplying together the expansions (3.17) and
(3.20), and by using orthogonality and the fact that

‖πn+i‖2 − β2i‖πn−i‖2 = 0, i = 0, 1, . . . , n− `+ 1, n ≥ `− 1

(cf. [4, Eq. (5.3)]).

4. Interpolatory quadrature formulae

In this section we show that, under the assumption dσ ∈ M(α,β)
` [a, b], for-

mula (1.3) has real nodes, all included in the closed interval [a, b] (if dσ has Prop-
erty A), and positive weights for all n ≥ 2` − 1. In addition, we determine the
precise degree of exactness of (1.3).

Theorem 4.1. Consider a measure dσ ∈M(α,β)
` [a, b]. Then the following holds :

(a) The interpolatory formula (1.3) has real nodes which, if dσ has Property A,
are all contained in the closed interval [a, b], for each n ≥ 2`− 1.

(b) All weights w∗µ in (1.3) are positive for each n ≥ 2`− 1.
(c) The precise degree of exactness of (1.3) is 2n− 1 if n ≥ 2`− 1.

Proof. (a) The assertions follow from Theorem 3.2 (a), (b).
(b) Setting f(t) = π∗n+1(t)/(t− τ∗µ) in the interpolatory formula (1.3), we get

w∗µ =
1

π∗′n+1(τ∗µ)

∫ b

a

π∗n+1(t)

t− τ∗µ
dσ(t), µ = 1, 2, . . . , n+ 1.(4.1)

That same substitution in the Gauss-Kronrod formula (1.2) and in the n-point
Gauss formula relative to dσ,∫ b

a

f(t)dσ(t) =
n∑
ν=1

λνf(τν) +RGn (f),
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where τν = τ
(n)
ν are the zeros of πn and λν = λ

(n)
ν the Christoffel numbers, gives∫ b

a

π∗n+1(t)

t− τ∗µ
dσ(t) =

n∑
ν=1

σν
π∗n+1(τν)

τν − τ∗µ
+ σ∗µπ

∗′
n+1(τ∗µ)(4.2)

and ∫ b

a

π∗n+1(t)

t− τ∗µ
dσ(t) =

n∑
ν=1

λν
π∗n+1(τν)

τν − τ∗µ
,(4.3)

respectively. Let n ≥ 2`− 1. Equating the right sides of (4.2) and (4.3), we find,
in view of (3.14),

n∑
ν=1

σν
π∗n+1(τν)

τν − τ∗µ
= σ∗µπ

∗′
n+1(τ∗µ),

which, inserted into (4.2), yields∫ b

a

π∗n+1(t)

t− τ∗µ
dσ(t) = 2σ∗µπ

∗′
n+1(τ∗µ).(4.4)

Now, (4.1), by virtue of (4.4), implies

w∗µ = 2σ∗µ, µ = 1, 2, . . . , n+ 1.(4.5)

By Theorem 3.2 (c), the positivity of w∗µ follows.
(c) The precise degree of exactness of (1.3) is n+k, where k is the unique integer

satisfying ∫ b

a

π∗n+1(t)p(t)dσ(t)

{
= 0 for all p ∈ Pk−1,
6= 0 for some p ∈ Pk

(see [4, §1.3]). Now, for n ≥ 2`− 1, we have by orthogonality, in view of (2.13),∫ b

a

π∗n+1(t)p(t)dσ(t)

=

∫ b

a

[πn+1(t)− βπn−1(t)]p(t)dσ(t)

{
= 0 for all p ∈ Pn−2,
= −‖πn‖2 6= 0 for p = πn−1.

Thus, the precise degree of exactness of (1.3) is 2n− 1.
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type, II”, J. Comput. Appl. Math., v. 29, 1990, pp. 161–169. MR 91b:65030

12. F. Peherstorfer, “Weight functions admitting repeated positive Kronrod quadrature”, BIT,
v. 30, 1990, pp. 145–151. MR 91e:65043
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