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ON THE ZEROS OF THE RAMANUJAN τ-DIRICHLET SERIES

IN THE CRITICAL STRIP

J. B. KEIPER*

Abstract. We describe computations which show that each of the first 12069
zeros of the Ramanujan τ -Dirichlet series of the form σ + it in the region
0 < t < 6397 is simple and lies on the line σ = 6. The failures of Gram’s law
in this region are also noted. The first 5018 zeros and 2228 successive zeros
beginning with the 20001st zero are also calculated. The distribution of the
normalized spacing of the zeros is examined and it appears to be that of the
eigenvalues of random matrices. These comptuations are done with a Berry-
Keating formula for the τ -Dirichlet series and evaluated using MathematicaTM.

1. Introduction

The Ramanujan τ -function [5] is defined in terms of its generating function

g(z) = z
∞∏
k=1

(1− zk)24 =
∞∑
n=1

τnz
n.(1)

We consider the associated Dirichlet series

f(s) =
∞∑
n=1

τnn
−s,(2)

which is also given by the integral

f(s) =
1

Γ(s)

∫ ∞
0

xs−1g(e−x) dx.(3)

This Dirichlet series has been studied by several authors, notably [4, 9, 10]. We
have the functional equations

z6g(e−2πz) = (
1

z
)6g(e−2π 1

z )(4)

and

(2π)sΓ(6− s)f(6− s) = (2π)−sΓ(6 + s)f(6 + s).(5)
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As with the Riemann ζ-function, we can use the functional equation for f to split
f into the product of two functions

f(6 + it) = Z(t)e−iϑ(t),(6)

where

Z(t) = Γ(6 + it)f(6 + it)(2π)−it

√
sinh(πt)

πt(1 + t2)(4 + t2)(9 + t2)(16 + t2)(25 + t2)
,

(7)

ϑ(t) =
−i
2

log
Γ(6 + it)

Γ(6− it) − t log(2π),(8)

and the branch of the logarithm in the formula for ϑ(t) is chosen so that ϑ(0) =
0 and ϑ(t) is continuous for real t. The functions Z and ϑ are even and odd,
respectively. Moreover, we have asymptotically for large t, | arg t| < π/2,

ϑ(t) = t log
t

2π
− t+

11π

4
− 181

12t
+

26999

360t3
− 1115101

1260t5
+

23237999

1680t7

−295081381

1188t9
+

1742885234309

360360t11
− 15472974061

156t13
+ · · · .(9)

Now, just as in the case of the Riemann ζ-function, because Z(t) is real for real
t (which corresponds to the critical line), we can search for zeros on the critical line
by finding sign changes in Z(t). Moreover, we have that the number of zeros in the
critical strip σ + it where 5.5 < σ < 6.5 and 0 < t < T is given by

N(T ) =
1

π
(ϑ(T ) + Im log f(6 + iT )),(10)

where the branch of log f(6 + iT ) is chosen so as to make log f continuous along
the polygonal path from 12 to 12 + iT to 6 + iT . Thus we can count the number of
zeros in the critical strip and, because N(T ) must be an integer, we have a second
check on the errors in ϑ(T ) and f(6 + iT ).

As with the ζ-function, we define the Gram points gn to be the solutions to

ϑ(gn) = nπ,(11)

where n is an integer. “Gram’s law”, which says that the sign of Z(gn) should
be (−1)n, works nearly all of the time. Thus, finding sign changes costs on aver-
age only slightly more than a single evaluation of Z. A Gram point gn is called
“good” if (−1)nZ(gn) > 0, otherwise it is called “bad”. A Gram block of length
k is an interval gn < t < gn+k where gn and gn+k are good Gram points, but
gn+1, . . . , gn+k−1 are bad Gram points. “Rosser’s rule” says that each Gram block
of length k contains k zeros.

2. Evaluation of the Dirichlet series

Neither the integral expression for f(s), (3), nor a formula based on this ex-
pression but expressed in terms of the incomplete gamma function are effective for
calculating f(s) far up in the critical strip. The problem is severe cancellation of
digits: (empirically) about t/2 digits are lost when evaluating f(6 + it) using these
formulae. Repeatedly applying summation by parts to (2), (cf. [10]), also known
as Abel summation, works somewhat better, although huge tables of partial sums
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of τn must be stored and high-precision arithmetic must still be employed. The
first 642 zeros (up to t = 571.756 . . . ) were calculated to about 35 digits using this
method.

For large t, the most effective way to evaluate Z(t) is with the asymptotic Berry-
Keating formula (cf. [1]):

Z(t) ∼ Z0(t,K) + Z3(t,K) + Z4(t,K) + · · · ,(12)

where

Z0(t,K) = 2Re
∞∑
n=1

(
τn
n6
ei(ϑ(t)−t log n) 1

2
erfc

(
ξ(n, t)

Q(K, t)

√
t/2

))
,(13)

Zm(t,K) =
2√
π

(t/2)m/2Re

(
(−i)mbm(t)

Qm(K, t)

∞∑
n=1

(
τn
n6
ei(ϑ(t)−t log n)(14)

· exp

(
−tξ2(n, t)

2Q2(K, t)

)
Hm−1

(
ξ(n, t)

Q(K, t)

√
t/2

)))
(m ≥ 3),

∞∑
m=3

zmbm(t) = exp

(
i(ϑ(z + t)− ϑ(t)− zϑ′(t))− 1

2
z2ϑ′′(t)

)
− 1(15)

= exp

(
i
∞∑
k=3

zk Im
ikψ(k−1)(6 + it)

k!

)
,

ξ(n, t) = log n− ϑ′(t),(16)

and

Q2(K, t) = K2 − itϑ′′(t).(17)

It should be noted that while convergence for the ζ-function begins near n =√
t/(2π), convergence for the τ -Dirichlet series does not begin until n ≈ t/(2π).

This is a result of the fact that the dominant terms in the expansions for θ(t) and
ϑ(t) differ by a factor of 2.

3. Results

Although the zeros calculated with the Berry-Keating formula agree very well
with the zeros calculated using Abel summation, because the formula is asymptotic
and actually diverges, results based on it cannot be regarded as truly rigorous.
Nevertheless, we are confident that the values for the zeros are correct to within
0.000001. The programming and the evaluation of the zeros was all done using
MathematicaTM on SPARC and NeXT workstations of modest speed. A single
evaluation of Z(t) near t = 10000 took on the order of 6 minutes. Because of the
high cost of evaluation of Z(t), the zeros were found by finding the appropriate zero
of the polynomial that interpolates some 10 nearby values of Z(t), evaluating Z(t)
at that zero, adding the new value to the data being interpolated, and iterating
until |Z(t)| < 0.00000001. Using this “glorified secant” method, each zero costs
about 3 evaluations of Z(t).

We found that each of the first 12069 zeros of the Ramanujan τ -Dirichlet series
of the form σ + it in the region 0 < t < 6397 is simple and lies on the line σ = 6.
In this range Gram’s law fails 897 times and is correct 11172 times. In the region
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9877.7 < t < 10822.6 there are 2228 zeros, all of which are simple and lie on
the critical line. In this range Gram’s law fails 223 times. Rosser’s rule was not
observed to fail. In Table 1 we present counts of the various types of Gram blocks
encountered.

Table 1. Number of Gram blocks of various types among (A) the
first 12068 Gram intervals and (B) 2228 Gram intervals beginning
with the 20000th interval

length zero pattern count A count B
1 (1) 10323 1800
2 (0, 2) 403 90
2 (2, 0) 397 98
3 (0, 1, 2) 16 4
3 (2, 1, 0) 17 7
3 (0, 3, 0) 14 5
4 (0, 1, 3, 0) 1 1

Although an exhaustive search for extrema of Z(t) was not performed, large
extrema seem to increase in a way consistent with a Lindelöf hypothesis. Table 2
gives examples of large and small extrema, respectively.

Table 2. Large and small extrema of Z(t)

t Z(t)
238.53 -6.432
256.45 6.220
296.44 7.648
468.82 -7.433
773.14 -10.124
885.75 10.211
921.85 -11.309

2046.30 11.523
2526.42 -12.587
2997.87 12.990
3927.96 13.901
4438.90 -13.935
5840.54 15.527

10358.02 -15.627

t Z(t)
243.83 -0.0931887
325.66 0.0664191
381.27 0.0577698
625.83 0.0278474

2152.88 -0.0270708
10006.36 0.0154048
10297.21 0.0209262
10429.43 0.0036954
10487.58 -0.0066925

We also located the first 5018 zeros and the 2228 zeros between t = 9877.7 and
t = 10822.6, i.e., the 20001st through the 22228th zeros. The spacing between
successive zeros 6 + iγn and 6 + iγn+1 was normalized to be

δn = (γn+1 − γn)
log(γn+1γn/(2π)2)

2π
and central moments of the normalized spacing were calculated. Note that this
normalization is slightly different from that of [7] in that it attempts to address a
slight bias for small γn. The results are presented in Table 3, where the moments for
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the distribution associated with a Gaussian unitary ensemble (GUE) are included
for comparison.

Table 3. Moments of δn − 1 for (A) the first 5017 zero-pairs and
(B) 2227 zero-pairs beginning with the 20001st pair

k A B GUE
2 0.1371 0.1530 0.1800
3 0.0128 0.0203 0.0380
4 0.0520 0.0663 0.1013
5 0.0158 0.0276 0.0656
6 0.0320 0.0500 0.1110
7 0.0182 0.0385 0.1243
8 0.0269 0.0569 0.1969
9 0.0216 0.0610 0.2902

10 0.0276 0.0860 0.4881

Figures 1 and 2 show the pair correlation of the zeros of Z(t) for the two sets of ze-
ros. The solid lines in both figures are the GUE prediction y = 1−((sinπx)/(πx))2.
See [7] for further details of this common type of plot.

Figure 1. Pair correlation function: first 5018 zeros

We further investigated an implication of the Riemann hypothesis for the τ -
Dirichlet function f(s). This investigation was analogous to that of [10]. We first
define

ξ(s) = (2π)−12sΓ(12s)f(12s).(18)
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Figure 2. Pair correlation function: zeros 20001 through 22228

By an argument essentially the same as that for Riemann’s ξ-function (cf. [2, pp.
39-47]) we can show that

ξ(s) = ξ(0)
∏
ρ

(1− 12s

ρ
),(19)

where the product is over all of the zeros of f and

ξ(0) = ξ(1) = (2π)−12Γ(12)f(12) = 0.010486273129241 . . . .(20)

Furthermore,

ξ(s) =

∫ ∞
1

(z12s + z12−12s)
g(e−2πz)

z
dz.(21)

Consider now the coefficients λk, where

log

(
ξ(1/s)

ξ(1)

)
=

∞∑
k=0

λk(1− s)k,(22)

λ0 = 0,(23)

λk =
k∑
j=1

(−1)j−1

j

(
k − 1
j − 1

)
σj (for k ≥ 1),(24)

λk =
1

k

∑
ρ

[
1−

(
ρ

ρ− 12

)k]
.(25)

It is clear from (25) that the Riemann hypothesis for f implies that λk > 0 for all
positive k. As in [6], if we assume the Riemann hypothesis f , and further that the
zeros are very evenly distributed, we can show that

λk ≈ 12 log k − 12(log
6

π
+ γ − 1).(26)

The first 800 values of λk were found and they agree rather well with the above
approximation.
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4. Conclusions

The calculations for this study were done using MathematicaTM. While this sys-
tem proved to be quite useful for preliminary investigation and algorithm design, it
is estimated that the investigation could be extended by several orders of magnitude
if the algorithm were written in a low-level language and run on a fast computer.
None of the calculations using the Berry-Keating formula required more precision
than that provided by double-precision arithmetic, so considerable speedup can be
expected.

The Berry-Keating method appears to be quite general and is likely extendable
to many Dirichlet series such as those described in [3] and [10].
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