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ON THE OPTIMAL STABILITY OF THE BERNSTEIN BASIS

R. T. FAROUKI AND T. N. T. GOODMAN

Abstract. We show that the Bernstein polynomial basis on a given inter-
val is “optimally stable,” in the sense that no other nonnegative basis yields
systematically smaller condition numbers for the values or roots of arbitrary
polynomials on that interval. This result follows from a partial ordering of
the set of all nonnegative bases that is induced by nonnegative basis transfor-
mations. We further show, by means of some low–degree examples, that the
Bernstein form is not uniquely optimal in this respect. However, it is the only
optimally stable basis whose elements have no roots on the interior of the cho-
sen interval. These ideas are illustrated by comparing the stability properties
of the power, Bernstein, and generalized Ball bases.

1. Introduction

To represent a polynomial p in a digital computer, we store in memory its coef-
ficients c0, . . . , cn in a suitable basis. These coefficients, together with a value t of
the independent variable, serve as input to an evaluation algorithm that furnishes
the polynomial value p(t) as output.

Since most scientific/engineering calculations are performed in floating–point
arithmetic, limitations that are imposed by the choice of basis on the expected
accuracy of the value p(t) are clearly of fundamental concern. In theoretical ex-
positions, for example, one usually relies upon the monomial or “power” form
c0 + c1t + · · · + cnt

n, which may be evaluated by Horner’s method. It has been
shown, however, that if one is interested only in polynomial values (or roots) on
t ∈ [ 0, 1 ], the Bernstein form on this interval is systematically more stable than
the power form [5], in the following sense:

We imagine the coefficients of both the power and Bernstein forms of p to be
subject to random errors of maximum relative magnitude ε, and we ask: how do
the bounds on the corresponding perturbations δp(t) in the value p(t) compare?
These bounds may be expressed in terms of “condition numbers” (see §2 below)
and one finds they are systematically smaller — i.e., for every polynomial p and for
each value t ∈ (0, 1) — in the Bernstein form.

The enhanced stability of the Bernstein form, as compared to the power form,
can be attributed to two simple facts: (i) the power and Bernstein bases are both
nonnegative on [ 0, 1 ]; and (ii) the latter may be transformed into the former by
means of a nonnegative matrix. Our purpose here is to explore the implications of
these facts in a broader and more fundamental context. Thus, we consider families
of nonnegative bases generated by nonnegative transformations and identify their
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“minimal” members (those not obtainable as nonnegative transformations of any
other nonnegative basis).

The Bernstein basis is one example of such “optimally stable” bases, in the
sense that there exists no other nonnegative basis that gives systematically smaller
condition numbers than it. Although it is not uniquely optimal, no other basis in
common use enjoys this distinction, and it is uncertain whether other conceivable
optimally–stable bases would share the useful properties and algorithms that we
associate with the Bernstein form.

We proceed in the remainder of this paper as follows. After reviewing basic
ideas concerning polynomial condition numbers in §2, we introduce in §3 a partial
ordering of the set of nonnegative bases on a given interval, and identify its minimal
elements as optimally stable bases. We show in §4 that the Bernstein basis is one
such basis, and we derive results that distinguish it from other possible optimal
bases. In §5 and §6 we illustrate the practical consequences of these results in
the context of three representations (the power, Bernstein, and generalized Ball
forms) commonly used in computer–aided geometric design. Finally, §7 offers some
concluding remarks.

2. Condition numbers

Any set of n+1 linearly independent polynomials, Φ = {φ0(t), . . . , φn(t)}, defines
a basis for polynomials of degree n — i.e., we can uniquely express any polynomial
p(t) of degree ≤ n in the form

p(t) =
n∑
k=0

ck φk(t)(1)

by a suitable choice of coefficients c0, . . . , cn. We shall be concerned here with the
stability of such representations, i.e., in how sensitive a value or root of p is to
random perturbations of a given maximum relative magnitude ε in the coefficients
c0, . . . , cn corresponding to the basis Φ.

A sharp bound on the perturbation δp(t) in (1) may be expressed in terms of a
condition number CΦ(p(t)) for the value of p in the basis Φ as

|δp(t)| ≤ CΦ(p(t)) ε where CΦ(p(t)) =
n∑
k=0

|ckφk(t)| .(2)

The above bound holds for arbitrary — not just infinitesimal — coefficient pertur-
bations ε. Note that CΦ(p(t)) depends as much on the adopted basis Φ as on the
particular polynomial p under consideration.

Suppose now that τ is a simple real root of (1), i.e., p(τ) = 0 6= p′(τ). We can
also characterize the sensitivity of τ to a perturbation ε of the coefficients c0, . . . , cn
in the basis Φ by a condition number. Namely, the displacement δτ of this root
satisfies

|δτ | ≤ CΦ(τ) ε where CΦ(τ) =
1

|p′(τ)|

n∑
k=0

|ckφk(τ)| .(3)

The quantity CΦ(τ) is called the condition number for the root τ in the basis Φ
(note that the above bound is strictly valid only in the limit ε→ 0). Further details
on these condition number formulations may be found in [5]; for a comprehensive
discussion, see [6].
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To obtain accurate results when performing floating–point computations with
polynomials, it is desirable to employ a representation — i.e., a choice of basis
— in which the condition numbers are as small as possible.1 When comparing
condition numbers in arbitrary bases Φ = {φ0, . . . , φn} and Ψ = {ψ0, . . . , ψn} one
will find, in general, that some polynomials p and values of t yield smaller condition
numbers in the Φ basis, while others are better–conditioned in the Ψ representation.
In other words, no systematic inequality between CΦ(p(t)) and CΨ(p(t)) — valid
for all p and every t in some domain of interest — can be expected when Φ and Ψ
are arbitrarily chosen.

This problem may be surmounted by imposing suitable restrictions on the bases
we consider. Indeed, such conditions may be independently desirable, on account of
useful attributes or algorithms they incur. Specifically, we shall be concerned here
only with bases Φ = {φ0, . . . , φn} that are nonnegative over an interval t ∈ [ a, b ]
of interest, i.e., for k = 0, . . . , n they satisfy

φk(t) ≥ 0 for t ∈ [ a, b ] .

If, in addition, the basis Φ forms a partition of unity (φ0(t) + · · ·+ φn(t) ≡ 1) the
representation (1) will exhibit the convex hull property:

min
k

(ck) ≤ p(t) ≤ max
k

(ck) for t ∈ [ a, b ] .

In terms of condition numbers, nonnegative bases are of particular interest in the
context of the following result:

Proposition 1. Let Φ = {φ0(t), . . . , φn(t)} and Ψ = {ψ0(t), . . . , ψn(t)} be non-
negative bases for degree–n polynomials on t ∈ [ a, b ] such that the latter can be
expressed as a nonnegative combination of the former, i.e.,

ψj(t) =
n∑
k=0

Mjkφk(t) , j = 0, . . . , n ,(4)

where Mjk ≥ 0 for all 0 ≤ j, k ≤ n .(5)

Then the condition number for the value of any degree–n polynomial p(t) at any
point t ∈ [ a, b ] in these bases satisfies the inequality

CΦ(p(t)) ≤ CΨ(p(t)) .(6)

Proof. The result (6) is an immediate consequence of the triangle inequality and the
nonnegativity of the matrix elements Mjk and the bases Φ and Ψ. It is a straight-
forward generalization of Theorem 1 in [5], wherein it was couched specifically in
terms of the Bernstein basis bnk(t) =

(
n
k

)
(1− t)n−ktk for k = 0, . . . , n on [ 0, 1 ] and

the power basis {1, t, . . . , tn} — note that the latter is given by the nonnegative
combination

tj =
n∑
k=j

(
k
j

)(
n
j

) bnk(t) for j = 0, . . . , n(7)

of the former.

1It can be shown by backward error analysis [12] that the cumulative effect of floating–point
arithmetic errors during any computation on given polynomials is equivalent to certain perturba-
tions of their exact coefficients.
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The inequality (6) clearly also holds for root condition numbers, since these differ
from condition numbers for the value only by the magnitude of the derivative at
the root (which is independent of the choice of basis).

3. Partial ordering of nonnegative bases

Let Πn be the space of all polynomials of degree ≤ n on the interval [ a, b ]. We
shall denote by Bn the set of nonnegative bases for Πn.

If Φ = {φ0, . . . , φn} and Ψ = {ψ0, . . . , ψn} are members of Bn, we write Φ ≺∼ Ψ
if there exists a nonnegative (n+ 1)× (n+ 1) matrix M such that

ΨT = M ΦT .(8)

Since the product of two nonnegative matrices is also a nonnegative matrix, the
relation ≺∼ evidently satisfies the transitivity condition

Ψ ≺∼ Φ and Φ ≺∼ Θ =⇒ Ψ ≺∼ Θ .

It can easily be verified that a nonnegative matrix has a nonnegative inverse
if and only if it is the product of a permutation matrix and a positive diagonal
matrix. Thus, the relations Φ ≺∼ Ψ and Ψ ≺∼ Φ are simultaneously satisfied if and
only if, under suitable ordering, the elements of Φ are constant positive multiples
of the elements of Ψ. In such a case, we write Φ ∼ Ψ.

We shall also write Φ ≺ Ψ if Φ ≺∼ Ψ but Φ 6∼ Ψ. These relations may be phrased
as follows. When Φ ≺ Ψ, we say “Φ precedes Ψ.” If Φ ∼ Ψ, we say “Φ is similar
to Ψ.” Finally, Φ ≺∼ Ψ is read “Φ precedes or is similar to Ψ.”

The relation ≺∼ induces a partial ordering among the members of Bn — we say
the ordering is “partial” since there exist pairs of bases Φ and Ψ in Bn such that
neither the matrix M defined by (8) nor its inverse is nonnegative; no precedence
relation can be established between such bases.

We shall call any nonnegative basis Φ a minimal basis if there is no basis Ψ
in Bn that satisfies Ψ ≺ Φ. Note that, since ≺∼ only partially orders Bn, there
may be — modulo similarities — more than one minimal basis. The following
theorem demonstrates that minimal bases are “optimally stable” (in the sense of
the condition numbers defined in §2):

Theorem 1. Any two bases Φ and Ψ in Bn satisfy

Φ ≺∼ Ψ ⇐⇒ CΦ(p(t)) ≤ CΨ(p(t)) ,(9)

where the inequality on the right holds for each polynomial p ∈ Πn evaluated at
every value t ∈ [ a, b ].

Proof. That Φ ≺∼ Ψ ⇒ CΦ(p(t)) ≤ CΨ(p(t)) for each p ∈ Πn and every t ∈ [ a, b ]

follows directly from Proposition 1 and the definition of ≺∼ .
To verify the converse statement, we shall argue by contradiction. Suppose that

CΦ(p(t)) ≤ CΨ(p(t)) for each p ∈ Πn and any t ∈ [ a, b ], but the relation Φ ≺∼ Ψ

does not hold. Then ΨT = M ΦT , where the matrix M is not nonnegative, i.e.,
among its elements Mij for 0 ≤ i, j ≤ n we haveMkl < 0 for some k, l. Furthermore,
since Φ = {φ0, . . . , φn} and Ψ = {ψ0, . . . , ψn} are nonnegative bases, we clearly
must have Mkr > 0 for some r.
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Now taking p = ψk and choosing a value t ∈ [ a, b ] such that both φl(t) > 0 and
φr(t) > 0, we observe that

CΦ(p(t)) =
n∑
j=0

|Mkj |φj(t) >

∣∣∣∣∣∣
n∑
j=0

Mkj φj(t)

∣∣∣∣∣∣
= |ψk(t)| = CΨ(p(t)) ,

where we make use of the triangle inequality and the fact that Mkl and Mkr are of
opposite sign. Since the above contradicts our initial supposition, we must conclude
that it is false.

Note that, in Theorem 1, Φ ∼ Ψ ⇒ CΦ(p(t)) ≡ CΨ(p(t)) in equation (9) for
each p ∈ Πn and every t ∈ [ a, b ].

4. Optimal stability of the Bernstein basis

Consider now the Bernstein basis B defined on t ∈ [ a, b ] by

bnj (t) =

(
n

j

)
(b− t)n−j(t− a)j

(b− a)n
for j = 0, . . . , n .(10)

We will demonstrate that B has optimal stability in Bn.

Theorem 2. Suppose that Ψ = {ψ0, . . . , ψn} and Ψ̃ = {ψ̃0, . . . , ψ̃n} are bases in
Bn satisfying

ψ
(i)
j (a) = 0 for i = 0, . . . , j − 1 and j = 1, . . . , n ,

ψ̃
(i)
j (b) = 0 for i = 0, . . . , n− j − 1 and j = 0, . . . , n− 1 .

Then, if Φ ∈ Bn satisfies both Φ ≺∼ Ψ and Φ ≺∼ Ψ̃, we have Φ ∼ B.

Proof. Let Mij for 0 ≤ i, j ≤ n be the elements of the nonnegative matrix M such
that

Ψ̃T = M ΦT .(11)

We will prove by induction that the basis Φ may be ordered such that the matrix
M is lower triangular. Suppose that, for a suitable ordering of Φ, there is a row k
such that

Mij = 0 for j ≥ i+ 1 and i = 0, . . . , k − 1 .

This hypothesis is vacuous if k = 0. Note that it is unaffected by reordering

φk, . . . , φn. Note also that, for ψ̃0, . . . , ψ̃k−1 to be linearly independent under this
hypothesis, we must have Mii > 0 for i = 0, . . . , k − 1. Now for k ≤ n− 1,

0 = ψ̃k(b) =
n∑
j=0

Mkj φj(b) ,

and since Mkj and φj(b) are nonnegative, we must have Mkj φj(b) = 0 for j =
0, . . . , n. If we were to suppose that Mkj > 0 for j = k, . . . , n, then φj(b) = 0

for j = k, . . . , n. However, since ψ̃j(b) = 0 for j = 0, . . . , k − 1, we may infer
from our hypothesis that φj(b) = 0 for j = 0, . . . , k − 1 also. But the values
φ0(b), . . . , φn(b) cannot all vanish if Φ is a basis for Πn. Our supposition that
Mjk > 0 for j = k, . . . , n must therefore be false. Thus, by reordering φk, . . . , φn
if necessary, we may assume that Mkn = 0.
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If k = n− 1, the inductive proof is complete. Otherwise, for k ≤ n− 2, we note
that

0 = ψ̃′k(b) =
n−1∑
j=0

Mkj φ
′
j(b) ,(12)

and, again,
∑n−1
j=0 Mkj φj(b) = 0. Now supposing that Mkj > 0 for j = k, . . . , n−1

we have, as before, φj(b) = 0 for j = k, . . . , n− 1. Since the basis Φ is nonnegative

on [ a, b ] this implies that φ′j(b) ≤ 0 for j = k, . . . , n− 1. Now ψ̃j(b) = ψ̃′j(b) = 0
for j = 0, . . . , k − 1, and by our hypothesis we also have φj(b) = φ′j(b) = 0 for
j = 0, . . . , k − 1. To satisfy equation (12) under these conditions, we must have
φ′j(b) = 0 for j = k, . . . , n − 1. Hence, φj(b) = φ′j(b) = 0 for j = 0, . . . , n − 1,
i.e., the n polynomials φ0, . . . , φn−1 lie in the (n− 1)–dimensional space { p ∈ Πn :
p(b) = p′(b) = 0 }, which contradicts their linear independence. The supposition
that Mkj > 0 for j = k, . . . , n − 1 must therefore be false, and on reordering
φk, . . . , φn−1 if necessary we may assume that Mk,n−1 = 0.

Continuing in this manner, one can show that Mkj = 0 for j = k + 1, . . . , n,
and the inductive proof is complete. So we can henceforth assume that (11) holds,
where M is a nonnegative, lower triangular matrix.

We shall now prove by induction that

φj(t) = cj(b− t)n−j(t− a)j(13)

for nonzero constants c0, . . . , cn. As our inductive hypothesis we suppose that, for
some k between 0 and n, expression (13) holds for j = n − k + 1, . . . , n. This
hypothesis is vacuous for k = 0.

Let ΨT = N ΦT for some nonnegative matrix N having elements Nij , 0 ≤ i, j ≤
n. First, suppose that k ≤ n− 1. Then

0 = ψn−k(a) =
n∑
j=0

Nn−k,j φj(a) ,

and hence Nn−k,j φj(a) = 0 for j = 0, . . . , n. If we suppose that Nn−k,j > 0 for
j = 0, . . . , n− k, then φj(a) = 0 for j = 0, . . . , n − k. But, by our hypothesis, φj
has the form (13) for j = n−k+1, . . . , n, and so φj(a) = 0 for j = n−k+1, . . . , n
also. However, the values φ0(a), . . . , φn(a) cannot all vanish if Φ is a basis for Πn,
so we conclude that the supposition Nn−k,j > 0 for j = 0, . . . , n− k must be false.
Hence, we must have Nn−k,l = 0 for some l, where 0 ≤ l ≤ n− k.

Next suppose that k ≤ n− 2. Then we have

0 = ψ′n−k(a) =
n∑
j=0

Nn−k,j φ
′
j(a) ,(14)

and similarly
∑n
j=0 Nn−k,j φj(a) = 0. We suppose that Nn−k,j > 0 for j =

0, . . . , n− k (j 6= l). Then, as before, φj(a) = 0 for j = 0, . . . , n− k (j 6= l). Since
the basis Φ is nonnegative on [ a, b ] this implies that φ′j(a) ≥ 0 for j = 0, . . . , n− k
(j 6= l). Now by our hypothesis, φj has the form (13) for j = n − k + 1, . . . , n,
and so φj(a) = φ′j(a) = 0 for j = 0, . . . , n− k (j 6= l). In order to satisfy equation
(14) under these conditions, we must have φ′j(a) = 0 for j = 0, . . . , n − k (j 6= l).
This implies that the set {φj : 0 ≤ j ≤ n, j 6= l } of n polynomials lies in the
(n − 1)–dimensional space { p ∈ Πn : p(a) = p′(a) = 0 }, which contradicts their
linear independence. Thus, the supposition that Nn−k,j > 0 for j = 0, . . . , n − k
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(j 6= l) is false, and we infer that Nn−k,m = 0 for some m, where 0 ≤ m ≤ n − k
and m 6= l.

Continuing in this manner, one can show that only one of the elements Nn−k,j
for j = 0, . . . , n − k is nonzero. Thus, for some r between 0 and n − k, we make
use of (13) to deduce that

ψn−k = crφr +
n∑

j=n−k+1

cj(b− t)n−j(t− a)j(15)

for some nonnegative constants cr and cn−k+1, . . . , cn. Now since ψ̃
(i)
r (b) = 0 for

i = 0, . . . , n− r− 1, the relation (11) — where M is lower triangular — shows that

φ(i)
r (b) = 0 for i = 0, . . . , n− r − 1 .

On the other hand, equation (15) and the requirement that ψ
(i)
n−k(a) = 0 for i =

0, . . . , n− k − 1 indicate that

φ(i)
r (a) = 0 for i = 0, . . . , n− k − 1 .

From the above conditions we see that, for φr to not vanish identically, we must
have r = n − k. Hence we deduce that φn−k(t) is a constant positive multiple of
(b− t)k(t− a)n−k.

Hence (13) is established for j = n−k, and the inductive step is complete. Thus,
the form (13) holds for j = 0, . . . , n and we have Φ ∼ B.

Corollary 1. The basis B is minimal.

Proof. Suppose Φ ∈ Bn is such that Φ ≺∼ B. Since the basis B satisfies the condi-

tions on both Ψ and Ψ̃ stipulated in Theorem 2, this theorem implies that Φ ∼ B.
Thus, there is no basis Φ in Bn such that Φ ≺ B.

Corollary 1 establishes the optimal stability of the Bernstein basis. We note also
the following corollaries to Theorem 2:

Corollary 2. If Φ ∈ Bn satisfies both Φ ≺∼ {1, t − a, . . . , (t − a)n} and Φ ≺∼ {1,
b− t, . . . , (b− t)n}, then Φ ∼ B.

Corollary 3. Suppose that Φ ∈ Bn satisfies Φ ≺∼ {1, t− a, . . . , (t− a)n} and Φ is
symmetric, i.e., Φ(t) ∼ Φ(a+ b− t). Then Φ ∼ B.

Remark 1. The Bernstein basis is not the only minimal basis. Consider, for exam-
ple,

Ψ = {(1− t)2, (2t− 1)2, t2}
as a basis for Π2 on t ∈ [ 0, 1 ]. Suppose that Φ = {φ0, φ1, φ2} ∈ B2 satisfies Φ ≺∼ Ψ.
Then (1− t)2 = aφ0 + bφ1 + cφ2 with a, b, c ≥ 0. Since

aφ
(i)
0 (1) + bφ

(i)
1 (1) + cφ

(i)
2 (1) = 0 for i = 0, 1

the argument used in the proof of Theorem 2 shows that only one of a, b, c can
be nonzero. So we may assume φ0(t) = (1− t)2, and similar arguments lead us to
conclude that φ2(t) = t2. Hence (2t− 1)2 = a(1− t)2 + bφ1(t) + ct2 with a, b, c ≥ 0.
Setting t = 1

2 gives a = c = 0, and hence we have Φ ∼ Ψ.
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The optimal stability of the Bernstein basis is closely related to another opti-
mal attribute, recently identified by Carnicer and Peña [2] — namely, its optimal
shape–preserving properties. They show that any normalized totally positive basis
may be obtained from the Bernstein basis by multiplication with a totally posi-
tive transformation matrix (a totally positive matrix is one whose minors are all
nonnegative; a basis φ0, . . . , φn is totally positive on the interval t ∈ [ a, b ] if the
collocation matrix with elements Mjk = φj(tk), 0 ≤ j, k ≤ n, is totally positive for
any sequence t0, . . . , tn ∈ [ a, b ]).

Carnicer and Peña have subsequently considered nonnegative bases, and from
Theorem 3.9 in their recent paper [3] one can independently infer that the Bern-
stein basis is minimal with respect to the partial order ≺∼ among the set of all
nonnegative bases, and is therefore optimally stable.

We now give some results that serve to differentiate the Bernstein basis from
other possible optimally–stable bases. If φ(t) and ψ(t) are polynomials on t ∈ [ a, b ]
we shall write Z(φ) ⊆ Z(ψ) if the zeros of ψ (with multiplicity) include those of φ,
i.e., if φ(j)(τ) = 0 for j = 0, . . . , k for any τ ∈ [ a, b ] and k ≥ 0, then ψ(j)(τ) = 0
for j = 0, . . . , k.

Proposition 2. Suppose Φ ∈ Bn includes two elements φi and φj (i 6= j) such
that Z(φi) ⊆ Z(φj). Then Φ is not minimal.

Proof. Let τ1, . . . , τr denote all the zeros of φi, with multiplicity, on [ a, b ]. Then
φi(t) = |(t − τ1) · · · (t − τr)| pi(t), where pi(t) > 0 for t ∈ [ a, b ]. So φj(t) =
|(t − τ1) · · · (t − τr)| pj(t), where pj(t) ≥ 0 for t ∈ [ a, b ]. Choose c > 0 so that
c pj(t) < pi(t) for t ∈ [ a, b ]. Then φi(t) − c φj(t) ≥ 0 for t ∈ [ a, b ]. Now define
Ψ = {ψ0, . . . , ψn} by ψk = φk if k 6= i, and ψi = φi − cφj . Then φk = ψk for k 6= i,
and φi = ψi + cψj . Hence Ψ ≺ Φ, so Φ is not minimal.

Theorem 3. The Bernstein basis (10) is the only minimal basis with no zeros on
t ∈ (a, b).

Proof. Let Φ = {φ0, . . . ., φn} be a minimal basis with no zeros on (a, b). Suppose
that φi has zeros of multiplicity `i and ri at t = a and t = b for i = 0, . . . , n.
Suppose further that `i = `j for some i 6= j. If ri ≤ rj , then Z(φi) ⊆ Z(φj), while
if rj ≤ ri, then Z(φj) ⊆ Z(φi). By Proposition 2, this contradicts Φ being minimal.
So `0, . . . , `n must be distinct, and we may order the basis such that `i = i for
i = 0, . . . , n. If, for some i < j, we have ri ≤ rj , then Z(φi) ⊆ Z(φj), which again
contradicts the minimality of Φ. So i < j must imply that ri > rj , and hence
ri = n− i for i = 0, . . . , n. Thus, we have φi(t) = ci(b− t)n−i(t− a)i where ci > 0
for i = 0, . . . , n.

A closely related result is Theorem 7 of [5], which states that if the basis Φ =
{φ0, . . . , φn} is such that every root — real or complex — of each basis function
lies outside the open disk D in the complex plane having the real interval t ∈ (a, b)
as diameter, then B ≺ Φ.

Remark 2. For any value 1
2 < a < 1, the following form a minimal basis for Π2 on

t ∈ [ 0, 1 ] that is a partition of unity, yet is distinct from the Bernstein basis:

φ0(t) =
2t(1− t)

a
, φ1(t) =

(2a− 1)t2

a2
, φ2(t) =

(t− a)2

a2
.

The minimality of this basis can be verified by methods similar to those used in
Remark 1.
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5. Power, Bernstein, and Ball bases

We now illustrate the above ideas in the context of some parametric curve and
surface representations commonly used in computer–aided geometric design. The
properties of the Bernstein–Bézier form

r(t) =
n∑
k=0

pk b
n
k(t) , bnk(t) =

(
n

k

)
(1− t)n−ktk(16)

of a degree–n curve defined on t ∈ [ 0, 1 ] are well known [4]. Note that n is only an
upper bound on the true degree of the curve. It is not possible, by mere inspection
of the Bézier control points p0, . . . ,pn, to ascertain whether r(t) is, in fact, a lower–
degree curve “masquerading” as a degree–n curve (the condition for this is that the
nth forward difference ∆np0 of the control points should vanish).

To address this problem, the four functions

β3
0(t) = (1− t)2, β3

1(t) = 2(1− t)2t, β3
2(t) = 2(1− t)t2, β3

3(t) = t2

have been proposed [1] as a basis for cubic polynomials. This basis has the advan-
tage that, when a cubic is described in terms of “Ball control points” b0,b1,b2,b3

as

r(t) =
3∑
j=0

bj β
3
j (t) ,

a coincidence of the two interior points (b1 = b2) is sufficient and necessary for
r(t) to degenerate to a quadratic curve, i.e., a parabola segment.

A generalization of the cubic Ball basis that retains the “degree–reduction prop-
erty” has been given in [9]. For polynomials of odd degree

n = 2m+ 1 ,

the generalized Ball basis on t ∈ [ 0, 1 ] is defined by

βnj (t) =

(
m+ j

j

)
(1− t)m+1 tj = βnn−j(1− t)(17)

for j = 0, . . . ,m. A degree–n curve with control points b0, . . . ,bn in the basis
(17) exhibits the convex–hull and variation–diminishing properties in common with
Bézier curves [7, 8]. Furthermore, a coincidence

bm−r+1 = bm−r+2 = · · · = bm+r−1 = bm+r

of the 2r “middle” control points induces an r–fold degree reduction, i.e., the curve
is then of true degree n − r rather than n. The Ball form also offers a recursive
algorithm [9] for evaluating/subdividing curves that is actually somewhat more
efficient than the de Casteljau algorithm for Bézier curves.

For curves of even degree, n = 2m, the Ball basis is defined by (17) for j =
0, . . . ,m− 1 while the “central” basis function is given by

βnm(t) =

(
2m

m

)
(1− t)m tm .

The methods outlined above can be readily modified to accommodate even–degree
curves; see [7, 8, 9, 10] for details.

While the Ball and Bézier representations share many useful features, we
will show that the latter is superior in one important respect — it is a “better-
conditioned” or more stable representation. Since both bases are nonnegative, we
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see from Theorem 1 that this is equivalent to the Ball basis being expressible as a
nonnegative combination of the Bernstein basis.

Furthermore, whereas the Bernstein form is systematically more stable than the
power form, the Ball representation does not inherit this property. Indeed, since the
Ball basis is symmetric, Corollary 3 indicates that it cannot be systematically more
stable than the power basis, i.e., the power basis is not a nonnegative combination
of the Ball basis. We now proceed to give explicit representations for the Ball basis
in terms of the Bernstein basis and for the power basis in terms of the Ball basis.2

5.1. The Ball basis in terms of the Bernstein basis. To express the jth Ball
basis function of (odd) degree n = 2m+ 1 in terms of the degree–n Bernstein basis,
i.e., to determine the matrix elements Λjk in

βnj (t) =
n∑
k=0

Λjk b
n
k(t) ,

we multiply (17) by the binomial expansion of 1 = [ (1− t) + t ]m−j :

βnj (t) =

(
m+ j

j

)
(1− t)m+1 tj

m−j∑
i=0

(
m− j
i

)
(1− t)m−j−i ti

=

(
m+ j

j

) m−j∑
i=0

(
m− j
i

)
(1− t)2m+1−(i+j) ti+j .

Setting k = i+ j in the above then gives

βnj (t) =
m∑
k=j

(
m+j
j

)(
m−j
k−j
)(

n
k

) bnk(t) for j = 0, . . . ,m .(18)

This defines rows j = 0, . . . ,m of the matrix {Λjk} 0≤j,k≤n. Analogously, one finds
that rows j = m+ 1, . . . , n are determined by the expression

βnn−j(t) =

n−j∑
k=m+1

(
m+j
j

)(
m−j

k−m−1

)(
n
k

) bnk(t) for j = 0, . . . ,m .(19)

Hence from (18) and (19) we have for j = 0, . . . ,m a complete description of the
basis–conversion matrix as follows:

Λjk =


0 when 0 ≤ k < j,(
m+j
j

)(
m−j
k−j
)(

n
k

) when j ≤ k ≤ m,

0 when m < k ≤ n,

Λn−j,k =


0 when 0 ≤ k < m+ 1,(
m+j
j

)(
m−j

k−m−1

)(
n
k

) when m+ 1 ≤ k ≤ n− j,

0 when n− j < k ≤ n.

2We use the unit interval for simplicity; the arguments generalize readily to an arbitrary
interval t ∈ [ a, b ] if we take 1, t− a, . . . , (t− a)n or 1, b− t, . . . , (b− t)n for the power basis.
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The generalized Ball basis of odd degree n = 2m+1 is thus evidently a nonnegative
combination3 of the Bernstein basis of the same degree. By similar arguments, it
can be verified that this result also holds for even–degree Ball and Bernstein bases
— see, for example, [10].

5.2. The power basis in terms of the Ball basis. The most convenient means
of expressing the power basis 1, t, . . . , tn in terms of the generalized Ball basis of
odd degree n = 2m + 1 is to follow the approach used in [9]. We note that the
polynomial Tn[ f(t) ] of degree n = 2m+ 1 that interpolates the values and first m
derivatives

f(0), f ′(0), f ′′(0), . . . , f (m)(0) and f(1), f ′(1), f ′′(1), . . . , f (m)(1)

of a function f(t) at t = 0 and t = 1 can be expressed as

Tn[ f(t) ] =
m∑
k=0

(1− t)m+1 tk
1

k!

dk

dtk
f(t)

(1− t)m+1

∣∣∣∣
t=0

+
m∑
k=0

(1− t)k tm+1 (−1)k
1

k!

dk

dtk
f(t)

tm+1

∣∣∣∣
t=1

.

Since Tn[ tj ] ≡ tj for j = 0, . . . , n, the matrix coefficients Γjk that express the first
n powers of t in terms of the Ball basis of degree n,

tj =
n∑
k=0

Γjk β
n
k (t) ,

are evidently given by

Γjk =
m!

(m+ k)!

dk

dtk
tj

(1− t)m+1

∣∣∣∣
t=0

,

Γj,n−k = (−1)k
m!

(m+ k)!

dk

dtk
tj

tm+1

∣∣∣∣
t=1

for j = 0, . . . , n and k = 0, . . . ,m. Further, by use of the Leibniz rule

dr

dtr
fg =

r∑
i=0

(
r

i

)
dr−i

dtr−i
f

di

dti
g

for the derivatives of the product of functions f and g, it can be verified by straight-
forward but tedious calculations that these expressions reduce to

Γjk =

 0 if k < j,
(k − j + 1) · · · k

(m+ k − j + 1) · · · (m+ k)
if k ≥ j,

Γj,n−k = (−1)k
(j −m− k) · · · (j −m− 1)

(m+ 1) · · · (m+ k)

for j = 0, . . . , n and k = 0, . . . ,m.
From the above it is evident that, while the first m + 1 columns of the matrix

{Γjk}0≤j,k≤n have only nonnegative entries, those in the last m + 1 columns are

3In fact, the matrix that transforms the Bernstein basis into the Ball basis is not only nonneg-
ative, but totally positive — i.e., all of its minors are nonnegative [8].
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not all nonnegative — in particular, those elements for which j > m + k and k is
odd are negative. This can be verified by enumerating a few low–degree examples:[

1
t

]
=

[
1 1
0 1

] [
β1

0(t)
β1

1(t)

]
,

1
t
t2

t3

 =


1 1 1 1
0 1/2 1/2 1
0 0 0 1
0 0 −1/2 1



β3

0(t)
β3

1(t)
β3

2(t)
β3

3(t)

 ,


1
t
t2

t3

t4

t5

 =


1 1 1 1 1 1
0 1/3 1/2 1/2 2/3 1
0 0 1/6 1/6 1/3 1
0 0 0 0 0 1
0 0 0 0 −1/3 1
0 0 0 1/6 −2/3 1




β5

0(t)
β5

1(t)
β5

2(t)
β5

3(t)
β5

4(t)
β5

5(t)

 .
Similar results are obtained for even–degree bases.

6. The Wilkinson polynomials

Two polynomials, first studied [11] by J. H. Wilkinson in 1959, have become
de facto “benchmarks” for assessing the stability of various representations for
univariate polynomials. Both are of degree 20 and have 20 distinct real roots: in
the first case the roots are equidistant, while in the second the spacing of the roots
corresponds to a geometric progression. The stability of the power and Bernstein
forms of these polynomials was assessed in [5]; here we extend this comparison to
include the generalized Ball representation.

6.1. Equidistant roots. The Wilkinson polynomial with equally spaced roots

P (t) =
n∏
k=1

(t− k/n) , n = 20 ,

is notoriously ill-conditioned. Figure 1 shows the computed root condition numbers
for this polynomial in the power, Bernstein, and Ball bases.

While the power form is extremely unstable, the Bernstein and Ball representa-
tions both offer a significant improvement. The Ball form is, in fact, only marginally
worse than the Bernstein form in this case, with condition numbers no more than
about one order of magnitude greater than the latter. This would typically result in
the loss of about one decimal digit of accuracy in floating–point root calculations.

6.2. Geometric sequence of roots. For the Wilkinson polynomial with geomet-
rically spaced roots,

P (t) =
n∏
k=1

(t− 2/2k) , n = 20 ,

it can be seen in Figure 2 that the situation is dramatically different.
While the power and Bernstein forms are exceedingly well–conditioned — the

latter being slightly better than the former — the Ball representation is seen to
be extremely unstable. Indeed, random fractional perturbations of order 10−10 in
the Ball coefficients of this polynomial can lead to displacements of order unity for
those roots in the range 0.001 <∼ t <∼ 0.05.
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Figure 1. Root condition numbers for the first Wilkinson polynomial
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Figure 2. Root condition numbers for the second Wilkinson polynomial

With standard double–precision arithmetic (corresponding to a resolution of
about 15 decimal digits), the power and Bernstein forms would allow all roots
to be computed to 14 or 15 accurate digits, whereas the Ball form would yield only
about 4 or 5 accurate digits for the most ill–conditioned roots.

This example offers a convincing illustration of the fact that the Ball form is
not only systematically less stable than the Bernstein form — it may also be much
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less stable than the power form. Incidentally, it is interesting to note that the
Chebyshev basis on t ∈ [ 0, 1 ] also gives a very unstable representation of this
polynomial; see Example 4.2′ in [6]. Some of the root condition numbers are as
large as 1055 ! (that’s an exclamation mark, not a factorial — 1055 is surely a
sufficiently impressive number in its own right).

7. Concluding remarks

The intrinsic stability of the adopted representation scheme is an important issue
that can profoundly influence the accuracy and reliability of various calculations on
parametric curves and surfaces. Since such calculations are usually performed in
floating–point arithmetic, it is proper that new schemes be judged as much upon
this basis as on purely geometric considerations. We have shown that, in addition to
its attractive geometric attributes, the Bernstein–Bézier form is “optimally stable”
— it is impossible to formulate alternate representations, based on nonnegative
basis functions, that yield systematically smaller condition numbers. The power
and generalized Ball bases, for example, are systematically worse–conditioned than
the Bernstein basis (often by very large factors, as exemplified by the Wilkinson
examples).
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