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THE FREQUENCY DECOMPOSITION MULTILEVEL METHOD:

A ROBUST ADDITIVE HIERARCHICAL BASIS

PRECONDITIONER

ROB STEVENSON

Abstract. Hackbusch’s frequency decomposition multilevel method is char-
acterized by the application of three additional coarse-grid corrections in par-
allel to the standard one. Each coarse-grid correction was designed to damp
errors from a different part of the frequency spectrum. In this paper, we intro-
duce a cheap variant of this method, partly based on semicoarsening, which
demands fewer recursive calls than the original version. Using the theory of
the additive Schwarz methods, we will prove robustness of our method as a
preconditioner applied to anisotropic equations.

1. Introduction

As is well known, the rate of convergence of a multilevel method applied to
a discretized elliptic boundary value problem is less than one uniformly in the
top level. Yet, without a special choice of the components of the method, the
rate of convergence tends to one as the problem becomes less elliptic (singularly
perturbed problems), that is, the method is not robust. This paper concentrates on
the question of robustness for so-called anisotropic problems. The classical way to
obtain a robust multilevel method is to choose a smoother adapted to the problem.
A disadvantage of this approach is that the resulting smoothers are often expensive,
not well parallelizable or, in three dimensions, hard to find.

An alternative approach is to add more coarse-grid corrections to the multilevel
method. Representatives of this class of methods are Hackbusch’ Frequency De-
composition Multilevel Method (FDMLM) ([2, 3, 5, 6]), which is the subject of this
paper, and the Multiple Semi-Coarsened Grids Method ([8, 9, 10]) introduced by
Mulder.

In two dimensions, the FD Two-Level Method consists of four coarse-grid cor-
rections, that can be performed in parallel, each of them designed to reduce errors
in a (non-overlapping) part of the frequency spectrum. To speed up convergence,
smoothers can be added to the algorithm but we shall not consider this option. In
the (V-cycle) FDMLM, each of the four coarse-grid problems is solved by means
of a recursive call, thus involving four coarse-grid corrections on the next coarser
level. For a complete explanation of the ideas behind this method, we refer to
the papers of Hackbusch. In [5], it has been proved that the FDTLM yields a
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robust preconditioner, that is, the condition number of the preconditioned system
is bounded uniformly in the top level and the anisotropy. Until now, robustness of
the FDMLM is an open problem.

In this paper, we study a cheap variant of the FDMLM. As was already noted in
[3], one of the coarse-grid problems generated by the FDTLM has a bounded condi-
tion number (:= λmax/λmin) uniformly with respect to the level and the anisotropy.
Therefore, instead of applying a recursive call, this system can better be solved us-
ing a cheap iterative solver as, e.g., Jacobi’s method. Apart from this, with our
FDMLM, we solve two of the three remaining coarse-grid problems by means of
only two instead of four coarse-grid corrections on the next coarser level by using
semicoarsening. It will appear then that also one of these two corrections yields a
system with bounded condition number, which therefore can be solved cheaply. On
the other system we apply the semicoarsening idea recursively.

For any dimension d, the complexity of the resulting algorithm is equivalent to
the number of unknowns, even if one would apply more than one recursive calls
at certain places in the algorithm. Considered as an additive Schwarz method or,
in the terminology of [12], a Parallel Subspace Correction method, it consists of

(#levels)d subspace corrections compared to ∼ (2d)#levels subspace corrections for
the FDMLM in its original form.

Using the theory of the additive Schwarz methods, we will prove robustness of
our FDMLM as a preconditioner. To do that, we first reformulate the method in
an abstract finite element context. This kind of formulation of a multilevel method
was introduced in [1]. Then with the help of tensor products, the question of
robustness will be reduced to the question of convergence of the method in one
dimension applied to the identity and the Laplace operator.

In one dimension, the subspace decomposition that defines our method appears
to be very similar to the decomposition of the finite element space into the differ-
ences of successive L2-orthogonal projections onto the finite element spaces corre-
sponding to coarser grids. In particular, we will show that also our decomposition
induces an L2-equivalent norm, which means convergence for the identity. The fact
that the decomposition using L2-orthogonal projections yields an H1-equivalent
norm plays a crucial role in the modern regularity-free convergence proofs of stan-
dard multilevel methods (cf. [12, 13]). By adapting Xu’s proof of this result, we will
prove the same for our decomposition and with that, convergence for the Laplace
operator.

Our FDMLM can be seen as block Jacobi’s method after a basis transformation
to a certain hierarchical basis. Our convergence result means that independent of
the dimension, the stiffness matrix after this transformation has a bounded condi-
tion number uniformly in the level and the anisotropy.

In a forthcoming paper ([11]), we will discuss an efficient implementation of the
method and present numerical results.

Following [12], we shall use the notations <∼, >∼ and =∼. When we write

x1
<∼ y1, x2

>∼ y2 and x3
=∼ y3,

there exist constants C1, c2, c3 and C3 independent of relevant parameters such as
the level or the anisotropy, such that

x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3.



THE FREQUENCY DECOMPOSITION MULTILEVEL METHOD 985

2. Description of the method

2.1. Basic definitions. We start by giving some definitions for the one-dimen-
sional case. Let Ω = (0, 1), hk = 2−(k+1) (k ∈ N0 = {0, 1, 2, . . .}) and let Ωık =
Ω ∩ hk(Z + 1

2 ı) (ı ∈ {0, 1}). Note that Ω0
k = Ω0

k−1 ∪Ω1
k−1 (cf. Figure 1). We equip

× × × ×◦ ◦ ◦ ◦
-�

hk−1

× ∈ Ω0
k−1

◦ ∈ Ω1
k−1

p p p p p
Figure 1. “Standard” and “shifted” coarse-grids Ω0

k−1 and Ω1
k−1

respectively

the space of grid functions on Ωık, denoted by `2(Ωık), with the Euclidean scalar
product

〈µ, ν〉 =
∑
x∈Ωı

k

µ(x)ν(x)

and norm ‖ · ‖ = 〈·, ·〉 1
2 .

The prolongations pı : `2(Ωık−1) → `2(Ω0
k) are defined in difference stencil no-

tation as p0 = 1
2 ] 1 2 1 [ (linear interpolation) and p1 = 1

2 ] −1 2 −1 [. They
satisfy

rangep0⊕⊥rangep1 = `2(Ω0
k).(1)

The restrictions rı : `2(Ω0
k)→ `2(Ωık−1) are defined as adjoints of the corresponding

prolongations, that is, r0 = 1
2 [ 1 2 1 ] and r1 = 1

2 [ −1 2 −1 ].
For the general d-dimensional case, we define the grids Ωık = Ωı1k1

× · · · × Ωıdkd
(k ∈Nd

0, ı ∈ {0, 1}d). We equip the space `2(Ωık) of grid functions on Ωık also with

the Euclidean scalar product 〈µ, ν〉 =
∑
x∈Ωı

k
µ(x)ν(x).

Since we exploit tensor products quite often, note that `2(Ωık) =
⊗d

j=1 `
2(Ω

ıj
kj

),

i.e., `2(Ωık) = span {
⊗d

j=1 µj : µj ∈ `2(Ω
ıj
kj

)}, where (
⊗d

j=1 µj)(x) :=
∏d
j=1 µj(xj).

Furthermore, we have 〈
⊗d

j=1 µj ,
⊗d

j=1 νj〉 =
∏d
j=1〈µj , νj〉.

2.2. Derivation of the (modified) FDMLM. First, we consider the two-dimen-
sional case. In [2], the FD Two-Level Method to solve a system Aµ = β on Ω00

JJ

was defined by

µ← µ−
∑

ı,∈{0,1}
pıx⊗py

(
rıx⊗ry A pıx⊗py

)−1
rıx⊗ry (Aµ− β) ,

where thus rıx ⊗ ry A pıx ⊗ py acts on the space of grid functions on ΩıJ−1J−1

(= ΩıJ−1×ΩJ−1). [It will be clear why we avoid the term two-grid method.] Using
the abbreviations pı and rı for pıx ⊗ py and rıx ⊗ ry , respectively, we have

pı = 1
4

 (−1)ı+ (−1)2 (−1)ı+

(−1)ı2 4 (−1)ı2
(−1)ı+ (−1)2 (−1)ı+


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and

rı(= (pı)∗) = 1
4

 (−1)ı+ (−1)2 (−1)ı+

(−1)ı2 4 (−1)ı2
(−1)ı+ (−1)2 (−1)ı+

 .
We consider only A > 0. Then, because of the Galerkin approach, the error ampli-
fication operator of the method is given by

µ∗ − µnew = (I −
∑

ı,∈{0,1}
P ı)(µ∗ − µold),

where µ∗ is the exact solution and P ı is the projection from `2(Ω00
JJ ) onto the

rangepı orthogonal with respect to 〈A·, ·〉. The range of the standard prolongation
p00 contains the “smooth” functions. The one-dimensional prolongation p1 was
chosen such that the ranges of the pı for (ı, ) 6= (0, 0) contain the different types
of oscillating functions, so that also errors of that kind are corrected.

We consider systems that arise from the application of the bilinear finite element
method to {

−(a1∂
2
1 + a2∂

2
2)u = f on Ω2,
u = 0 on ∂Ω2,

that is,

A = 1
6a1

[
−1 2 −1

] 1
4
1

+ 1
6a2

 −1
2
−1

 [ 1 4 1
]

: `2(Ω00
JJ)→ `2(Ω00

JJ),

where a1, a2 ≥ 0 and a1 + a2 > 0. This kind of problem is called anisotropic
when a1 � a2 or a1 � a2. In [5], it was proved that the FDTLM yields a robust

preconditioner, that is, the condition number κ(
∑
ı,∈{0,1} p

ı(rıApı)−1rıA) <∼ 1

(uniformly in J and ai). Our aim is to prove the same for a multilevel version.
In its original form, the multilevel version consisted of recursive calls for each

of the four coarse-grid problems on the grids Ω00
J−1J−1, Ω01

J−1J−1, Ω10
J−1J−1 and

Ω11
J−1J−1. By r0[ −1 2 −1 ]p0 = 1

2 [ −1 2 −1 ], r0[ 1 4 1 ]p0 = 2[ 1 4 1 ],

r1[ 1 4 1 ]p1 = 4I and

r1
[
−1 2 −1

]
p1 = 1

2


7 3
3 10 3

. . .

3 10 3
7 3

 =: 1
2

[
3 10 3

]∼
,

the operators on the spaces of grid functions on these grids are

r00Ap00 = 1
6a1

[
−1 2 −1

] 1
4
1

+ 1
6a2

 −1
2
−1

[ 1 4 1
]

on `2(Ω00
J−1J−1),

r01Ap01 = 1
3a1

[
−1 2 −1

]
+ 1

6a2

 3
10
3

∼ [ 1 4 1
]

on `2(Ω01
J−1J−1),
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r10Ap10 = 1
6a1

[
3 10 3

]∼  1
4
1

+ 1
3a2

 −1
2
−1

 on `2(Ω10
J−1J−1)

and

r11Ap11 = 1
3a1

[
3 10 3

]∼
+ 1

3a2

 3
10
3

∼ on `2(Ω11
J−1J−1).

As noted in [3], there holds κ(r11Ap11) <∼ 1 (uniformly in the grid sizes and ai).
The argument is that for B1,B2 > 0, we have κ(B1 + B2) ≤ max{κ(B1), κ(B2)}.
So instead of applying a recursive call, the corresponding system can be solved
using a cheap iterative solver. Furthermore, in [3] it was argued that in the cases
a1 ≤ a2 or a1 ≥ a2 also one of the two operators r01Ap01 and r10Ap10 has a
bounded condition number. Yet, this argument cannot be applied to construct a
method that is robust for the general variable-coefficient case. Therefore, we will
use another idea to further reduce the number of recursive calls.

Consider the following two operators that arise from Ã := r01Ap01 by means of
semicoarsening Ω01

J−1J−1 in the x-direction, that is, in the direction where we have

not applied p1 so far,

r0
xÃp0

x = 1
6a1

[
−1 2 −1

]
+ 1

3a2

 3
10
3

∼ [ 1 4 1
]

on `2(Ω01
J−2J−1)

and

r1
xÃp1

x = 1
6a1

[
3 10 3

]∼
+ 2

3a2

 3
10
3

∼ on `2(Ω11
J−2J−1).

Then the first operator is of the same type as Ã, and so we can apply (x-)semicoars-
ening recursively or, if J − 2 = 0, the operator has a bounded condition number
and therefore the system can be solved using a cheap iterative solver. The second
operator always has a bounded condition number.

Analogously to the above procedure, we can solve the system on Ω10
J−1J−1 using

semicoarsening in the y-direction. Finally, as with the original version, the system
on Ω00

J−1J−1 is solved with a recursive call of the entire method, with which this
informal description of the modified FDMLM is completed (see Figure 2).

In view of the following, note that since, e.g., on Ω01
J−1J−1 no system is solved

(unless J −1 = 0), but only coarse-grid corrections are invoked, this (intermediate)
grid and the operators defined on it are only important for an efficient imple-
mentation. Because of the Galerkin approach, the mathematical properties of the
resulting method are determined by the (sequence of) prolongations from the grids
on which systems are (approximately) solved (leaves in the tree of Figure 2) onto
the finest grid Ω00

JJ . For example, for J = 2 these prolongations are p0
xp

0
x ⊗ p0

yp
0
y,

p0
xp

0
x ⊗ p0

yp
1
y, p

0
xp

0
x ⊗ p1

y, p
0
xp

1
x ⊗ p0

yp
0
y, p0

xp
1
x ⊗ p0

yp
1
y, p0

xp
1
x ⊗ p1

y, p1
x ⊗ p0

yp
0
y, p1

x ⊗ p0
yp

1
y

and p1
x⊗ p1

y, i.e., tensor products of all possible combinations of p0
xp

0
x, p0

xp
1
x, p1

x and

p0
yp

0
y, p0

yp
1
y, p1

y.
We are now ready to give a formal description of the modified FDMLM.
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Ω00
J−2J−2

p0
x

⊗
p0
y

pppppppppp
pppppppp
p p p p p p p p p p
pppppppp

Ω01
J−2J−2

p0
x

⊗
p1
y

pppppppp
p p p p p p p p p p

Ω10
J−2J−2

p1
x

⊗
p0
y

pppppppp
p p p p p p p p p p

Ω11
J−2J−2

p1
x

⊗
p1
y

Ω01
J−2J−1

p0
x

pppppppp
p p p p p p p p p p

Ω11
J−2J−1

p1
x

Ω10
J−1J−2

p0
y

pppppppp
p p p p p p p p p p

Ω11
J−1J−2

p1
y

Ω00
J−1J−1

p0
x

⊗
p0
y

Ω01
J−1J−1

p0
x

⊗
p1
y

Ω10
J−1J−1

p1
x

⊗
p0
y

Ω11
J−1J−1

p1
x

⊗
p1
y

Ω00
JJ

��
��

��
��

��

�
�
�
�

A
A
A
A

HH
HH
HH
HH
HH

�
�
�
�
��

�
�
�
�

C
C
C
C

Z
Z
Z
Z
ZZ

J
J
J
J

J
J
J
J

Figure 2. Grids and prolongations defining the modified
FDMLM in two dimensions. [ We dotted the lines at the bottom
of the figure since the pictures of the grids correspond to J = 2,
i.e., the three-level case.]

Algorithm 2.1. Let Aµ = β be a system on the d-dimensional grid Ω0···0
J···J . For

0 ≤ k ≤ J , define the one-dimensional prolongation pk = p
(J)
k by

pk =


p0 · · · p0︸ ︷︷ ︸
(J−k)×

p1 : `2(Ω1
k−1)→ `2(Ω0

J), k ≥ 1,

p0 · · · · p0︸ ︷︷ ︸
J×

: `2(Ω0
0)→ `2(Ω0

J ), k = 0.

Note that from (1) we have `2(Ω0
J ) =

⊕J
k=0 range pk. For k ∈ I := {0, . . . , J}d, we

define

pk =
d⊗
j=1

pkj ,xj , rk = p∗k(=
d⊗
j=1

rkd,xd) and Ak = rkApk.

Now let Bk be such that B−1
k is a cheap approximation of A−1

k . Then the (modified)
FDMLM is defined by

µ← µ−
∑
k∈I

pkB−1
k rk(Aµ− β).(2)

Our FDMLM is an example of an additive Schwarz method or Parallel Subspace
Correction method with subspace rangepk satisfying `2(Ω0···0

J···J) =
⊕

k∈I rangepk.

Remark 2.2. Since, e.g., Ω01
J−1J−1 (d = 2) is coarsened only in the x-direction, the

elementary one-dimensional prolongations p0 and p1, which are the building blocks
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of all prolongations in the algorithm, always map onto the space of grid functions
on a non-shifted grid, that is, a grid Ω0

k for some k ∈ N. So in contrast to the
original FDMLM, we do not have to construct boundary adaptations for p0 and p1

in order to maintain property (1).

We want to prove robustness of this method applied to anisotropic problems. As
a consequence of the following lemma it is then sufficient to analyze the FDMLM
with exact subspace corrections (Bk = Ak). The straightforward proof of this
lemma is left to the reader.

Lemma 2.3. Let A > 0 and Bk > 0 (k ∈ I). Define Λ = maxk∈I λmax(B−1
k Ak)

and λ = mink∈I λmin(B−1
k Ak). Then

κ

(∑
k∈I

pkB−1
k rkA

)
≤ Λ

λ
κ

(∑
k∈I

pkA−1
k rkA

)
.

Analogously to the two-dimensional case, for d-dimensional anisotropic problems
we have that κ(Ak) <∼ 1 (k ∈ I). So already the simple Richardson iteration, that

is Bk = ρ(Ak), gives Λ
λ = maxk∈I κ(Ak) <∼ 1.

2.3. Computational complexity. For ease of presentation we consider the two-
dimensional case. The general case can be handled by induction.

Assume that the application of B−1
k (k ∈ I) costs a number of operations that

is equivalent to the number of points of the grid in question. For k1 ≤ k2, let
W 01
k1k2

(W 10
k2k1

) be the number of arithmetic operations necessary to treat a system

on Ω01
k1k2

(Ω10
k2k1

) using the recursive application of semicoarsening in the x- (y-)

direction. Then we have W 01
k1k2

=∼ #Ω01
k1k2

+W 01
k1−1k2

, which gives W 01
k1k2

=∼ #Ω01
k1k2

and analogously W 10
k2k1

=∼ #Ω10
k2k1

. Finally, let W 00
kk be the number of arithmetic

operations necessary for an entire FDMLM call on Ω00
kk. We conclude that

W 00
kk

=∼ W 00
k−1k−1 +W 01

k−1k−1 +W 10
k−1k−1 + #Ω00

kk

=∼ W 00
k−1k−1 + #Ω00

kk,

which implies W 00
kk

=∼ #Ω00
kk. Note that since #Ω00

k−1k−1/#Ω00
kk = 1

4 , more than one

recursive call on Ω00
k−1k−1 can be applied. The number of recursive calls involving

semicoarsening should be restricted to one.

3. Proof of robustness of the FDMLM

3.1. Coordinate-free finite element formulation. To facilitate the analysis,
we reformulate the algorithm in a more abstract context. We start by giving some
definitions for the one-dimensional case.

For ı ∈ {0, 1}, k ∈N0, x ∈ Ωık, define δık,x ∈ `2(Ωık) by δık,x(y) =

{
1, x = y,
0, x 6= y.

Define Pk : `2(Ω0
k)→ H1

0 (Ω) ⊂ L2(Ω) as the linear interpolation operator using
zero boundary values. Put Mk = rangePk, that is, Mk is the linear finite element
space corresponding to the grid Ω0

k. The basis {φ0
k,x := Pkδ

0
k,x : x ∈ Ω0

k} is the

standard (nodal) basis of Mk. We equip Mk with scalar product

〈·, ·〉Mk
= hk〈P−1

k ·, P
−1
k ·〉(3)

and norm ‖ · ‖Mk
= 〈·, ·〉

1
2

Mk
. It is well known that ‖ · ‖Mk

=∼ ‖ · ‖L2 (uniformly in
k).
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For k > 1, we define Vk = range(Pkp
1 : `2(Ω1

k−1) → H1
0 (Ω)). We will call the

basis {φ1
k,x := Pkp

1δ1
k−1,x : x ∈ Ω1

k−1} the standard basis of Vk. Using Pkp
0 = Pk−1,

we find that (1) is equivalent to

Mk =Mk−1⊕⊥MkVk.(4)

So, with the definition V0 =M0, the union of the bases of V0, . . . ,Vk forms a basis
of Mk, which is therefore called a hierarchical basis (cf. Figure 3). Note that (4)
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q
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• • • • • • •

∈V2 ∈V2 ∈V2 ∈V2

∈V1 ∈V1

? ?

∈M0

?

− 1
2

1

Figure 3. Hierarchical basis of M2

does not imply that V0, . . . ,Vk are mutually orthogonal with respect to some scalar
product.

For k ∈ N0, let Ik : Vk → L2(Ω) be the inclusion operator. Since

PJpk =


PJ p

0 · · · p0︸ ︷︷ ︸
(J−k)×

p1 = Pkp
1, 1 ≤ k ≤ J,

PJ p
0 · · · · p0︸ ︷︷ ︸
J×

= P0, k = 0,

we find that pk is the representation of Ik with respect to the standard bases on Vk
and MJ .

As usual, for some basis {ψi : i ∈ IW} of a subspace W ⊂ L2(Ω), we define the

dual basis {ψ̃i : i ∈ IW} of W by (ψ̃i, ψj)L2 =

{
1, i = j,
0, i 6= j.

Let Vk : L2(Ω) → Vk
be the adjoint of Ik with respect to the L2-scalar product on both spaces, that is,
Vk is the L2-orthogonal projection onto Vk. Then we find that the representation
of Vk|MJ

with respect to the dual bases on MJ and Vk is equal to the adjoint of

pk, that is, rk.
In the multidimensional case everything is defined using tensor products, that

is,

Mk =
d⊗
j=1

Mkj , Vk =
d⊗
j=1

Vkj , Ik =
d⊗
j=1

Ikj and Vk(= I∗k) =
d⊗
j=1

Vkj .
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So, Ik : Vk → L2(Ωd) is the inclusion operator and Vk : L2(Ωd) → Vk is the L2-
orthogonal projection onto Vk. We equipMk and Vk with standard bases obtained
by making tensor products of the standard basis functions of its factors, that is,

the standard bases consist of functions of the form φık,x =
⊗d

j=1 φ
ıj
kj ,xj

. Concerning

dual basis functions, note that φ̃ık,x =
⊗d

j=1 φ̃
ıj
kj ,xj

. Using the abbreviation m for

multi-indices (m, . . . ,m) ∈Nd
0, we conclude that for k ∈ I, pk is the representation

of Ik with respect to the standard bases on Vk andMJ, and rk is the representation
of Vk|MJ

with respect to the dual bases.

Finally, for a given system Aµ = β on Ω0
J, define A :MJ →MJ by

(Aφ0
J,y, φ

0
J,x)L2 = Axy (x, y ∈ Ω0

J).(5)

Then A is the representation of A with respect to the standard basis on its domain
and dual basis on its image. With the definition Ak = VkAIk, we arrive at the
conclusion that (2), with Bk = Ak, is a matrix formulation of the iteration

u← u−
∑
k∈I

IkA
−1
k Vk(Au− f),(6)

where u =
∑
x∈Ω0

J
µ(x)φ0

J,x, f =
∑
x∈Ω0

J
β(x)φ̃0

J,x (that is, β(x) = (f, φ0
J,x)L2 ).

Because the condition number κ was defined as the quotient of the largest and
smallest eigenvalue, clearly we have κ(

∑
k∈I pkA

−1
k rkA) = κ(

∑
k∈I IkA

−1
k VkA).

Remark 3.1. We defined the operator A using the matrix A. Of course, the usual
procedure is the other way around. If a is a bilinear form on H1

0 (Ωd) and A :MJ →
MJ is defined by (Au, v)L2 = a(u, v) (u, v ∈ MJ), then A defined by (5) is called
the stiffness matrix with respect to the (multilinear) basis {φ0

J,x : x ∈ Ω0
J}.

Remark 3.2. Consider the hierarchical basis of MJ =
⊕

k∈I Vk that is obtained
by taking the union of the standard bases of the Vk. The iteration (6) with re-
spect to this basis, that is, the hierarchical basis for the solution and its dual for
the right-hand side, is just block Jacobi’s method with a partitioning into blocks
corresponding to the spaces Vk. As we have seen, for anisotropic problems, the
diagonal blocks have bounded condition number and so robustness of (6) implies
that, properly scaled, the stiffness matrix with respect to this hierarchical basis has
a bounded condition number uniformly in the level and the anisotropy.

3.2. Main theorem; reduction to one-dimensional cases. The fact that
MJ =

⊕
k∈I Vk is a direct sum decomposition implies that there exist projections

Zk = Z
(J)
k : MJ → Vk such that

∑
k∈I Zk = I on MJ. Note that ZkIk′ = 0 if

k 6= k′ and that ZkIk is the identity on Vk.

Lemma 3.3. Define W =
∑
k∈I Z

∗
kAkZk : MJ → MJ. Then W−1 exists and is

equal to
∑
k∈I IkA

−1
k Vk.

Proof.
∑
k∈I Z

∗
kAkZk

∑
k′∈I Ik′A

−1
k′ Vk′ =

∑
k∈I Z

∗
kVk =

(∑
k∈I IkZk

)∗
= I.

This lemma shows that for A > 0, the condition number κ(
∑
k∈I IkA

−1
k VkA) is

the quotient Γ
γ of the optimum constants in the inequalities γW ≤ A ≤ ΓW or, by

Ak = VkAIk,

γ
∑
k∈I

(AZku, Zku)L2 ≤ (Au, u)L2 ≤ Γ
∑
k∈I

(AZku, Zku)L2 (u ∈ MJ).(7)
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We are now ready to formulate our main theorem.

Theorem 3.4. For nonnegative constants aj and b with
∑d
j=1 aj + b > 0, let

a(u, v) =
d∑
j=1

∫
Ωd
aj∂ju∂jv +

∫
Ωd
buv (u, v ∈ H1

0 (Ωd))

and let A : MJ → MJ be defined by (Au, v)L2 = a(u, v) (u, v ∈ MJ). Then we

have κ(
∑
k∈I IkA

−1
k VkA) <∼ 1 (uniformly in J , aj and b).

Remark 3.5. From (7), we immediately see that the theorem can be extended to

all operators Ã for which there exist c, C > 0 such that

c(Au, u)L2 ≤ (Ãu, u)L2 ≤ C(Au, u)L2

for some A as described in the theorem. Examples are linear finite element dis-
cretizations or discretizations of elliptic boundary value problems with nonconstant
coefficients. With a view to the nonconstant-coefficient case, we note that clearly
the theorem does not yield boundedness of the condition number that is uniform
in C/c.

To prove Theorem 3.4, we first note that if (7) is satisfied by A(1) and A(2), then
it is satisfied by c1A

(1) + c2A
(2) for any c1, c2 ≥ 0. As a consequence, we only have

to consider tensor product operators A =
⊗d

j=1 Aj , where (Aju, u)L2 = (u, u)L2 or

(Aju, u)L2 = (u′, u′)L2 (u ∈MJ). Secondly, we observe that (7) is equivalent to

σ(
∑
k∈I

A−
1
2Z∗kAZkA

− 1
2 ) ⊂

[
1

Γ
,

1

γ

]
.(8)

As a special case of the general definition, the one-dimensional Z
(J)
k : MJ → Vk

were defined by
∑J
k=0 Z

(J)
k = I. For k ∈ I, we have Zk(= Z

(J)
k ) =

⊗d
j=1 Z

(J)
kj

.

From

σ(
∑
k∈I

A−
1
2Z∗kAZkA

− 1
2 ) = σ(

∑
k∈I

d⊗
j=1

A
− 1

2
j Z

(J)
kj

∗
AjZ

(J)
kj
A
− 1

2
j )

= σ(
d⊗
j=1

J∑
k=0

A
− 1

2
j Z

(J)
kj

∗
AjZ

(J)
kj
A
− 1

2
j ) =

d∏
j=1

σ(
J∑
k=0

A
− 1

2
j Z

(J)
kj

∗
AjZ

(J)
kj
A
− 1

2
j ),

and again by using the equivalence of (8) and (7) but now for the one-dimensional
case, we conclude that it suffices to prove the following norm equivalences in one
dimension:

J∑
k=0

‖Z(J)
k u‖2L2

=∼ ‖u‖2L2(9)

and
J∑
k=0

‖Z(J)
k u‖2H1

=∼ ‖u‖2H1(10)

(u ∈ MJ), where ‖ · ‖H1 := (·, ·)
1
2

H1 and (u, v)H1 := (u′, v′)L2 .
We start with constructing an explicit formula for the one-dimensional projec-

tions Z
(J)
k :
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Lemma 3.6. Let Yk : Mk+1 → Mk be the projection on Mk orthogonal with
respect to 〈·, ·〉Mk+1

. Then

Z
(J)
k =

{
Y0 · · ·YJ−1, k = 0,
(I − Yk−1)Yk · · ·YJ−1, 1 ≤ k ≤ J.(11)

Proof. FromMJ−1 ⊕⊥MJ VJ = MJ and MJ−1 =
⊕J−1

k=1 Vk, it follows that Z
(J)
J =

(I − YJ−1) and Z
(J)
k = Z

(J−1)
k YJ−1 (0 ≤ k ≤ J − 1).

Remark 3.7. As noted before, ‖ · ‖Mk
=∼ ‖ · ‖L2 on Mk (uniformly in k). If

‖ · ‖Mk
would be equal to ‖ · ‖L2 (which is not the case), then Z

(J)
k defined by (11)

would be equal to (Qk −Qk−1)|MJ
, where Qk : L2(Ω)→Mk is the L2-orthogonal

projection ontoMk and Q−1 := 0. For the decomposition u =
∑J
k=0(Qk−Qk−1)u,

(9) is trivially true. The corresponding relation (10) is famous and is the key to
the modern regularity-free convergence proofs of standard multilevel methods (cf.

[12, 13]). Unlike the decomposition u =
∑J
k=0(Qk − Qk−1)u, our decomposition

was not introduced as a clever trick for the analysis of an overlapping subspace
correction method, but it was yielded by the method itself.

In the next two subsections, §§3.3 and 3.4, we will prove the norm equivalences
(9) and (10), respectively. We will prove (9) by estimating the angles between the
spaces Vk with respect to the L2-scalar product for our one-dimensional regular
grid case. For the same case, an alternative proof exploiting the standard bases
of the Vk appeared in [7]. We will prove (10) in an abstract framework using (9),∑J
k=0 ‖(Qk −Qk−1)u‖2H1

=∼ ‖u‖2H1 (u ∈MJ ) and ‖ · ‖Mk
=∼ ‖ · ‖L2 on Mk.

3.3. An L2-equivalent norm on MJ . Since Z
(J)
k is the projection from MJ

onto Vk satisfying
∑J
k=0 Z

(J)
k = I, the validity of (9) depends on the angle between

the spaces Vk.

Lemma 3.8. Let θkl be the smallest constant satisfying

|(u, v)L2 | ≤ θkl‖u‖L2‖v‖L2 for all u ∈ Vk, v ∈ Vl
(strengthened Cauchy-Schwarz inequality). Put Θ = (θkl)k,l and let ρ(Θ− I) < 1.
Then

1− ρ(Θ− I) ≤ ‖u‖2L2/
J∑
k=0

‖Z(J)
k u‖2L2 ≤ 1 + ρ(Θ− I) (u ∈ MJ).

Proof. Use

‖u‖2L2 = (
J∑
k=0

Z
(J)
k u,

J∑
l=0

Z
(J)
l u)L2 =

J∑
k=0

‖Z(J)
k u‖2L2 +

∑
0≤k 6=l≤J

(Z
(J)
k u, Z

(J)
l u)L2

and

|
∑

0≤k 6=l≤J
(Z

(J)
k u, Z

(J)
l u)L2 | ≤

∑
0≤k 6=l≤J

θkl‖Z(J)
k u‖L2‖Z(J)

l u‖L2

≤ ρ(Θ− I)
J∑
k=0

‖Z(J)
k u‖2L2.
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Proposition 3.9. For k > l, there holds

θkl ≤ ‖(r1Mkp
1)−

1
2 r1Mk p

0 · · · p0︸ ︷︷ ︸
(k−l)×

M
− 1

2

l ‖,

where Mm := RmPm (mass matrix) and Rm is the adjoint of Pm : `2(Ω0
m)→ L2(Ω).

Proof. The result follows from

θkl = sup
0 6= u ∈ Vk
0 6= v ∈ Vl

|(u, v)L2 |
‖u‖L2‖v‖L2

≤ sup
0 6= u ∈ Vk
0 6= v ∈Ml

|(u, v)L2 |
‖u‖L2‖v‖L2

= sup
0 6= µ ∈ `2(Ω1

k−1)

0 6= ν ∈ `2(Ω0
l )

|(Pkp1µ, Plν)L2 |
(Pkp1µ, Pkp1µ)

1
2

L2(Plν, Plν)
1
2

L2

= sup
0 6= µ ∈ `2(Ω1

k−1)

0 6= ν ∈ `2(Ω0
l )

|(Pkp1µ, Pk

(k−l)×︷ ︸︸ ︷
p0 · · · p0 ν)L2 |

〈r1Mkp1µ, µ〉 1
2 〈Mlν, ν〉

1
2

= sup
0 6= µ̃ ∈ `2(Ω1

k−1)

0 6= ν̃ ∈ `2(Ω0
l )

|〈µ̃, (r1Mkp
1)−

1
2 r1Mk

(k−l)×︷ ︸︸ ︷
p0 · · · p0M

− 1
2

l ν̃〉|
‖µ̃‖‖ν̃‖ .

We will now estimate the upper bound for θkl from Proposition 3.9 in our one-
dimensional regular grid case resulting in (9). Define pı : `2(Ωım−1) → `2(Ω0

m) by

(pıu)(x) =

{
u(x), x ∈ Ωım−1,

0, x ∈ Ω0
m\Ωım−1

and rı : `2(Ω0
m)→ `2(Ωım−1) by (rıu)(x) = u(x).

Then rı = (pı)∗, pı = 1
2 [ (−1)ı 2 (−1)ı ]pı and rı = rı 1

2 [ (−1)ı 2 (−1)ı ].

The mass matrixMm is given by the difference stencil 1
6hm[ 1 4 1 ]. It satisfies

the relation

(Mm − hmI)p0 = 1
4p

0(Mm−1 − hm−1I).(12)

Since r1p0 = 0 (use (1)), we obtain

r1Mk p
0 · · · p0︸ ︷︷ ︸
(k−l)×

= r1(Mk − hkI) p0 · · · p0︸ ︷︷ ︸
(k−l)×

= r1(1
4 )k−l p0 · · · p0︸ ︷︷ ︸

(k−l)×

(Ml − hlI).

The set {ψ(j)
m : x 7→

√
2hm sin(πjx)}j∈{1,... ,nm}, where nm := h−1

m − 1, forms

an orthonormal basis of `2(Ω0
m) that consists of eigenvectors ψ

(j)
m of Mm and

1
2 [ (−1)ı 2 (−1)ı ] with eigenvalues 1

3hm(2+cos(πjhm)) and (1+(−1)ı cos(πjhm)),
respectively. There holds

p0ψ
(j)
m−1 = 1

2

√
2(ψ(j)

m − ψ(nm+1−j)
m ) ({j ∈ {1, . . . , nm−1}).

For r1, p1, we have

r1ψ(j)
m = r1ψ(nm+1−j)

m = ψ(j)
m |Ω1

m−1

and p1(ψ(j)
m |Ω1

m−1

) = 1
2 (ψ(j)

m + ψ(nm+1−j)
m )
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(j ∈ {1, . . . , nm−1 + 1}). From

〈ψ(j)
m |Ω1

m−1

, ψ(i)
m |Ω1

m−1

〉 = 〈r1ψ(j)
m , r1ψ(i)

m 〉

= 〈12 (ψ(j)
m + ψ(nm+1−j)

m ), ψ(i)
m 〉 =

 0, i 6= j ∈ {1, . . . , nm−1 + 1},
1
2 , i = j ∈ {1, . . . , nm−1},
1, i = j = nm−1 + 1,

we have that {
√

2ψ
(j)
m |Ω1

m−1

: j∈{1, . . ., nm−1}}∪{ψ(nm−1+1)
m |Ω1

m−1

} is an orthonormal

basis of `2(Ω1
m−1). Note that span{ψ(nm−1+1)

m } ⊥ range p0 : `2(Ω0
m−1) → `2(Ω0

m),

which means that the different scaling of ψ
(nm−1+1)
m |Ω1

m−1

does not enter our com-

putations.
After a basis transformation to the orthonormal bases of `2(Ω0

l ) and `2(Ω1
k),

straightforward computations using the relations above now show that for l = k−1,

θkk−1 ≤ ‖(r1Mkp
1)−

1
2 r1 1

4p
0(Mk−1 − hk−1I)M

− 1
2

k−1‖

= max

{
x(1− x2)

2
√

1 + 2x2
: x = cos(πjhk), j ∈ {1, . . . , nk−1}

}
≤ η := max

{
x(1− x2)

2
√

1 + 2x2
: x ∈ [0, 1]

}
≈ .153

and that for l < k − 1,

θkl ≤ ‖(r1Mkp
1)−

1
2 r1 1

4p
0‖‖ 1

4

k−l−1
p0 · · · p0︸ ︷︷ ︸
(k−l−1)×

‖‖(Ml − hlI)M
− 1

2

l ‖

= max

{√
6|x|

8
√
hk

: x = cos(πjhk), j ∈ {1, . . . , nk−1}
}

·14
k−1−l · max

{
|1− x|

√
hl

(2 + x)
√

3
: x = cos(πjhl), j ∈ {1, . . . , nl}

}
≤

√
6

8
√
hk
· 1

4

k−1−l · 2
√
hl√
3

=
√

2(1
4

√
2)k−l.

By using Lemma 3.8 and ρ(Θ−I) ≤ ‖Θ−I‖∞ ≤ 2(η+
√

2
∑
n≥2(1

4

√
2)n) ≈ .85 < 1,

we conclude that (9) is valid.

3.4. An H1-equivalent norm on MJ . A consequence of (9) is that

‖Z(k)
l ‖L2←L2

<∼ 1 (uniformly in k ≥ l).(13)

Let Qk : L2(Ω) →Mk be the L2-orthogonal projection on Mk. Then it is well
known that

‖I −Qk‖L2←H1
<∼ hk.(14)

From the inverse estimate

‖ · ‖H1
<∼ h−1

k ‖ · ‖L2 on Mk,(15)

we have

‖Qk‖H1←H1
=∼ 1.(16)
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The estimate (14) also implies that for u ∈ Vk,

‖u‖L2
=∼ ‖u‖Mk

= ‖(I − Yk−1)u‖Mk
(17)

≤ ‖(I −Qk−1)u‖Mk
=∼ ‖(I −Qk−1)u‖L2

<∼ hk−1‖u‖H1 .

In [12, Appendix], a compact proof is given of

J∑
k=1

‖(Qk −Qk−1)u‖2H1
=∼ ‖u‖2H1 (u ∈MJ)(18)

(where Q−1 := 0). As we will see, this proof with Z
(J)
k playing the role of Qk−Qk−1

will also yield (10).

Theorem 3.10. We have
∑J
k=0 ‖Z

(J)
k u‖2H1

=∼ ‖u‖2H1 (u ∈MJ).

Proof (based on [12, Appendix]). Let u ∈ MJ and ul = (Ql − Ql−1)u. Then

ul ∈Ml, and so for l < k ≤ J , we have Z
(J)
k ul = 0. For k ≤ l, it follows from (15),

(13) and (14) that

‖Z(J)
k ul‖H1

<∼ h−1
k ‖Z

(J)
k ul‖L2

<∼ h−1
k ‖ul‖L2

<∼ h−1
k hl‖ul‖H1 .

Let l ∧m = min{l,m}. Writing u =
∑J
l=0 ul, we get

J∑
k=0

‖Z(J)
k u‖2H1 =

J∑
k=0

J∑
l,m=k

(Z
(J)
k ul, Z

(J)
k um)H1 =

J∑
l,m=0

l∧m∑
k=0

(Z
(J)
k ul, Z

(J)
k um)H1

≤
J∑

l,m=0

l∧m∑
k=0

h−2
k hlhm‖ul‖H1‖um‖H1

<∼
J∑

l,m=0

h−2
l∧mhlhm‖ul‖H1‖um‖H1

<∼
J∑
l=0

‖ul‖2H1
=∼ ‖u‖2H1

by (18).
In [12, Lemma 6.1], it was proved that for k ≤ l, u ∈Mk and v ∈ Ml,

|(u, v)H1 | <∼ (hkhl)
− 1

2 ‖u‖H1‖v‖L2.

Using this and (17), we obtain for u ∈MJ

‖u‖2H1 =
J∑

k,l=0

(Z
(J)
k u, Z

(J)
l u)H1

<∼
J∑

k,l=0

(hkhl)
− 1

2 min{hk−1, hl−1}‖Z(J)
k u‖H1‖Z(J)

l v‖H1
<∼

J∑
k=0

‖Z(J)
k u‖2H1 ,

which completes the proof.
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7. J. Junkherr, Multigrid methods for weakly singular integral equations of the first kind, Ph.D.
thesis, Christian-Albrechts-Universität Kiel, 1994.

8. W. Mulder, A new multigrid approach to convection problems, J. Comp. Phys. 83 (1989),
303–323. MR 90f:76013

9. N.H. Naik and J. Van Rosendale, The improved robustness of multigrid elliptic solvers based
on multiple semicoarsened grids, SIAM J. Numer. Anal. 30 (1993), 215–229. MR 94b:65159

10. C.W. Oosterlee and P. Wesseling, On the robustness of a multiple semi-coarsened grid method,
ZAMM 75 (1995), no. 4, 251–257. CMP 95:12

11. R.P. Stevenson, Robustness of the additive and multiplicative frequency decomposition multi-
level method, Computing 54 (1995), 331–346. CMP 95:13

12. J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34
(1992), 581–613. MR 93k:65029

13. H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numerica (1993),
285–326. MR 94i:65128

Department of Mathematics, Nijmegen University, Toernooiveld 1, 6525 ED Nij-

megen, The Netherlands

E-mail address: stevenso@sci.kun.nl


