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SOLVABILITY OF NORM EQUATIONS OVER CYCLIC

NUMBER FIELDS OF PRIME DEGREE

VINCENZO ACCIARO

Abstract. Let L = Q[α] be an abelian number field of prime degree q, and
let a be a nonzero rational number. We describe an algorithm which takes as
input a and the minimal polynomial of α over Q, and determines if a is a norm
of an element of L. We show that, if we ignore the time needed to obtain a
complete factorization of a and a complete factorization of the discriminant of
α, then the algorithm runs in time polynomial in the size of the input.

As an application, we give an algorithm to test if a cyclic algebra A =
(E, σ, a) over Q is a division algebra.

1. Introduction

In his survey paper on algorithms in algebraic number theory [8], H. W. Lenstra
states ‘Among the many other algorithmic questions in algebraic number theory
that merit attention we mention ( . . . ), problems from class field theory such as
the calculation of Artin symbols, ( . . . )’. In this paper we consider the following
problem, which belongs naturally to class field theory:

Let L = Q[α] be an abelian extension of the rationals of prime degree q,
and a ∈ Q, with a 6= 0. Does the equation

NL/Q(λ) = a(1)

admit any solution λ in L?

Note that we are not interested in finding a solution λ, but simply determining
whether a solution exists. Without loss of generality we can assume that α ∈ O,
the ring of algebraic integers of L.

If we assume that a ∈ Z, the rational integers, and we ask for solutions of (1) in
the algebraic integers, we can use an algorithm, due to U. Fincke and M. Pohst [12,
p. 336], based on methods borrowed from the geometry of numbers, which works
for any finite extension of Q. However, even if (1) is not solvable in the algebraic
integers, it may still be solvable in Q[α].

In this paper we give a polynomial-time algorithm to determine if (1) is solvable,
based on methods from class field theory. The input to our algorithm consists of a
and the minimal polynomial mα(x) of α over Q. We assume that mα(x) is given in
its dense representation, that is, as an array giving all its coefficients. If we ignore
the time needed to obtain a complete factorization of a and a complete factorization
of dL(α), the discriminant of α, then the algorithm runs in time polynomial in the
size of the input.
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Our algorithm is based on the celebrated Hasse Norm Theorem, which states
that, for a cyclic extension K/k, an element a ∈ k is a norm from K if and only if
it is a local norm at every prime of K. As we will show below, it is possible to list
a finite set of primes such that these are the only finite primes that must be taken
into consideration in applying the Hasse Norm Theorem. Moreover, we will show
in §8 that the infinite primes play a role only in the quadratic case. Then, in §9 we
present the complete algorithm and discuss its complexity.

As an application, we give in §10 an algorithm to test if a cyclic algebra A of
finite dimension n over Q is a division algebra. We assume that A is presented in
the standard form [11, p. 277] as a triple (E, σ, a), where E is a cyclic subfield of
A of degree

√
n over Q, σ is a generator of the Galois group of E/Q, and a is a

nonzero element of Q. The field E is given by the minimal polynomial mc(x) of a
primitive element c for E over Q, and the automorphism σ is given as a polynomial
i(x) such that i(c) = σ(c).

Note 1. Using methods borrowed from noncommutative number theory, L. Rónyai
developed an algorithm [13, 4] to test if a central simple algebra A over an algebraic
number field K is a division algebra. The input to Rónyai’s algorithm consists of a
set of structure constants for A, and the algorithm runs in time polynomial in the
size of the input, assuming the use of oracles for factoring integers and for factoring
polynomials over finite fields. In contrast, we do not need to factor polynomials
over finite fields. Rónyai’s algorithm is very powerful, since it computes the index
of A (for the definition of ‘index’ refer to §10), thus allowing one to gain a lot of
information about the structure of the algebra A.

The algorithms described in this paper have been implemented using the number
theory package PARI, developed in France by Professor H. Cohen and his collabo-
rators.

For the terminology and the basic concepts of algebraic number theory used in
this paper we refer the reader to [5]. For the theory of associative algebras we refer
the reader to [11].

2. Notation

If B is a subgroup of a group A, (A : B) will denote the index of B in A, and
Am the subgroup of A generated by the mth powers of the elements of A.

If k is a subfield of a field K, [K : k] will denote the degree of the field extension
K/k, and K∗ = K\{0} will denote the multiplicative group of K.

Let L be an algebraic number field. By a prime of L we mean a class of equivalent
valuations of L. Recall that the finite primes are in one-to-one correspondence with
the prime ideals of O, and the infinite primes with the embeddings σ of L into C,
the field of complex numbers. We will use the same symbol to denote a finite prime
of L and the corresponding prime ideal of O.

Let P be a finite prime of L. If β ∈ L and β 6= 0, we will denote by νP(β) the
order of β at P , that is, the power of P in the factorization of the fractional ideal
βO. We define νP(0) to be ∞. The symbol LP will denote the completion of L
with respect to the P-adic valuation, and OP = {x ∈ LP | νP(x) ≥ 0} the ring of
P-adic integers.

Let P be an infinite prime of L, that is, an embedding σ : L → C. The symbol
LP will denote the completion of L with respect to the (Archimedean) valuation
β 7→ |σ(β)|.
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Let p be a rational prime. If b ∈ Q and b 6= 0, then νp(b) will denote the order
of b at p, that is, the power of the ideal pZ in the factorization of the fractional
ideal bZ. We define νp(0) to be ∞. The symbol Qp will denote the field of p-adic
numbers, Zp the ring of p-adic integers, and Up the group of units of Zp. Finally,
Fp will denote the finite field of p elements.

3. Cyclic number fields of prime degree

Fundamental to the entire construction is the following theorem (see [5, p. 156]).

Theorem 1 (Hasse Norm Theorem). Let K/k be a cyclic extension. An element
a ∈ k∗ is a norm from K∗ if and only if a is a local norm at every prime (including
the infinite primes) of k.

We will deal with the infinite primes in §8. Until then, all the primes considered
will be finite.

The following lemma tells us that the property of being Galois is preserved
by the completions at the finite primes. For its proof we refer to [11, p. 347, Corol-
lary c].

Lemma 1. Let K be a finite Galois extension of an algebraic number field k. Let
p be a prime of k and P be a prime of K lying above p. Then KP/kp is also Galois,
and the Galois groups Gal(KP/kp) and Gal(K/K ∩ kp) are isomorphic.

Throughout the following, L will denote a cyclic extension of prime degree q over
Q. Since L/Q is Galois, all the ideals lying above a rational prime p must have the
same ramification index e and the same inertial degree f . Therefore, the degree
[LP : Qp], which is equal to ef , is independent of the prime ideal P lying above
p. Let g be the number of distinct prime ideals lying above p. From the formula
efg = [L : Q] and the primality of q it follows that either e = 1 or e = q.

Our first task is to recognize the decomposition type of a rational prime p in L.
Since we do not wish to involve the cost of computing an integral basis, in the next
section we will develop a fast algorithm to accomplish this task when an integral
basis for L is not known.

4. Decomposition of primes

In the following lemma we relate the decomposition of the minimal polynomial
mα(x) of α over Qp to the decomposition of p in L.

Lemma 2. Let L = Q[α] be a cyclic number field of prime degree q, with α an
algebraic integer, and let p be a rational prime. If p is inert or totally ramified in
L, then mα(x) is irreducible over Qp.

Proof. Let K = Q[β] be an arbitrary number field. It can be shown (see [5, Exercise
1, p. 92]) that if Pi (i = 1, . . . , r) are the prime ideals lying above a rational prime p,
with inertial degree fi and ramification index ei, then mβ(x) splits into r factors in
Qp, of degree e1f1, . . . , erfr. In our case we have r = 1 and so mα(x) is irreducible
over Qp.

The following corollary to Lemma 2 is an easy consequence of Hensel’s Lemma.

Corollary 1. Let L = Q[α] be a cyclic number field of prime degree q, with α an
algebraic integer, and let p be a rational prime. If p does not split in L, then mα(x)
is either irreducible over Fp or it is the qth power of a linear polynomial over Fp.
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The next lemma exploits the Galois structure of L to obtain more information
about the decomposition of the rational primes in L.

Lemma 3. Let L = Q[α] be a cyclic number field of prime degree q, with α an
algebraic integer, and let p be a rational prime. If p splits completely in L, then
mα(x) splits into (possibly equal) linear factors over Fp. Conversely, if mα(x) has
at least two distinct linear factors over Fp, then p splits completely in L.

Proof. The first assertion follows easily from the fact that when p splits completely
in L, the Frobenius automorphism of p has order one.

To prove the second assertion, assume that p does not split in L and mα(x) ≡
g(x)h(x) (mod p), with g(x) and h(x) relatively prime. This clearly contradicts
Corollary 1.

The next lemma (see [3, Proposition 5.11, p. 102]) gives us a partial converse of
Corollary 1.

Lemma 4. Let K = Q[β] be an algebraic number field, with β integral over Z,
and let p be a rational prime. If the minimal polynomial mβ(x) of β over Q is
irreducible over Fp, then p is inert in K.

Combining the results obtained so far, we obtain the following.

Lemma 5. Let L = Q[α] be a cyclic extension of Q of prime degree q, where α is
an algebraic integer. Then its minimal polynomial mα(x) is either irreducible over
Fp or it splits into linear factors over Fp. If mα(x) has at least two distinct roots
in Fp, then p splits completely in L. If mα(x) has no roots in Fp, then p is inert in
L.

The value of Lemma 5 lies in the fact that it is possible to check very effi-
ciently whether its hypotheses are fulfilled. For this purpose we compute l(x) =
gcd(xp − x,mα(x)) over Fp. Then mα(x) has no roots in Fp precisely when
deg l(x) = 0, and it is a qth power over Fp precisely when deg l(x) = 1. [In practice
we compute j(x) = xp mod mα(x) over Fp, using the binary powering algorithm
(see [2, p. 8]); then l(x) is given by gcd(j(x) − x,mα(x)).]

Before proving the main theorem of this section, we need a last lemma (see [7,
Proposition 11, p. 52]).

Lemma 6. Let L = Q[α] be a cyclic number field of prime degree q with α ∈ O,
the ring of integers of L, and let p be a rational prime.

If p ramifies in L and π ∈ P\P2, where P denotes the unique prime ideal of O
above p, then the minimal polynomial mπ(x) of π is Eisenstein at p. Conversely,
if the minimal polynomial mπ(x) of some π ∈ O is Eisenstein at p, then p ramifies
in L.

Now we can state the main theorem of this section.

Theorem 2. Let L = Q[α] be a cyclic number field of prime degree q with α ∈ O,
the ring of integers of L, and let p be a rational prime. Then:

(i) If p is inert or totally ramified, then there exist m,h ∈ Z such that

γ = (α−m)/ph ∈ O(2)

but no integers h′,m′ with h′ > h such that

γ′ = (α−m′)/ph
′
∈ O.
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(ii) If p is inert in L, then mγ(x) is irreducible over Fp.
(iii) If p ramifies in L, then mγ(x) ≡ (x−c)q (mod p), with q - r = νp(NL/Q(γ−c)).

Let s ∈ N and l ∈ Z be such that rs+ ql = 1. Then π = (γ − c)spl satisfies an
Eisenstein polynomial at p.

Proof. By assumption, α ∈ O\Z. Assertion (i) comes from the fact that when p
does not split completely, α 6∈ Qp by Lemma 2, and so we must have O ∩ Zp = Z.
Note that L = Q[γ].

To prove (ii), assume that p is inert and mγ(x) is not irreducible over Fp. Then,
by Corollary 1 we would have mγ(x) ≡ (x − c)q (mod p) for some c ∈ Z. Hence
γ − c ∈ pO, and so (α−m− cph)/ph+1 ∈ O, contradicting the choice of h.

To prove (iii), assume that p ramifies, and so pO = Pq, where P denotes the
unique prime ideal of O above p. Since mγ(x) cannot be irreducible over Fp by
Lemma 5, we must have mγ(x) ≡ (x−c)q (mod p) for some c ∈ Z. Then (γ−c)q ∈
pO, and so γ−c ∈ P . We claim that γ−c 6∈ Pq. For otherwise, reasoning as above,
we would have (α −m − cph)/ph+1 ∈ O, contradicting the choice of h. Therefore
γ − c ∈ Pr\Pr+1, with 0 < r < q. Let s ∈ N and l ∈ Z be such that rs + ql = 1.
It can be easily seen that π = (γ − c)spl ∈ P\P2, and therefore by Lemma 6 the
polynomial mπ(x) must be Eisenstein at p.

The next lemma shows that the integer h given by (2) is ‘small’.

Lemma 7. Let us assume the notation of Theorem 2. If p is inert, then h =
νp(dL(α))/(q(q − 1)). If p is totally ramified, then h ≤ νp(dL(α))/(q(q − 1)).

Proof. Assume first that p is inert. Let Z(p) = {x ∈ Q|νp(x) ≥ 0}, and let O(p)

denote the integral closure of Z(p) in L, which is equal to {x ∈ L|νP(x) ≥ 0} since
P is the unique prime ideal of O above p. Since γ is a primitive element for O/P
over Z/pZ, the set {1, γ, . . . , γq−1} is an integral basis for O(p) over Z(p) (see [7,
Proposition 23, p. 26]), and therefore νp(dL(γ)) = 0. Now in general, when δ ∈ O
and b ∈ Z, we have dL(pδ) = pq(q−1)dL(δ), and dL(pδ + b) = dL(pδ), and therefore
dL(α) = pq(q−1)hdL(γ), i.e., νp(dL(α)) = q(q−1)h. This proves the first part of the
lemma.

Assume next that p ramifies. We have seen that in this case mγ(x) ≡ (x − c)q
(mod p) for some c ∈ Z, with γ−c ∈ Pr\Pr+1 (0 < r < q). Clearly, νp(dL(γ−c)) ≥
νp(dL). It is known (see [14]) that for odd q we have

νp(dL) =

{
q − 1 if p 6= q,
0 or 2(q − 1) if p = q.

Moreover, it can be shown (see [2, Proposition 5.1.1, p. 218]) that when q = 2, we
have

νp(dL) =

{
1 if p 6= 2,
2 or 3 if p = 2.

The same argument as above shows that νp(dL(α)) = q(q − 1)h + νp(dL(γ − c)),
and so νp(dL(α)) ≥ q(q − 1)h+ νp(dL). It follows that

h ≤ (νp(dL(α)) − νp(dL))/(q(q − 1)),

and hence h ≤ νp(dL(α))/(q(q − 1)).
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procedure DECOMPOSE(p, β):
if p - dL(β)

then if mβ(x) has no roots in Fp
then return INERT
else return SPLITS

endif
endif
let h = bνp(dL(β))/(q(q − 1))c;
for i = 1 to h do

if mβ(x) has exactly one root c in Fp
then let β = (β − c)/p;

if mβ(x) 6∈ Z[x]
then let β = pβ;
return CONSTRUCT EISENSTEIN(p, β)

endif
else return SPLITS

endif
endfor
if mβ(x) has exactly one root c in Fp

then let β = β − c
else if mβ(x) has no roots in Fp

then return INERT
else return SPLITS

endif
endif
return CONSTRUCT EISENSTEIN(p, β)

Figure 1. The algorithm DECOMPOSE

procedure CONSTRUCT EISENSTEIN(p, β):
let r = νp(NL/Q(β));
if q | r

then return SPLITS
endif
find s ∈ N and l ∈ Z such that rs+ ql = 1;
let π = (β)spl;
if mπ(x) is Eisenstein at p

then return RAMIFIES and π
else return SPLITS

endif

Figure 2. Auxiliary procedure used by DECOMPOSE
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Note 2. When p is inert, if u ∈ Z and i < h = νp(dL(α))/(q(q − 1)), then the
minimal polynomial of (α − u)/pi cannot be irreducible over Fp. In fact, if ω =
(α−u)/pi, with i < h and u ∈ Z, then the argument used in the proof of Lemma 7
shows that νp(dL(ω)) > 0. But then the set {1, ω, . . . , ωq−1} cannot be an integral
basis for O(p) over Z(p), hence ω cannot be a primitive element for O/P over Z/pZ,
and so mω(x) must be a qth power over Fp.

The computation of the algebraic integer γ that satisfies (2) is carried out by
p-adic lifting. For this purpose we compute iteratively a sequence of algebraic
numbers γ1, γ2, . . . as follows: if mγi−1(x) ≡ (x−ci)q (mod p), where γ0 = α, then
we let γi = (γi−1 − ci)/p. From what has been said in this section it is clear that
the process can stop as soon as either one of the following conditions is satisfied:

(i) i = νp(dL(α))/(q(q − 1)). By applying Theorem 2 to γ = γi we are able to
verify if p ramifies or it is inert in L. If neither cases are true, then p splits
completely in L.

(ii) γi 6∈ O for i < νp(dL(α))/(q(q − 1)). The note above shows that p cannot
be inert, and so we have to check if p is ramified, by applying Theorem 2 to
γ = γi−1. If p is not ramified, then it splits completely.

(iii) The minimal polynomial of γi, with i ≤ νp(dL(α))/(q(q− 1)), has at least two
distinct roots in Fp. In this case p splits completely in L.

The algorithm DECOMPOSE, shown in Figure 1, implements the ideas described
above. It takes as input p and α, and returns INERT if p is inert in L = Q[α],
SPLITS if it splits, and RAMIFIES plus an Eisenstein element π if p ramifies.

The argument following Lemma 5 shows that it is possible to check if mα(x) has
no roots, at least two distinct roots or just one root in Fp – and in the last case
compute the unique root, which has multiplicity q – in time polynomial in the size
of p and in the degree q of mα(x). Moreover, it is not difficult to show that the
size of mγ is bounded by a polynomial in the size of mα. Therefore, the algorithm
DECOMPOSE runs in time polynomial in the size of the input.

5. The unramified case

In this section we deal with the case e = 1, that is, we assume that the prime p
is unramified in L.

The case when f = 1, that is, when p splits completely in L, is uninteresting,
since we have LP = Qp, and so any a ∈ Q∗p is the norm of itself in the trivial
extension of Qp.

Hence we will restrict our attention to the case f = q, that is, when p is inert
in L. Then LP is a nontrivial unramified extension of Qp of degree q, so the next
theorem characterizes completely the norm group of LP/Qp. For its proof we refer
to [1, Theorem 19, p. 141] and to [5, p. 153].

Theorem 3. Let LP be an unramified extension of Qp of degree f over Qp. Let
β = pmu ∈ Q∗p, with u ∈ Up, m ∈ Z. Then β ∈ NLP/Qp(L∗P) if and only if f | m.
In particular, every unit of Qp is the norm of a unit in LP .

6. The totally ramified case

For the totally ramified extensions of Qp, the problem of deciding whether an
element of Q∗p is a local norm is harder. We need a preliminary lemma.
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Lemma 8. Let u =
∑∞
i=0 uip

i ∈ Up, with ui integers, 0 ≤ ui < p and u0 6= 0. If
q 6= p is a prime, then u ∈ U qp if and only if u0 is a qth power modulo p. The index
(Up : U qp ) is equal to q if q | p− 1, and it is equal to 1 otherwise.

Proof. Clearly, if u is a qth power in Qp, then u0 is a qth power modulo p. Con-
versely, let g(x) = xq − u. Consider the equation

g(x) = 0(3)

in Qp. Assume that x̂q ≡ u0 (mod p), where x̂ 6≡ 0 (mod p), since u0 6≡ 0 (mod p).
Now g′(x̂) = qx̂q−1 6≡ 0 (mod p), and therefore, by Hensel’s lemma [5, Proposition
3.5, p. 83], we can lift x̂ to a solution of the equation (3) in Up.

If q - p−1, then every integer not divisible by p has a qth root (mod p). Therefore,
the argument given above shows that every element of Up has a qth root in Up, and
so (Up : U qp ) = 1.

If q | p − 1, choose an integer w which is not a qth root (mod p). Since the
group of units of Z/pZ is cyclic, the first part of the lemma shows that the set
{1, w, . . . , wq−1} is a set of coset representatives for U qp in Up, and therefore (Up :
U qp ) = q. 2

The next result, known as the fundamental equality of local class field theory, is
valid for any local field, and hence in particular for any p-adic field (see [7, Corollary,
p. 221] and [7, Theorem 3, p. 219]).

Theorem 4. Let K/k be a cyclic extension of local fields, with ramification index
e. Let UK (resp. Uk) denote the group of units of K (resp. k). Then (Uk :
NK/k(UK)) = e and (k∗ : NK/k(K∗)) = [K : k].

We can now characterize the norm groups of the totally ramified extensions of
Qp of prime degree.

Theorem 5. Let LP be a totally ramified cyclic extension of Qp, of prime degree
q, where q | p− 1. An element u ∈ Up is a norm of a unit in LP if and only if u is
a qth power in Up.

Proof. Let UP denote the group of units of LP . It is easy to see that NLP/Qp(UP) ⊃
U qp , since for any x ∈ Up we have NLP/Qp(x) = xq . By Lemma 8 the index (Up : U qp )
is equal to q. Then Theorem 4, with K = LP , k = Qp and e = q = [LP : Qp], gives
us the desired equality NLP/Qp(UP) = U qp .

Note 3. The case p 6= q and q - p − 1, with LP a totally ramified cyclic extension
of Qp of degree q, can never happen. Indeed, we certainly have NLP/Qp(UP) ⊃ U qp ,
and Lemma 8 implies that Up = U qp . This contradicts Theorem 4 (for a different
proof of this statement, which uses the conductor-discriminant formula, see [14]).

Note 4. The remaining case p = q can be ignored, without incurring the risk of
being incomplete. It is in fact true (see [5, p. 190]) that if K/Q is abelian and
a ∈ Q∗ is a p-local norm for all the primes p, with the possible exception of one
particular prime, then a must be a local norm at that prime also. Thus, if a is not
a local norm at the prime p = q, then there is a prime p′ 6= q for which a is not a
local norm. Hence we can avoid consideration of the case p = q.
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7. The finite primes: summarizing

Let p be a rational prime and P be a prime ideal of O lying above p. We want
to determine whether a ∈ NLP/Qp(L∗P).

If p splits completely in O, then every a ∈ Q∗p is a norm, and so this case is not
interesting.

The case where p is inert is also easily dealt with, as it has been shown in §5.
It remains to consider the case where p divides dL, the discriminant of L/Q, that

is, when LP is a totally ramified extension of Qp of degree q. We have seen that
we can ignore the case p = q, so suppose p 6= q. Assume that we know an element
u1 ∈ Up such that

pu1 ∈ NLP/Qp(L∗P).(4)

If a = ptu with u ∈ Up, then we can write a = (pu1)tu/ut1 and so a ∈ NLP/Qp(L∗P)
if and only if

u

ut1
∈ NLP/Qp(L∗P).(5)

Now Theorem 5 tells us that (5) holds precisely when

u

ut1
∈ U qp .(6)

Thus, we want to construct an element u1 ∈ Up which satisfies (4). For this
purpose, take any π ∈ P\P2. Then νP(π) = 1, and νp(NL/Q(π)) = νP(π) = 1.
Since [L : Q] = [Lp : Qp] = q, and q is prime, we have NLp/Qp(π) = NL/Q(π).
Hence, we can take u1 = NLp/Qp(π)/p.

Note 5. In order to decide if (6) is satisfied, we proceed as follows. We know that
u/ut1 ∈ Q∗ and νp(u/u

t
1) = 0 by construction. We write u/ut1 as j/k with j, k ∈ Z

and gcd(j, k) = 1, and then we compute m,n ∈ Z such that mk + np = 1. Now
jm ∈ Z, and it can be shown (see [6, p. 12]) that νp(u/u

t
1 − jm) ≥ 1. Lemma

8 then tells us that u/ut1 is a qth power in Up if and only if jm is a qth residue
modulo p, and it is well known (see [10, Theorem 2.27, p. 64]) that this holds if
and only if

(jm)(p−1)/ gcd(q,p−1) ≡ 1 (mod p),

that is, if and only if

(jm)(p−1)/q ≡ 1 (mod p)

since q | p− 1.

8. The infinite primes

Since L = Q[α] is Galois over Q, then either L is totally real, that is, all the
possible embeddings of L in C are real, or L is totally complex, that is, all the
embeddings are nonreal (see [2, Def. 4.1.9]).

Since [L : Q] = q is a prime number, if q 6= 2, then q is odd, and hence L
must necessarily be totally real. If [L : Q] = 2, then L is complex precisely when
dL(α) < 0.

Given any infinite prime ∞, if L is totally real, then L∞ = R, and if L is totally
complex, then L∞ = C. The completion of Q at its unique infinite prime is R.
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In the totally real case, any element of R is the norm of itself in the trivial
extension of R. In the totally complex case we haveNC/R(C) = R+, the nonnegative
reals. The latter case can only arise when q = 2.

9. The test

We now describe an algorithm to decide if a ∈ Q∗ is a norm in L/Q.
Write a as r/s, with r ∈ Z, s ∈ Z\{0}, and gcd(r, s) = 1. The considerations

in §7 show that the only finite primes that must be taken into account are those
which divide r, those which divide s, and those which divide dL, and that we may
ignore the prime q. Recall that dL(α) can be computed by the formula

dL(α) = (−1)q(q−1)/2NL/Q(m′α(α)),(7)

where m′α(x) denotes the formal derivative of mα(x). Once a complete factorization
of dL(α) is known, we can use the algorithm DECOMPOSE to determine which
prime factor p of dL(α) ramifies in L, and for each ramified prime a corresponding
element π whose norm has p-order 1.

The complete algorithm NORM is shown in Figure 3. It takes as input a and
mα(x), and returns TRUE if a ∈ NL/Q(L∗), FALSE otherwise.

procedure NORM(a, mα(x)):
if ([L : Q] = 2 and dL(α) < 0 and a < 0) then

return FALSE
endif
construct the set RP of ramified primes;
express a as r/s, with r, s ∈ Z and gcd(r, s) = 1;
let NP be the set of positive primes dividing r;
let DP be the set of positive primes dividing s;
for all the p in RP ∪NP ∪DP , with p 6= q do

let t = νp(a);
if p 6∈ RP then

if (p is inert and q - t) then
return FALSE

endif
else

let π ∈ L be such that νp(NL/Q(π)) = 1;
let u = a/(NL/Q(π)t);
express u as j/k, with j, k ∈ Z and gcd(j, k) = 1;
compute m,n ∈ Z such that mk + np = 1;
let z = (p− 1)/q;
if (jm)z 6≡ 1 (mod p) then

return FALSE
endif

endif
endfor
return TRUE

Figure 3. The algorithm NORM
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In analyzing the complexity of the algorithm NORM, we will ignore the cost of
factoring a and dL(α). Let us define size(m), for m ∈ Z, to be the number of bits
needed to represent m, and size(a) to be size(r) + size(s).

We want to show that the algorithm NORM runs in time polynomial in the size
of the input. For this purpose it is enough to show that the size of the primes
involved in the test is bounded by size(a) + size(mα(x))O(1). Now, Mahler’s bound
on the discriminant of a polynomial [9, Corollary to Theorem 1, p. 261] implies
that size(dL(α)) is bounded by size(mα(x))O(1). Since dL | dL(α), it follows that
the size of each prime divisor of dL is bounded by size(mα(x))O(1) as well. Since
dL(α) can have at most log |dL(α)| prime divisors, it follows that the size of the list
of primes dividing dL(α) is bounded by size(mα(x))O(1).

10. Test of cyclic algebras over Q for zero divisors

Let A be a central simple algebra of finite dimension n over Q. Recall that the
dimension n of a central simple algebra A over the base field is always a square
number; the positive integer d =

√
n is called the degree of A.

By the Wedderburn structure theorem, any central simple algebra A over a field
F is isomorphic to a full matrix algebra over a, possibly noncommutative, finite
extension D of F . The degree of D over F (as an algebra) is called the (Schur)
index of A. Clearly, A is a division algebra if and only if its index and its degree
are the same.

On the other hand, it is known from Brauer’s theory (see [11, p. 260]) that, for
some finite number h, the tensor product A⊗ · · · ⊗A (h times) is isomorphic to a
full matrix algebra over F . The smallest such h is called the exponent of A.

An important class of central simple algebras is given by the cyclic algebras.
They can be defined in a concrete way as follows (see [11, p. 277]):

Definition 1. A finite-dimensional associative algebra A over a field F is called
cyclic if it is generated over F by two elements c and b such that:

(i) The subalgebra F [c] of A generated by c is a cyclic extension field E of F of
degree d, say;

(ii) b is invertible and b−1cb = σ(c), where σ is a generator of the Galois group
Gal(E/F );

(iii) bd ∈ F ∗.

It follows from this characterization that A is a central simple algebra of dimen-
sion d2 over F with basis {cibk|0 ≤ i, k < d}. Let a = bd. We denote the algebra A
by (E, σ, a).

Although cyclic algebras have an uncomplicated structure, as the next theorem
shows they are quite general (see [11, p. 359] for a proof).

Theorem 6 (Brauer-Hasse-Noether). Every central simple algebra over an alge-
braic number field is cyclic, and its index is equal to its exponent.

In particular, every division algebra over Q is cyclic. The theorem that follows
is basic for our construction – for its proof we refer to [1, p. 98].

Theorem 7 (Albert). Let E/F be a cyclic extension of commutative fields of de-
gree d. Then the cyclic algebra (E, σ, a) has exponent d if and only if a 6∈ NL/F (L∗)
for each minimal subfield L of E over F .
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Note that in the case F is an algebraic number field, Theorems 6 and 7 give a
criterion for (E, σ, a) to be a division algebra.

Given a cyclic algebra A = (E, σ, a), we can use the algorithm NORM developed
in the previous sections to check if the conditions of Theorem 7 are satisfied.

The minimal subfields of E are in one-to-one correspondence with the maximal
subgroups of Gal(E/Q). For each prime q dividing d, let Hd/q = 〈σ(q)〉 denote the
unique maximal subgroup of Gal(E/Q) of order d/q, and let Lq denote the unique
minimal subfield of E of degree q corresponding to it. To find Lq, compute

hq(x) = (x− σq(c))(x− σ2q(c)) · · · (x− σd(c)).(8)

It is a standard fact from Galois theory (see [15, p. 169]) that the coefficients of
hq(x) lie in Lq and they generate Lq over Q. From the minimality of Lq it follows
that any coefficient of hq(x) which does not lie in Q is a primitive element for Lq
over Q. Note that the number of subfields which must be considered is bounded
by size(d) = size(n)/2, since blog dc is an upper bound for the number of prime
divisors of d, and size(d) is equal to blog dc+ 1.
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