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A NOTE ON ENTROPY INEQUALITIES AND ERROR

ESTIMATES FOR HIGHER-ORDER ACCURATE FINITE

VOLUME SCHEMES ON IRREGULAR FAMILIES OF GRIDS

SEBASTIAN NOELLE

Abstract. Recently, Cockburn, Coquel and LeFloch proved convergence and
error estimates for higher-order finite volume schemes. Their result is based
on entropy inequalities which are derived under restrictive assumptions on ei-
ther the flux function or the numerical fluxes. Moreover, they assume that
the spatial grid satisfies a standard regularity assumption. Using instead en-
tropy inequalities derived in previous work by Kröner, Noelle and Rokyta and
a weaker condition on the grid, we can generalize and simplify the error esti-
mates.

1. Introduction

In a recent paper, Cockburn, Coquel and LeFloch [2] derived error estimates for
higher-order finite volume schemes for scalar conservation laws

∂tu+ div f(u) = 0 in R+ ×Rd,(1)

u(0) =u0 on Rd.(2)

They modified the Kuznetsov [7] approximation theory to obtain an h1/4 conver-
gence rate. Analogous results were derived by Vila [10] for first-order finite volume
schemes and by Cockburn and Gremaud [4] for the streamline diffusion shock-
capturing and the discontinuous Galerkin finite element methods.

In order to derive the error estimate, Cockburn, Coquel and LeFloch assume
that the entropy inequality

UM
(
un+1
K,e , c

)
− UM (unK , c) +

τpK
|K|

{
Gne,K − FM (unK , c) ·Ne,K

}
≤ τpK
|K| a

n
K,e

∂UM
∂v

(
unK,e, c

)(3)

holds together with the bound∑
0≤nτ≤T

∑
K∈Th

∑
e⊂∂K

|anK,e| |unK,e − unKe,e| |e|τ ≤ C1h
α,(4)

where α > 0 is a fixed constant (for the notation compare [2]). For finite volume
schemes built on a piecewise constant approximation and E-fluxes, the entropy
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inequality (3) holds naturally with right-hand side equal to zero. For schemes
which use piecewise polynomial approximations, additional assumptions are needed
in order to guarantee (3) and (4). Cockburn, Coquel and LeFloch derive such
entropy inequalities for antidiffusive schemes, which are assumed to satisfy so-called
“sharp entropy inequalities”. For the higher-order schemes, these “sharp entropy
inequalities” are derived in [3, 5] under the assumption that either

(i) there is a δ > 0 such that for all u and all Ne,K

∣∣∣∂2f(u)

∂u2
·Ne,K

∣∣∣ ≥ δ,(5)

or
(ii) the numerical viscosity coefficient of the scheme is bounded below by a pos-

itive constant.
Condition (i) restricts both the grids and the flux functions: given any vector

∂2f(u)/∂u2, there are always directions N such that (5) is violated, so polygons
with such normals have to be excluded from the grid. This may lead to com-
plications, especially when the grid is refined adaptively. Moreover, certain flux
functions cannot be treated by this approach, for example f(u) = (cosu, sinu).

Condition (ii) excludes some important numerical flux functions, such as Go-
dunov’s flux and the Engquist-Osher flux.

We remark in this note that the main result of [2] holds if we replace (3), (4) by
the assumption that

UM (un+1
K,e , c)− UM (unK , c) +

τpK
|K|

{
Gne,K − FM (unK , c) ·Ne,K

}
≤ CMh2α,

(6)

where α ∈ (1
2 , 1] is a given constant.

The point of this note is that the entropy inequality (6) has been obtained by
the author [8] (see also [6]) for higher-order finite volume schemes without making
any assumption of genuine nonlinearity on the flux function f as in condition (i)
above and for MUSCL-type finite volume schemes based on general E-fluxes, where
condition (ii) is not required. Moreover, (6) may be obtained by one direct calcu-
lation (see [8, Lemma 4.3] or [6, Theorem 5.1]), while in order to derive (3), (4),
one needs to combine the results of several sections of the papers [5, 3, 2].

In [8], the author generalized existing convergence results for finite volume
schemes to schemes built upon irregular families of grids, where cells may become
flat at a certain rate as the grid parameter h tends to zero. Such grids may be
important in applications, especially when refining the grid along an essentially
one-dimensional shock front or in a boundary layer. Here we refine the analysis of
[2], made under a regularity assumption on the grid, to include irregular families
of grids, and give precise estimates for the convergence rate.

In §2, we define the class of finite volume schemes considered in this paper and
comment on our entropy inequality (6), and in §3, we sketch how to combine (6)
with the analysis in [2] in order to obtain the error estimates. Since our paper
is closely related to [2], we follow the notation of that paper, with the following
exceptions: the constants α, β, γ, δ, C1 and C2 introduced here are not identical
with those used in [2].
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2. Entropy inequalities for MUSCL-type finite volume schemes

Let Th be a polygonal grid of Rd. Given a polygon K ∈ Th, let e ⊂ ∂K denote a
side of K and let Ne,K denote the outward unit normal to K at side e. We assume
that the intersection of two polygons is a union of common sides and vertices. Let

pK :=
∑
e⊂∂K

|e|

be the perimeter of K, let hK be the outer and ρK the inner diameter of K. Let

h := sup
K∈Th

hK ,

ρ := inf
K∈Th

ρK

and let τ > 0 be the timestep. Let the time T > 0 be arbitrarily large and fixed,
and let tn := τn, n = 0, . . . , nT , such that T = τnT . We consider schemes of the
form

un+1
K := unK −

τ

|K|
∑
e⊂∂K

|e|gne,K =
∑
e⊂∂K

|e|
pK

un+1
K,e ,(7)

where

un+1
K,e := unK −

τpK
|K| (g

n
e,K − f(unK) ·Ne,K)(8)

and

u0
K :=

1

|K|

∫
K

u0(x)dx.(9)

The initial data u0 are bounded and measurable, and for simplicity of exposition,
we assume that u0 has compact support.

The numerical flux in (7), (8) is defined by

gne,K := ge,K(unK + ũnK,e, u
n
Ke + ũnKe,e).(10)

Here, Ke is the neighbor of K with e ⊂ ∂K ∪ ∂Ke, and ge,K(·, ·) is a two-point
conservative E-flux consistent with f ·Ne,K , i.e., it satisfies

ge,K(v, w) − f(s) ·Ne,K
w − v ≤ 0

for all s between v and w (compare Osher [9]). We assume that f and g possess
global Lipschitz constants Lf and Lg. Since we will only consider bounded initial
data, this can always be achieved by modifying f outside of the range of u0. In
general, Lg ≥ Lf , but in practice, we may restrict our attention to schemes satis-
fying Lg = Lf , which is, for example, true for the Godunov flux and the modified
Lax-Friedrichs flux (see [5, 8]).

The values ũnK,e allow for a piecewise higher-order polynomial interpolation of

the cell averages unK (compare the discussion in [2, 5, 6, 8]). In the following we
assume that there are constants α > 0 and C1, C2 independent of h, T and u0 such
that

|ũnK,e| ≤ C1h
α(11)

and

ũnK,e(u
n
K − unKe) ≤ C2h

2α.(12)
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If α ≤ 1, then (11) and (12) do not reduce the formal order of accuracy of the
scheme. Assumption (12) is a natural one: in the presence of large jumps, where
|unK − unKe | > C1h

α, it states that up to terms of order h2α, the interpolated value
unK+ ũnK,e at an edge e between the cells K and Ke lies between the mean values unK
and unKe over these cells. Such an assumption is usually enforced by a flux-limiter.

On the space-time grid we make the assumptions that the standard CFL-condition

τpK
|K| Lg ≤ 1(13)

holds for all K ∈ Th and that there are constants γ > 0 and C3 independent of h,
T and u0 such that

h2α

τ
≤ C3h

γ .(14)

In fact, the timestep restriction (13) may be slightly relaxed by refining the convex
decomposition (7) – (8) of the numerical scheme and taking the local speed of wave
propagation into account (see Appendix B of [8]).

Note that from (13), τ ≤ Ch, so (14) is compatible with (13) only if γ ≤ 2α− 1.
It is argued below that the timestep τ may be chosen to be of the order of ρ.
Therefore, condition (14) weakens the standard regularity condition

h

ρ
≤ C.(15)

This is discussed in detail after the proof of Theorem 3.1.
Finally, we denote by uh : Rd × [0, T ]→ R the approximate solution, given as

uh(t, x) := unK for x ∈ K, t ∈ [tn, tn+1).(16)

Under these assumptions, it can be verified immediately that uh satisfies the L∞-
bound

‖uh‖L∞(Rd×[0,T ]) ≤ ‖u0‖L∞(Rd) + CThγ−α.(17)

Here and below we use C for constants which do not depend on h, T and u0.
In [6, 8] Kröner, Rokyta and the author showed that the discrete entropy in-

equality (6) holds for the Godunov and the Lax-Friedrichs flux. Since all E-fluxes
are convex combinations of these two fluxes, (6) holds for all MUSCL-type finite
volume schemes built on E-fluxes (see [8]).

3. Error estimates

As in [2], we assume that the scheme has a finite speed of propagation. In
particular, we assume that there are compact subsets Ωh(t) of Rd, 0 ≤ t ≤ T , such
that

Ωh(t1) ⊂ Ωh(t2) ⊂⊂ Rd for 0 ≤ t1 ≤ t2 ≤ T(18)

and

suppu(t, ·) ∪ suppuh(t, ·) ⊂ Ωh(t) for 0 ≤ t ≤ T,(19)

where u is the entropy weak solution of (1), (2).
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Following Kuznetsov [7], Cockburn, Coquel and Le Floch show that

‖uh(T, ·)− u(T, ·)‖L1(Rd)

≤ |Ω
h(T )|
2M

+ 3‖uh(0, ·)− u0‖L1(Rd) + 9

(
ε+ ε0‖

∂f

∂u
(u0)‖L∞(Rd)

)
TV (u0)

+ 6 sup
0≤t≤T

(
Shε0,ε(u, u

h; t) +Ehε0,ε(u, u
h; t) +Ehε0,ε(u

h, u; t)
)
.

(20)

Here, TV (u0) denotes the total variation of u0. For the definition of Shε0,ε and Ehε0,ε,
compare [2]. Briefly, ε0 > 0 and ε > 0 are small parameters defining a family of
test functions ωε0(t) and ψε(x), and the large parameter M regularizes the Kružkov
entropy U(u, c) := |u − c| and the corresponding entropy flux F (u, c). Moreover,
Shε0,ε(u, u

h; t) is the lack of symmetry of the entropy pairs (UM , FM ), Ehε0,ε(u, u
h; t)

is the entropy production of the entropy weak solution u and Ehε0,ε(u
h, u; t) is the

entropy production of the approximate solution uh.
Under the assumption that ε ≥ h, and using the L∞-bound (17), one can show

precisely as in [2] that there is a constant C > 0 such that for 0 ≤ t ≤ T

Shε0,ε(u, u
h; t) +Ehε0,ε(u, u

h; t) ≤ C 1

M
TV (u0) T + C

h1+γ−α

ε
T |Ωh(T )|

+ C
h

ε
(TV (u0) T + ‖u0‖L∞(Rd)|Ωh(T )|).

(21)

The term Ehε0,ε(u
h, u; t) is the one which is the most difficult to handle, and it is

here where Cockburn, Coquel and LeFloch use their entropy inequalities (3), (4).
In the following, we briefly sketch how to obtain an error estimate analogous to that
in [2] when replacing (3), (4) and the regularity assumption (15) by our estimate
(6) and the assumption (14). For details, we refer the reader to [2].

First, one can use (6) to derive the auxiliary estimate

nT−1∑
n=0

∑
K∈Th

∑
e⊂∂K

|e||K|
pK

|un+1
K,e − un+1

K |2 ≤ ‖u0‖2L2 + C
h2α

τ
T |Ωh(T )|.

Modifying the derivation in [2] slightly, we obtain

Ehε0,ε(u
h, u; t) ≤

3∑
j=1

∫
QT

θj(t, x, u(t, x))dt dx +

∫
QT

θ4(t, x)dt dx.(22)

Here, θ1, θ2 and θ3 are defined as in [2], and

θ4(t, x) := CMh2α
nT−1∑
n=0

∑
K∈Th

|K|ψ̃′ε(x;x′)ωε0(t′n+1 − t),

where the test functions ψ̃′ε and ωε0 are defined in [2]. One can now obtain the
estimates

∫
QT

θ1(t, x, u(t, x))dt dx ≤ C h

ετ1/2
‖u0‖L2T 1/2|Ωh(T )|1/2 + C

h1+α

ετ1/2
T |Ωh(T )|,

(23)
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∫
QT

{θ2(t, x, u(t, x)) + θ3(t, x, u(t, x))} dt dx ≤ C h
ε
‖u0‖L∞(Rd)|Ωh(t)|

+ C
h1+γ−α

ε
T |Ωh(t)|,

(24)

∫
QT

θ4(t, x)dt dx ≤ CMh2α−1T |Ωh(T )|.(25)

Now the following convergence result is basically a corollary of the proof of Theorem
2.1 in [2].

Theorem 3.1. Let u0 ∈ L∞(Rd) ∩ BV (Rd) be of compact support and let T > 0
be given. Let u be the entropy weak solution of (1), (2) and uh the approximate
solution defined by the (possibly higher-order) finite volume scheme (7) – (10) and
(16). Suppose that 1/2 < α ≤ 1 and 0 < γ ≤ 2α − 1 are given independently of
h and that conditions (11), (12), (13), (14), (18) and (19) hold. Then there are
positive constants δ, h0 and C0 such that for all t ∈ [0, T ] and all h ∈ (0, h0] the
approximate solution uh satisfies the error estimate

‖uh(t, ·)− u(t, ·)‖L1(Rd) ≤ C0h
δ.(26)

Here, δ is independent of h, T and u0, while h0 and C0 may depend on T , |Ωh(T )|,
TV (u0), ‖u0‖L∞(Rd) and ‖u0‖L2(Rd), but not on h. In particular,
(i) if 3/4 ≤ α ≤ 1 and γ = 2α− 1, then

δ =
1

4
;(27)

(ii) if 3/4 < α ≤ 1 and 2(1− α) ≤ γ < 2α− 1, then

δ =
1 + γ/2− α

2
<

1

4
;(28)

(iii) if 1/2 < α ≤ 1, 0 < γ ≤ 2α− 1 and γ < 2(1− α), then

δ =
γ

2
<

1

4
.(29)

Proof. Let ε0 := ε/‖ dfdu(u0)‖L∞(Rd). Note that

‖uh(0, ·)− u0‖L1(Rd) ≤ hTV (u0).(30)

Combining the basic approximation result (20) with inequalities (21) – (25) and
(30) and minimizing over M and ε, one obtains for all t ∈ [0, T ] that

‖uh(t, ·)− u(t, ·)‖L1(Rd) ≤ C(1) h(1+γ/2−α)/2 + C(2) hγ/2 + C(3) h(1+γ/2)/2

+ C(4) h(1+γ−α)/2 + C(5) h1/2 + C(6) h,

(31)

where

C(1) = C TV (u0)1/2 ‖u0‖1/2L2(Rd)
T 1/4 |Ωh(T )|1/4,

C(2) = C (|Ωh(T )|1/2 + TV (u0)1/2 T 1/2)T 1/2 |Ωh(T )|1/2,
C(3) = C(4) = C TV (u0)1/2 T 1/2 |Ωh(T )|1/2,
C(5) = C TV (u0) (T 1/2 + ‖u0‖L∞(Rd) |Ωh(T )|1/2),

C(6) = C TV (u0)
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and the constants C are independent of h, T and u0. Here the minimizing ε is
larger than h provided that

h ≤ h0 := C (T |Ωh(T )|)1/3

( ‖u0‖L2(Rd)

‖u0‖L∞(Rd)

)2/3

.

The statements of the theorem follow directly from (31).

Finally, we compare conditions (14) and (15). In [8], the author proved conver-
gence under the still weaker assumption that

lim
h→0

h2α

τ
= 0(32)

and discussed in detail that this assumption allows irregular families of grids, where
cells may become flat with a certain rate as h → 0. Indeed, this rate is shown to
be the optimal rate which assures convergence of general finite volume E-schemes.
In the context of the present paper, condition (14) may be guaranteed by the
assumptions that there is a constant C4 > 0 such that

τ ≥ C4

C3
ρ(33)

and

h2α

ρ
≤ C4h

γ .(34)

For grids Th consisting of convex polygons, it is shown in [8] that

ρK
2d
≤ |K|
pK
≤ ρK

2
for all K ∈ Th.

Therefore, the CFL-condition (13) is satisfied if

τ ≤ ρ/(2dLg),
so condition (33) is compatible with (13). Condition (34) can be rewritten as

h

ρ
≤ C4h

−β, where β := 2α− 1− γ.(35)

We call β the irregularity coefficient of the family of triangulations (Th)h>0. If
β > 0, then (35) is weaker than (15), and cells may become flat with rate β as the
grid parameter h tends to zero. Such families of grids are important in applications,
in particular when refining the grid in a shock or boundary layer (see for example
[1]).

Suppose now that, for one reason or another, we decide to compute on an irreg-
ular family of grids with prescribed irregularity coefficient β > 0. It follows from
statements (ii) and (iii) of Theorem 3.1 that in order to obtain the convergence rate
δ which is optimal for that given β, we need to choose

α ≥ β + 3

4
and

γ = 2α− 1− β.
From (28), we obtain the convergence rate

δ =
1− β

4
.(36)
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For a regular family of grids, where β = 0, we obtain from statement (i) of Theorem
3.1 that the optimal convergence rate δ equals 1/4. These relations are illustrated
in Figure 1: the parameter regimes identified in statements (i) – (iii) of Theorem
3.1 are labeled by I – III, respectively. In region I, which contains only regular
families of grids, we obtain the optimal convergence rate 1/4, and in region II,
which admits irregular families of grids, we obtain the rate (1 − β)/4, which is
also optimal. In region III, we obtain convergence, but not with the optimal rate.
The lower convergence rate in this region may be understood when comparing the
isolines of β and δ in regions II and III.

gamma

1

0.5

0.5 0.75 1
alpha

(a)

I

II

III

gamma

1

0.5

0.5 0.75 1
alpha

(b) gamma

1

0.5

0.5 0.75 1
alpha

(c)

Figure 1. (a) Convergence region for higher-order finite volume
schemes in the α-γ parameter plane. (b) Irregularity of the grids:
isolines of β. (c) Convergence rates: isolines of δ

The author is grateful to one of the referees for the following remark. In [4,
Corollary 2.1c], Cockburn and Gremaud prove the estimate

‖uh(T )− u(T )‖L1(Rd) ≤ ‖uh(0)− u0‖L1(Rd) + C

(
σh

c

) 1
4

for the shock-capturing discontinuous Galerkin method. Here,

σ := sup
K

hK
ρK

,

c := inf
K

hK
h
.

Translating this to our notation and assuming equality in (35), one obtains

C4h
−β =

h

ρ
= sup

K

h

ρK
≤ sup

K

hK
cρK

=
σ

c
.

Therefore, our result (36) implies that the higher-order finite volume methods con-
sidered in this paper converge with rate (σh/c)1/4 as in [4].
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