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HERMITE AND SMITH NORMAL FORM ALGORITHMS

OVER DEDEKIND DOMAINS

HENRI COHEN

Abstract. We show how the usual algorithms valid over Euclidean domains,
such as the Hermite Normal Form, the modular Hermite Normal Form and the
Smith Normal Form can be extended to Dedekind rings. In a sequel to this
paper, we will explain the use of these algorithms for computing in relative
extensions of number fields.

The goal of this paper is to explain how to generalize to a Dedekind domain
R many of the algorithms which are usually associated with a Euclidean domain,
such as the Hermite Normal Form algorithm (including a modular version), and the
Smith Normal Form algorithm. Since the goal of this paper is eminently practical,
we will restrict our attention to the case where R is the ring of integers of a number
field, for which we assume known a Z-basis. Most of the algorithms can however
be transposed to a more general context.

An immediate application of these algorithms (which was evidently our sole
motivation) is to computing in relative extensions of number fields. This can now
indeed be done very easily, as we will show in a subsequent paper ([3]).

These ideas have already been used by Bosma and Pohst [1].
Notations: R will always denote the ring of integers ZK of a number field K

(although most of the results apply to general Dedekind domains), and K is the
field of fractions of R. Unless otherwise specified, an ideal of R will always mean a
nonzero fractional ideal.

1. Basic algorithms

We start by some preliminary but essential algorithms.

Proposition 1.1. Given two coprime integral ideals a and b in R, we can find in
polynomial time elements a ∈ a and b ∈ b such that a+ b = 1.

Proof. We can assume that the ideals are given by their Hermite Normal Form
(HNF) matricesA andB on some Z-basis ofR whose first element is always assumed
to be equal to 1; otherwise it is easy to reduce to this case. Call C the n×2n matrix
obtained by concatenating A and B. Using one of the polynomial-time algorithms
for HNF reduction (see, for example, [5]), we can find a 2n×2n unimodular matrix
U such that CU is the concatenation of the n×n zero matrix and the n×n identity
matrix, since by assumption a and b are coprime. It follows that if Z is the (n+1)st
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column of U , then CZ = [1, 0, . . . , 0] (note that if we use the algorithm of [6], we
will find a permutation matrix instead of the identity matrix and in that case it is
not the (n+ 1)st column but some other column of U which must be used). If we
split Z into its upper half X and its lower half Y , it is clear that AX represents an
element a ∈ a and BY respresents an element b ∈ b such that a+ b = 1.

Implementation Remarks.

(1) It was of course not really necessary in the proof that the ideals be given
by HNF matrices, but only by Z-bases. However, if we do really have HNF
bases, the first column of the matrix A of a will be a generator za of a ∩ Z,
and similarly the first column of B will be a generator zb of b ∩ Z. Now
it frequently will happen that za and zb are coprime. In this case, the usual
extended Euclidean algorithm will easily find u and v such that uza+vzb = 1,
and we can take a = uza and b = vzb.

(2) Since the algorithm underlying this proposition will be absolutely basic to
all our algorithms on Dedekind domains, we must insure that it will give
results which are as reasonable as possible. Indeed, the elements a and b are
of course not unique, and can be modified by adding and subtracting from a
and b respectively some element of the ideal product ab. Hence it would be
nice to have an element r such that a− r ∈ ab and r is “small” (and then we
replace a by a− r and b by b+ r = 1− (a− r) which will also be “small”. We
will see below (Algorithm 2.12) how this can be done reasonably well.

(3) This is the most important place of this paper where we use specifically the
fact that the Dedekind domain R is the ring of integers of a number field, so
as to be able to compute a and b in polynomial time.

We now come to a theorem which is trivial to prove, but is the basic tool for our
algorithms. It is a generalization to Dedekind domains of the extended Euclidean
algorithm, as follows.

Theorem 1.2. Let a and b two (fractional) ideals in R, let a and b be two elements
of K not both equal to zero, and set d = aa+bb. There exists u ∈ ad−1 and v ∈ bd−1

such that au+ bv = 1, and these elements can be found in polynomial time.

Proof. If a (resp. b) is equal to zero we can take (u, v) = (0, 1/b) (resp. (u, v) =
(1/a, 0)) since in that case we have 1/b ∈ bd−1 = R/b (resp. 1/a ∈ ad−1 = R/a).
So assume a and b are nonzero.

Set I = aad−1 and J = bbd−1. By the definition of d−1, I and J are integral
ideals and we have I + J = R. By Proposition 1.1 we can thus find in polynomial
time e ∈ I and f ∈ J such that e+ f = 1, and clearly u = e/a and v = f/b satisfy
the conditions of the lemma.

Remark. Although this proposition is very simple, we will see that the essential
conditions that u ∈ ad−1 and v ∈ bd−1 bring as much rigidity into the problem
as in the case of Euclidean domains, and this proposition will be constantly used
instead of the extended Euclidean algorithm. It is in fact clear that it is an exact
generalization of the extended Euclidean algorithm. Note that even when R is a
principal ideal domain, this lemma is useful, since R is not necessarily Euclidean.

We also need the following.
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Proposition 1.3. Let a, b, c, d be fractional ideals of R, and let a, b, c, d be
elements of K. Set e = ad− bc, and assume that

ab = ecd, a ∈ ac−1, b ∈ bc−1, c ∈ ad−1, d ∈ bd−1 .

Finally, let x and y be two elements of an R-module M , and set(
x′ y′

)
=
(
x y

)(a c
b d

)
.

Then

ax+ by = cx′ + dy′ .

Proof. We have x′ = ax+ by and y′ = cx+ dy, hence

cx′ + dy′ ⊂ (ac + cd)x + (bc + dd)y ⊂ ax+ by .

Conversely, we have x = (dx′ − by′)/e and y = (−cx′ + ay′)/e, hence

ax+ by ⊂ 1

e
(abd−1x′ + abc−1y′) ,

and since ab ⊂ ecd,

ax+ by ⊂ cd(d−1x′ + c−1y′) = cx′ + dy′ ,

thus showing the double inclusion.
Note that although we have used only the inclusion ab ⊂ ecd in the proof, the

hypotheses on a, b, c and d imply that ecd ⊂ ab, so we must have equality.

Corollary 1.4. Let a, b be two ideals, a and b two elements of K not both zero,
d = aa+ bb and u ∈ ad−1, v ∈ bd−1 such that au+ bv = 1 as given by Theorem 1.2.

Let x and y be two elements of an R-module M , and set(
x′ y′

)
=
(
x y

)( b u
−a v

)
.

Then

ax+ by = abd
−1x′ + dy′ .

Proof. Since b ∈ b−1d and a ∈ a−1d, this is clearly a special case of Proposition
1.3.

Corollary 1.5. Let a, b be two ideals. Assume that a, b, c and d are four elements
of K such that

ad− bc = 1, a ∈ a, b ∈ b, c ∈ b−1, d ∈ a−1 .

Let x and y be two elements of an R-module M , and set(
x′ y′

)
=
(
x y

)(a c
b d

)
.

Then

ax+ by = Rx′ + aby′ .

Proof. This is also trivially a special case of Proposition 1.3. We will see below
(Proposition 1.11) how to find a, b, c, d, given a and b.
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Remarks.

(1) The type of elementary transformation described in Proposition 1.3, and in
particular in its two corollaries above, will be the only one that we are allowed
to use. For example, if we want simply to replace x by x− qy for some q in
the field K (which is the usual elementary transformation), we must have
q ∈ ba−1, as can easily be checked.

(2) With the notations of Proposition 1.3, note that we also have the formal
equality

[c−1, d−1] = [a−1, b−1]

(
a c
b d

)
.

Indeed, since a ∈ ac−1 and b ∈ bc−1 it is clear that aa−1 + bb−1 ⊂ c−1.
Conversely, since e = ad−bc we have e ∈ abd−1+bad−1, hence ecd ⊂ abc+bac,
and since ab = ecd we obtain the reverse inclusion c−1 ⊂ aa−1 + bb−1. The
second equality d−1 = ca−1 + db−1 is proved in a similar manner.

As we will see in §4 below, the “real” reason for these identities is that a−1,
for every ideal a, can be canonically identified with the set of R-linear maps
from a to R.

It will also be useful (although not essential) to have some algorithms linked to
the approximation theorem in Dedekind domains. We give straightforward deter-
ministic versions, but in practice it is much better to use other methods.

Proposition 1.6. Given ideals ai for 1 ≤ i ≤ k whose sum is equal to R, we can
find in polynomial time elements ai ∈ ai such that

∑
i ai = 1.

Proof. Same proof as for Proposition 1.1, except that we concatenate the k HNF
matrices of the ideals and that we split Z into k pieces at the end. Note that
the matrix U will be an nk × nk unimodular matrix, and this can become quite
large.

Proposition 1.7. Let S be a finite set of prime ideals of R and let (ep)p∈S ∈ ZS .
Then there exists a polynomial-time algorithm which finds a ∈ K such that vp(a) =
ep for p ∈ S and vp(a) ≥ 0 for p /∈ S.

Proof. We can write ep = fp − gp for fp ≥ 0 and gp ≥ 0. If we can find n (resp. d)
such that the conditions are satisfied with ep replaced by fp (resp. gp), it is clear
that a = n/d satisfies our conditions. Thus, we may assume that ep ≥ 0 for p ∈ S.
Following the classical proof (see, for example, [2]), we compute the ideal product

I =
∏
p∈S

p
ep+1

and we set for each p ∈ S

ap = I · p−ep−1 .

Then the ap are integral ideals which sum to R, so by Proposition 1.7 we can find
in polynomial time ap ∈ ap whose sum is equal to 1. Furthermore, we can find
bp ∈ pep \ pep+1 (for example by taking the epth power of an element of p \ p2

which can be found in polynomial time). Then a =
∑

p∈S apbp is a solution to our
problem.
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Corollary 1.8. Given two integral ideals a and b of R such that the factorization
of the norm of b is known, there exists a polynomial-time algorithm which finds
x ∈ K such that xa is an integral ideal coprime to b, and similarly finds y ∈ K
such that ya−1 is an integral ideal coprime to b.

Proof. For x, apply Proposition 1.7 to S equal to the prime ideal factors of b and
to ep = −vp(a) for all p ∈ S. For y, apply Proposition 1.7 to S equal to the prime
ideal factors of a and b and to ep = vp(a) for all p ∈ S.

Proposition 1.9. Let a be an integral ideal of R and a ∈ a, a 6= 0. Assume that
the prime ideal factorization of a is known. Then there exists a polynomial-time
algorithm which finds b ∈ a such that a = aR+ bR.

Proof. Write aR =
∏

p
pep with ep ≥ 0. Thus, we have a =

∏
p
pvp(a) with 0 ≤

vp(a) ≤ ep. By Proposition 1.7 we can in polynomial time find b ∈ R such that
vp(b) = vp(a) for all p | a, and by looking at p-adic valuations, it is clear that
a = aR+ bR.

Remarks. Recall that R is the ring of integers of a number field. Then

(1) If p is a prime ideal given by a Z-basis, the above proposition shows that
we can find in polynomial time a two-element generating system for p. In-
deed, we take a = p, and using the polynomial-time algorithm of Buchmann
and Lenstra (see [2]), we can factor pR into prime ideals so the condition is
satisfied.

(2) To factor a it is enough to factor the absolute norm N (a) ∈ Z of a since we
can use the Buchmann-Lenstra algorithm for factoring into prime ideals the
prime factors of N (a), and use the algorithm explained in [2] for computing
p-adic valuations, which is also polynomial-time as soon as a two-element
generating set is known for every prime ideal p, which is the case by (1).

(3) As mentioned earlier, it is much faster in practice to perform a search for
the elements that we need in Corollary 1.8 and Proposition 1.9. Of course,
the time to perform this search is a priori exponential, but in practice it will
always be very fast.

The strong form of the approximation theorem can be dealt with in the same
manner:

Proposition 1.10. Let S be a finite set of prime ideals of R, let (ep)p∈S ∈ ZS ,
and let (xp)p∈S ∈ KS. Then there exists a polynomial-time algorithm which finds
x ∈ K such that vp(x− xp) = ep for p ∈ S and vp(x) ≥ 0 for p /∈ S.

Proof. Assume first that the ep are nonnegative and xp ∈ R. Then we introduce
the same ideals I and ap, and elements ap as in the proof of Proposition 1.7. If we
set

x =
∑
p∈S

apxp ,

it is easy to see that x satisfies the required conditions.
Consider now the general case. Let d ∈ R be a common denominator for the

xp, and multiply d by suitable elements of R so that ep + vp(d) ≥ 0 for all p ∈ S.
According to what we have just proved, there exists a y ∈ R such that

∀p ∈ S, vp(y − dxp) = ep + vp(d)
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and

∀p | d, p /∈ S, vp(y − dxp) = vp(d) .

It follows that x = y/d satisfies the given conditions.

Finally, we show how elements satisfying Corollary 1.5 can be found.

Proposition 1.11. Let a and b be two (fractional) ideals in R. Assume that the
prime ideal factorization of a or of b is known. Then it is possible to find in
polynomial time elements a ∈ a, b ∈ b, c ∈ b−1 and d ∈ a−1 such that ad− bc = 1.

Proof. Multiplying a and b by an element of Q∗, if necessary, we can reduce to the
case where a and b are integral ideals. Assume for example that the factorization
of b is known. According to Corollary 1.8 we can find in polynomial time a ∈ R
such that aa−1 is an integral ideal (i.e. a ∈ a) and coprime to b. According to
Proposition 1.1 we thus can find e ∈ aa−1 and f ∈ b such that e+ f = 1. Clearly
b = f , c = −1, d = e/a satisfy the required conditions.

Remark. It is an interesting question whether this can be done in polynomial time
without knowing the prime ideal factorization of either a or b (or equivalently of
the norm of either a or b, since we work in number fields). H. W. Lenstra informs
me that this can indeed be done using factor refinement , which we will not explain
here.

2. The Hermite Normal Form algorithm over Dedekind domains

We recall the following theorem, which summarizes the main properties of finitely
generated modules over Dedekind domains.

Theorem 2.1. Let R be a Dedekind domain, and let M be a finitely generated
R-module.

(1) If

Mtors = {x ∈M/ ∃a ∈ R, ax = 0}
is the torsion submodule of M , there exists a torsion-free submodule N of M
such that

M = Mtors ⊕N and N 'M/Mtors .

(2) A finitely generated R-module M is torsion free if and only if M is a projective
module. If V = MK is the vector space spanned by M , and if n = dimK(V )
is the rank of M , there exist (fractional) ideals ai and elements ωi ∈ V such
that

M = a1ω1 ⊕ a2ω2 ⊕ · · · ⊕ anωn .

The class of the product a = a1a2 · · · an in the class group of R depends only
on the module M and is called the Steinitz class of M . The module M is a
free R-module if and only if its Steinitz class is equal to the trivial class.

(3) Let M be a finitely generated torsion module. Then there exist integral ideals
di of R and elements ωi ∈M such that

M = (R/d1)ω1 ⊕ · · · ⊕ (R/dn)ωn

and di−1 ⊂ di for 2 ≤ i ≤ n.
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In this section we will only consider finitely generated torsion-free R-modules
and refer to §4 for torsion modules. In view of the above theorem, it is natural to
give the following definition.

Definition 2.2. Let M be a finitely generated torsion-free R-module, and set V =
MK. If ai are (fractional) ideals of R and ωi are elements of V , we say that
(ωi, ai)1≤i≤k form a pseudogenerating set for M if

M = a1ω1 + · · ·+ akωk .

We say that it is a pseudobasis of M if the sum is direct, i.e., if

M = a1ω1 ⊕ · · · ⊕ akωk .

Note that according to Theorem 2.1, any finitely generated torsion-free module
has a pseudobasis.

Let (ωi, ai)1≤i≤n be a pseudobasis of M . Then n is equal to the rank of M . It is
clear that, among other transformations, we can multiply ai by a nonzero element of
K as long as we divide ωi by the same element, and we will still have a pseudobasis.
In particular, if so desired, we may assume that the ai are integral ideals, or that
the ωi are elements of M . On the other hand, it is in general not possible to have
both properties at once. A simple example is when M = a a nonprincipal primitive
integral ideal. Then the general pseudobasis of M is (a, a/a), and so to have both
an element of M and an integral ideal, we would need a ∈ a and a/a ⊂ R, which is
equivalent to a = aR, contrary to our choice of a.

Furthermore, restricting either to elements of M or to integral ideals would be
too rigid for algorithmic purposes, so it is preferable not to choose a pseudobasis of a
particular type for the moment. We will systematically represent finitely generated
torsion-free R-modules by pseudobases. To be able to do this, we need to know
how to compute such pseudobases, and how to perform usual operations on these
pseudobases. As for the case R = Z, the basic algorithm for doing this is the
Hermite Normal Form algorithm, and we will see that such an algorithm does
indeed exist. Before doing this, however, let us see how one can go from one basis
to another.

The following proposition is a generalization of Proposition 1.3.

Proposition 2.3. Let (ωj, aj) and (ηj , bj) be two pseudobases for an R-module M ,
and let U = (ui,j) be the n × n matrix giving the ηj in terms of the ωj (so that
[η1, . . . , ηn] = [ω1, . . . , ωn]U) .

Set a = a1 · · · an and b = b1 · · · bn. Then ui,j ∈ aib
−1
j and a = det(U)b (note

that by Theorem 2.1, we know that a and b are in the same ideal class) . Conversely,
if there exist ideals bj such that a = det(U)b (with b = b1 · · · bn) and ui,j ∈ aib

−1
j ,

then (ηj , bj) is a pseudobasis of M , where the ηj are given in terms of the ωj by
the columns of U .

Proof. Since

ηj ∈ b
−1
j M = b

−1
j

n⊕
i=1

aiωi =
n⊕
i=1

aib
−1
j ωi ,

it follows that ui,j ∈ aib
−1
j .

Now it is easily proven by linearity or by induction on n that e = det(U) ∈ ab−1,
so eb ⊂ a. Similarly, if V is the inverse matrix of U which expresses the ωj in terms
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of the ηj , then det(V ) ∈ ba−1. But since det(U) det(V ) = 1 we have det(V ) = 1/e,
hence a/e ⊂ b, i.e., a ⊂ eb, from which it follows that a = eb.

Conversely, if U has the properties above, then by looking at the adjoint matrix
of U , it easily follows that its inverse V is of a similar form with a and b exchanged
(it is of course essential that a = det(U)b). If X = [x1, . . . , xn]t is the column
vector of components of an element m of M in the pseudobasis (ωj , aj), then m =
[ω1, . . . , ωn]X = [η1, . . . , ηn]VX , and V X = [y1, . . . , yn]t satisfies yi ∈ bi for 1 ≤
i ≤ n. Since the yi are unique, this shows that (ηj , bj) is a pseudobasis of M , thus
proving the proposition.

It is clear that Proposition 1.3 is the special case n = 2 of this proposition.
However, since that special case is going to be used constantly, we presented it
separately.

Corollary 2.4. Let M be a finitely generated torsion-free R-module together with
a nondegenerate bilinear pairing T (x, y) from M × M to R (for example M =
ZL, where L is a number field containing K, and T (x, y) = TrL/K(x · y)) . For
any pseudobasis B = (ωj , aj) of M , let det(B) be the ideal defined by det(B) =
det(T (ωi, ωj))a

2, where as usual a = a1 · · · an. Then if B′ = (ηj , bj) is another
pseudobasis of M , we have det(B′) = det(B).

Proof. Note that since ωj /∈ M in general, in the definition above we extend the
bilinear form T to V × V (where V = MK) by bilinearity. Let U be the matrix
expressing the ηj in terms of the ωj. We know that a = det(U)b. By bilinearity,
it is clear that if G (resp G′) is the matrix of the T (ωi, ωj) (resp. T (ηi, ηj)), then
G′ = U tGU . It follows that

det(B′) = det(G′)b2 = det(G) det(U)2a2/ det(U)2 = det(G)a2 = det(B).

Since det(B) does not depend on the chosen pseudobasis B, we will denote it by
disc(M) and call it the discriminant ideal of M .

Remark. We can also define det(T (ωi, ωj)) as an element d(M) ∈ K∗/K∗2, since

under a change of pseudobasis this determinant is multiplied by det(U)2 ∈ K∗2.
The pair (disc(M), d(M)) will simply be called the discriminant of M . Note that
knowledge of one of the components of the pair does not imply knowledge of the
other, hence the pair itself is useful. In the absolute case where M = ZK is the ring
of integers of a number field K, considered as a Z-module, the discriminant ideal
disc(M) gives the absolute value of the usual discriminant, and d(M) gives its sign
(and some other information already contained in disc(M)).

The main theorem of this section is that the notion of Hermite Normal Form can
be extended to Dedekind domains. As is well known, the Hermite Normal Form
algorithm is a direct generalization of the extended Euclidean algorithm. Since we
now have such an algorithm available to us (Corollary 1.4), it is not surprising that
this can be done.

We first introduce a definition. Let A = (ai,j) be an n×k matrix with coefficients
in K, and I = (ai) a list of k fractional ideals. We will call the data (A, I) a
pseudomatrix , and the module associated with this pseudomatrix will be the module
M =

∑
1≤j≤k ajAj , where the Aj are the columns of A, so that (Aj , aj) is a

pseudogenerating set for M .
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Theorem 2.5 (Hermite Normal Form in Dedekind domains). Let (A, I) be a
pseudomatrix, where I = (ai) is a list of k fractional ideals, and A = (ai,j) is
an n × k matrix. Assume that A is of rank n (so k ≥ n) with coefficients in the
field of fractions K of R (we could just as easily consider the case of a matrix of
lower rank) . Let M =

∑
j ajAj be the R-module associated with the pseudomatrix

(A, I). Then there exist k nonzero ideals (bj)1≤j≤k and a k × k matrix U = (ui,j)
satisfying the following conditions. Set a = a1 · · · ak, b = b1 · · · bk. Then

(1) a = det(U)b.
(2) The matrix AU is of the following form:

AU =


0 0 . . . 0 1 ∗ . . . ∗
0 0 . . . 0 0 1 . . . ∗
...

...
. . .

...
...

. . .
. . .

...
0 0 . . . 0 0 . . . 0 1

 ,

where the first k − n columns are zero.
(3) If we call ωj the elements corresponding to the nonzero columns of AU and

cj = bk−n+j for 1 ≤ j ≤ n, then

M = c1ω1 ⊕ · · · ⊕ cnωn ;

in other words, (ωj , cj) is a pseudobasis of M .

Proof. We give the proof as an algorithm, very similar to Algorithm 2.4.5 of [2]
(which is the näıve HNF algorithm).

Algorithm 2.6 (HNF algorithm in Dedekind domains). Given an n × k matrix
A = (ai,j) of rank n, and k (fractional) ideals aj in a number field K, this al-
gorithm computes k ideals bj and a k×k matrix U such that this data satisfies the
conditions of Theorem 2.5. We will make use only of elementary transformations
of the type given in Theorem 1.2 combined with Corollary 1.4. We denote by Aj
(resp. Uj) the columns of A (resp. U).

1. [Initialize] Set i← n, j ← k, and let U be the k × k identity matrix.
2. [Check zero] Set m ← j, and while m ≥ 1 and ai,m = 0, set m ← m − 1. If
m = 0, the matrix A is not of rank n, so print an error message and terminate
the algorithm. Otherwise, if m < j, exchange Am with Aj , am with aj, and Um
with Uj.

3. [Put 1 on the main diagonal] Set Aj ← Aj/ai,j , Uj ← Uj/ai,j , aj ← ai,jaj and
set m← j. (We now have ai,j = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m← m− 1, and if ai,m = 0, go to
step 4.

5. [Euclidean step] (Here ai,j = 1 and ai,m 6= 0). Using the algorithm contained in
the proof of Theorem 1.2, set d = ai,mam+aj and find u ∈ amd−1 and v ∈ ajd

−1

such that ai,mu + v = 1. Then set (Am, Aj) ← (Am − ai,mAj , uAm + vAj),
(Um, Uj)← (Um− ai,mUj, uUm + vUj) and (am, aj)← (amajd

−1, d). Finally, go
to step 4.

6. [Final Reductions of row i] For m = j+ 1, . . . , m = n, find q ∈ ama
−1
j such that

ai,m − q is small (see below), and set Am ← Am − qAj and Um ← Um − qUj.
7. [Finished?] If i = 1, then output the matrix U , the modified matrix A (i.e.,
AU in the notation of Theorem 2.5), and the modified ideals aj (i.e., bj in the
notation of Theorem 2.5), and terminate the algorithm. Otherwise, set i← i−1,
j ← j − 1 and go to step 2.
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Ignoring step 6 for the moment, it is clear that this algorithm, which is essentially
identical to the one for Z, terminates with a new matrix A of the form required
by Theorem 2.5. Furthermore, the elementary operations that are used are either
exchanges of columns (and the corresponding ideals) or transformations allowed by
Corollary 1.4, hence the module a1ω1 + · · ·+ akωk stays unchanged.

Call a the initial ideal product and b the current one. All the elementary oper-
ations are either of determinant ±1 (and in that case b is unchanged), except in
step 3 where the determinant is 1/ai,j and b is multiplied by ai,j , hence the relation
a = det(U)b is preserved throughout.

Note that upon termination we have a direct sum, and not simply a sum, since
the last n columns of A are then linearly independent. This proves Theorem 2.5.
We will come back to step 6 of the algorithm after we study uniqueness of HNF
pseudobases below.

Remark. Note that this proof gives an algorithm to find an HNF of a matrix, but
does not show that the algorithm is polynomial-time. This is not surprising since
the corresponding näıve algorithm for HNF over Z is not polynomial-time because
of coefficient explosion. The existence of a polynomial-time algorithm for HNF
reduction (including finding the matrix U) is rather recent (see [5], [7]). Note that
in practice, n will be the relative degree of a number field extension, and so in many
cases it will be sufficiently small to make the näıve algorithm efficient.

We now consider the problem of uniqueness in Theorem 2.5. We first need a
definition.

Definition 2.7. Let (A, I) be a pseudomatrix with I = (aj). If i1, . . . ,ir are r
distinct rows of A and j1, . . . ,jr are r distinct columns, we define the minor-ideal
corresponding to these indices as follows. Let d be the determinant of the r × r
minor extracted from the given rows and columns of A. Then the minor-ideal is
the ideal daj1 · · · ajr .

With this definition we can state:

Theorem 2.8. With the notation of Theorem 2.5, for 1 ≤ j ≤ n, set cj = bk−n+j.
Then the ideals cj are unique. More precisely, if we call gj = gj(A) the ideal
generated by all the (n+ 1− j)× (n+ 1− j) minor-ideals in the last n+ 1− j rows
of the matrix A, then cj = gn+1−jg

−1
n−j.

Proof. One easily checks that the ideals gm(A) are invariant under the elementary
transformations of the type used in Algorithm 2.6. In particular, gj(A) = gj(AU).
But in the last n+ 1− j rows of AU there is a single nonzero minor whose value is
trivially 1, hence we have gj(A) = cn+1−j · · · cn, thus proving the theorem.

Finally, we have the following proposition.

Proposition 2.9. If AU is of the form given by Theorem 2.5, a necessary and
sufficient condition for AV to be of the same form (with the same ideals bj) is that

U−1V be a block matrix

(
A B
0 D

)
with D an n× n upper triangular matrix with 1

on the diagonal such that for each i, j its entry in row i and column j belongs to
cic
−1
j .

Proof. Trivial and left to the reader.
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Corollary 2.10. For each i and j with 1 ≤ i < j ≤ n, let Si,j be a system of

representatives of K/cic
−1
j . Then in Theorem 2.5 we may assume that for every i

and j such that i < j, the entry in row i and column j of the matrix AU is in Si,j,
and in that case the matrix AU is unique.

Proof. For i < j, let bi,j be the entry in row i and column j of the matrix AU .
There exists a unique ci,j ∈ Si,j such that

q = ci,j − bi,j ∈ cic
−1
j .

If the Bj are the columns of AU , then by Proposition 2.9 the replacement of Bj
by Bj − qBi is a legal elementary operation which transforms bi,j into ci,j , thus
proving the existence. The uniqueness follows also from this, since there was a
unique possible q.

We can now comment on step 6 of Algorithm 2.6. By the above corollary, the
reduction done in step 6 is a legal one. Ideally, for each i, j we would like to
find a system of representatives of K/cic

−1
j as well as an algorithm for finding the

representative of a given element of K. There are two different methods of doing
this, which both have advantages and disadvantages.

The first method is to compute the (usual) HNF matrix H of cic
−1
j on some fixed

integral basis of K. If (di)1≤i≤N are the diagonal elements of H (with N = [K : Q]),
then we can take S =

∏
1≤i≤N Q/diZ (and as representatives of Q/diZ, for example

the interval [0, di)). If x ∈ K, we express x as a column vector (with rational
coefficients) on the integral basis, and then reduce x modulo cic

−1
j from bottom

to top by subtracting from x suitable multiples of the columns of H so that the
coordinates of x fall in the interval [0, di) for each i.

We can write this out explicitly as an algorithm.

Algorithm 2.11 (HNF reduction modulo an ideal). Given an ideal a by its N×N
upper triangular HNF matrix H = (hi,j) in some basis of K, and an element x ∈ K
given by a column vector X = (xi) in the same basis, this algorithm computes a
“canonical” representative of x modulo a, i.e., an element y ∈ K such that x−y ∈ a

and the coordinates yi of y in the basis satisfy 0 ≤ yi < hi,i.

1. [Initialize] Set i← N , y ← x.
2. [Reduce] Set q ← byi/hi,ic, y ← y− qHi (recall that Hi is the ith column of H).
3. [Finished?] If i = 1, output y and terminate the algorithm, otherwise set i← i−1

and go to step 2.

This method has the advantage of giving a unique and well-defined representative
of x modulo cic

−1
j , as well as an algorithm to find it. However, it will often happen

in practice that the first few rows of the HNF matrix H will be very large, and the
others much smaller. Hence the resulting “reduced” element will in fact be often
quite large.

The second method consists in finding first an LLL-reduced basis L of cic
−1
j ,

which will have much smaller coefficients in general than the HNF matrix H. We
must then find an element q ∈ cic

−1
j such that x− q is small (we already mentioned

the need for this in the remarks following Proposition 1.1). It is well known that
this is a difficult problem (probably NP-complete). However, if we write x =∑

1≤j≤N xjLj with xj ∈ Q (where the Lj are the elements of the basis L) and
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choose

q =
∑

1≤j≤N
bxjeLj

(where bae denotes one of the nearest integers to a), it is clear that q ∈ cic
−1
j and

that x− q is reasonably “small”. Note that it is essential that the basis L be LLL-
reduced before doing this operation, otherwise x − q would not be small at all in
general.

We can write this out explicitly as an algorithm.

Algorithm 2.12 (LLL reduction modulo an ideal). Given an ideal a by some N×
N matrix H = (hi,j) representing a Z-basis of a in some basis of K, and an element
x ∈ K given by a column vector X = (xi) in the same basis, this algorithm
computes a noncanonical but “small” representative of x modulo a, i.e., an element
y ∈ K such that x− y ∈ a and the coordinates yi of y in the basis are reasonably
small.

1. [LLL-reduce] Using the LLL algorithm or one of its variants, let L be the matrix
of an LLL-reduced basis of a.

2. [Find coefficients] Using Gaussian elimination, find the solution Z = (zi) to the
linear system LZ = X (i.e., Z = L−1X)

3. [Reduce] Set Y ← X −
∑

1≤i≤NbzieLi, output the element y corresponding to
Y and terminate the algorithm.

The main advantage of this method is that the reduced vector will have much
smaller entries. However, the reduction is not unique, and takes more time since
LLL is usually slower than HNF. Only practice can tell which method is to be
preferred. In the modular HNF method explained below, however, it is essential to
use this method to avoid coefficient explosion.

The above algorithm can be considerably improved by using an idea explained
to me by Peter Montgomery. Instead of doing an LLL reduction of the ideal, which
is an expensive operation, we can perform a fast partial reduction of the matrix (a
matrix A with columns Aj will be said to be partially reduced if for any distinct
columns we have ‖Ai ±Aj‖ ≥ ‖Aj‖.)

The resulting basis will not be LLL-reduced in general, but its entries will be
of comparable size to that of the LLL-reduced one. Furthermore, it is particularly
well suited to matrices which have a few rows much larger than the others, such as
typical HNF matrices for ideals. I refer to [8] for details.

It is necessary to make a number of remarks concerning the implementation of
the HNF algorithm in Dedekind domains (Algorithm 2.6).

Usually a torsion-free R-module M will be given by a generating set expressed in
a fixed basis B ofKM . Using Algorithm 2.6, we can find a pseudobasis (ωj , aj)1≤j≤n
which will have the very special property of being upper triangular with ones on
the diagonal when expressed in B.

We can now start modifying this basis. First we can choose to have only integral
(and even primitive) ideals aj by dividing them by suitable elements of Q∗, and
multiplying the corresponding ωj by the same. Alternatively, we can ask for integral
coefficients for the ωj, and this is done in a similar manner.

Then we can ask for a pseudobasis such that all the ideals are equal to R except
perhaps the last, whose ideal class will then be the Steinitz class of M . That this
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is possible follows from Proposition 1.11 together with Corollary 1.5. By induc-
tion, we can replace ideal pairs (aj, aj+1) by (R, ajaj+1) by using legal elementary
transformations on the matrix A, and hence at the end of the process all ideals
except perhaps the last one will be equal to R, as desired. Note however that to
apply Proposition 1.11 in an algorithmic manner, it is necessary to know the prime
decompositions of the norms of the aj . In practice, this is always the case, but of
course in general this is perhaps not a polynomial-time operation. Furthermore,
note that ultimately Proposition 1.11 relies on being able to find an integral ideal in
a given ideal class coprime to some other ideal, which can be done deterministically
only with the approximation theorem, hence can be rather slow.

Finally, note that if we perform the above transformations on the matrix and
the ideals, the resulting pseudobasis will no longer be represented by a triangular
matrix. If we are still not content with this, we could, if desired, obtain an (n+ 1)-
element generating set of our module by replacing ωnan with aωn + bωn, where
an = aR + bR is found using Proposition 1.9. This will of course not be a direct
sum. Note that the search for a and b can be done in polynomial time if the norm
of an is completely factored, since a can be taken equal to the norm of an. We may
also like to know if our module M is free and find a basis. Using the techniques
developed in [2, Chapter 6], once a relation matrix is found which is sufficient to
compute the class group and regulator of R, it is quite easy to determine whether
an ideal is principal or not, and if it is, to find a generator. Note that [2] assumes
the GRH, but evidently the same technique applies as long as we have obtained a
relation matrix.

So we test if an is a principal ideal. If it is not, then nothing more can be done:
according to Theorem 2.1, M is not free, so either use the pseudobasis (probably
the best), or the (n + 1)-element generating set. If an = aR, then after replacing
ωn by aωn, (ωj)1≤j≤n is an R-basis of M .

If we only want to know whether M is free or not, without finding explicitly a
basis, then it is not necessary to use Proposition 1.11 inductively: we use the initial
HNF pseudobasis and test whether a1 . . . an is a principal ideal or not.

3. The modular Hermite Normal Form algorithm

over Dedekind domains

It is well known that the usual HNF over Z suffers from coefficient explosion,
which often makes the algorithm quite impractical, even for matrices of reasonable
size. Since our algorithm is a direct generalization of the näıve HNF algorithm, the
same phenomenon occurs. Hence, it is necessary to improve the basic algorithm.

In the case of the ordinary HNF, there are essentially two ways of doing this,
depending on what one wants.

The first method is the “modular” method (see [5], [7]). If we can compute the
determinant of the lattice generated by the columns of our matrix, all computations
can then be done modulo this determinant, and the final HNF matrix can be
recovered by a simple GCD procedure (see [2, Algorithm 2.4.6]). This method can
be proved to be polynomial-time, but has the disadvantage of not computing the
(unimodular) transformation matrix U . In most cases, this is not needed anyway,
but in other cases it is essential (see for example the proof of Proposition 1.1). If
we really want the matrix U , it can be recovered from the modular method, but its
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coefficients will in general be huge and the method would not be polynomial-time.
However, see [5] for a way of obtaining U in polynomial time.

The other methods, due essentially to Havas (see [6] and the references therein),
are more heuristic in nature (they are not provably polynomial-time), but have
the great advantage of giving very small transformation matrices U . Since in our
application to relative extensions of number fields we will usually not need the
matrix U , we will not consider here the generalization of Havas’s algorithms to the
Dedekind case, although there is no doubt that it can be done. Hence, the purpose
of this section is to explain how the usual modular HNF algorithm can be modified
to work over Dedekind domains. Although quite simple, this generalization is not
absolutely straightforward, so we give some details, following closely the exposition
of [5] and [2].

We have defined above the notion of minor-ideal of a pseudomatrix (A, I), and
in particular g1(M) is the ideal of R generated by all n × n minor-ideals of the
pseudomatrix (A, I). We will say that g1(M) is the determinantal ideal of the
module M . It is clearly a generalization of the notion of determinant of a lattice.

Since there are
(
k
n

)
minors of order n, it could be a lengthy task to compute

g1(M) explicitly, except of course when k = n or even k = n + 1 (note that the
computation of each minor is an ordinary determinant computation which can be
done with the usual Gauss-Bareiss pivoting strategy, which only involves exact
divisions).

However, we do not really need the determinantal ideal itself but only an integral
multiple of it. Furthermore, if we choose n − 1 fixed independent columns, and
consider the k − n + 1 order-n minors obtained by choosing successively each of
the remaining columns, we have a much more reasonable number of minor-ideals to
compute, their computation is very fast (since n− 1 of the pivoting steps are done
once and for all), and the ideal sum of all these minor-ideals will give a reasonably
sized multiple of the determinantal ideal g1(M). Hence, we may assume that we
have computed an ideal D which is an integral multiple (i.e., is a subset) of the
determinantal ideal g1(M) of M . We now describe what modifications must be
made to Algorithm 2.6. We will make the computations in this algorithm modulo
D, and then we will have to recover the correct HNF pseudomatrix by suitable ideal
operations.

First, we must compute modulo D. Recall that the individual columns Aj or
ideals aj are quite arbitrary, and that only the rank-1 submodule ajAj of M is a
reasonable object to consider. Hence, we must reduce modulo D not the column
Aj itself, but the module ajAj . In other words, we must reduce the column Aj
modulo the ideal Da

−1
j .

Hence, we will modify step 5 of Algorithm 2.6 as follows. Before returning to
step 4, we will set Am ← Am (mod Da−1

m ) and Aj ← Aj (mod Da
−1
j ). Here,

the reduction modulo an ideal is understood in the sense of the LLL-reduction
Algorithm 2.12.

Since in the inner loop of Algorithm 2.6 the column index j is fixed and only
m varies, it can also be argued that we should only perform the reduction of the
column Am, and perform the reduction of Aj only when the m-loop is finished.
Although this avoids almost half of the (expensive) reductions, it may lead to much
larger intermediate coefficients, so it is not clear if this method is preferable. Once
this modified algorithm is finished, we must execute the following supplementary
algorithm to recover the true HNF pseudobasis of M (see [2], [5]).
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Algorithm 3.1 (Modular HNF algorithm in Dedekind domains). Given an n× k
matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number field K,
this algorithm computes an HNF pseudobasis (W, I) of the module M =

∑
j ajAj ,

where W is an n × n upper triangular matrix with ones on the diagonal, and
I = (b1, . . . , bn) is a list of n ideals. We assume that we have computed a multiple
D of the determinantal ideal of M .

1. [Compute HNF modulo D] Using Algorithm 2.6 above, together with the mod-
ifications that we have just described for working modulo D, let B = (bi,j) be
the n× n HNF matrix obtained by discarding the first k− n zero-columns from
the resulting matrix AU , and let bj be the corresponding ideals (we discard in
Algorithm 2.6 all the statements concerning the matrix U). Then set B ← D,
i← n.

2. [Euclidean step] Set d = bi,ibi + B, and using Theorem 1.2, find u ∈ bid
−1 and

v ∈ Bd−1 such that bi,iu+ v = 1. Then set Wi ← uBi (mod Bd−1) and bi ← d

(here again reduction is done using Algorithm 2.12). Set wi,i ← 1. (Note that
ubi,i ≡ 1 (mod Bd−1) but the reduction modulo Bd−1 may not reduce it to 1.)

3. [Finished?] If i > 1, set B← Bd−1 and go to step 2. Otherwise, for i = n− 1,
n − 2, . . . , 1, and for j = i + 1, . . . , n, using Algorithm 2.12, find q ∈ bib

−1
j

such that wi,j − q is small, and set Wj ←Wj − qWi. Output the matrix W , the
ideal list I = (b1, . . . , bn) and terminate the algorithm.

Proof. The proof of the validity of this algorithm is essentially the same as in the
classical case (see [2] and [5]), and for brevity’s sake we do not repeat it here. The
gi(A) which is defined in the classical case as the GCD of all i× i minors extracted
from the last i rows of A is replaced in our situation by the minor-ideal gi(M)
which plays exactly the same role (and reduces to the classical definition in the
case where ZK = Z). Note that, according, for example, to Proposition 1.3 (see
also the remark after Corollary 1.5), the elementary column transformations made
in step 3 are legal.

We finish this section by noting that it is more efficient in practice to interleave
Algorithm 2.6 and Algorithm 3.1 into a single algorithm, analogous to [2, Algorithm
2.4.8] (see also [4]). The proof of the validity of this algorithm follows from the
proofs given above.

Algorithm 3.2 (Modular HNF Algorithm in Dedekind domains). Given an n×k
matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number field K,
this algorithm computes an HNF pseudobasis (W, I) of the module M =

∑
j ajAj ,

where W is an n × n upper triangular matrix with 1 on the diagonal, and I =
(b1, . . . , bn) is a list of n ideals. We assume that we have computed a multiple D

of the determinantal ideal of M .

1. [Initialize] Set i← n, j ← k and B← D.
2. [Check zero] Set m← j, and while m ≥ 1 and ai,m = 0, set m← m− 1. (Note

that since we know that D is a nonzero ideal, it is not necessary to check that
the matrix A is of maximal rank.) If m < j, exchange Am with Aj and am with
aj.

3. [Put 1 on the main diagonal] Set Aj ← Aj/ai,j , aj ← ai,jaj and set m← j. (We
now have ai,j = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m← m− 1, and if ai,m = 0, go to
step 4.
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5. [Euclidean step] (Here ai,j = 1 and ai,m 6= 0). Using the algorithm contained
in the proof of Theorem 1.2, set d = ai,mam + aj and find u ∈ amd−1 and
v ∈ ajd

−1 such that ai,mu + v = 1. Then set in this order (Am, Aj) ←
(Am − ai,mAj , uAm + vAj), (am, aj) ← (amajd

−1, d), Am ← Am (mod Ba−1
m )

and Aj ← Aj (mod Ba
−1
j ), where the reduction is done using Algorithm 2.12.

Finally, go to step 4.
6. [Next row] Set d ← ai,jaj + B and using Theorem 1.2 once again compute u ∈

ajd
−1 and v ∈ Bd−1 such that uai,j+v = 1. Set Wi ← uAj (mod Bd−1) (where

the reduction is again done using Algorithm 2.12), ai ← d and set wi,i ← 1. For

m = j + 1, . . . , m = n, using Algorithm 2.12 once more, find q ∈ ama
−1
j such

that ai,m − q is small, and set Am ← Am − qAj .
7. [Finished?] If i = 1, then output the matrix W , the modified ideals aj and

terminate the algorithm. Otherwise, set B ← Bd−1, i ← i− 1, j ← j − 1 and
go to step 2.

Remark. The above modular version performs well in practice. It seems quite
plausible that, as in the case of R = Z, this algorithm is in fact polynomial-time,
but I have not tried to prove this, although it may be easy.

4. The Smith Normal Form algorithm over Dedekind domains

Recall the elementary divisor theorem for torsion-free modules.

Theorem 4.1. Let P and N be two torsion-free modules of rank p and n, respec-
tively, such that N ⊂ P (so n ≤ p) . There exist fractional ideals b1, . . . ,bp of R,
a basis (ω1, . . . , ωp) of V = PK and integral ideals d1, . . . , dn such that

P = b1ω1 ⊕ · · · ⊕ bpωp and N = d1b1ω1 ⊕ · · · ⊕ dnbnωn

and such that di−1 ⊂ di for 2 ≤ i ≤ n.
The ideals di (for 1 ≤ i ≤ n) and the ideal classes of the ideal products b1 · · · bn

and bn+1 · · · bp depend only on P and N .

In other words, this theorem says that we can find pseudobases of P and N
which differ only in their ideals, in a specific way. Our main goal will be to give
an algorithm to find these pseudobases. This will be the Smith Normal Form
algorithm.

Before doing this, we must generalize the notion of pseudomatrix. If (A, I) is a
pseudomatrix with A = (ai,j) an n× k matrix with coefficients in K and I = (ai)
a vector of k ideals, it is natural to consider the linear map f from a1 × · · · × ak to
Kn associated with this pseudomatrix, defined by

f(a1, . . . , ak) =
∑

1≤j≤k
ajAj ,

where as usual Aj denotes the jth column of A, considered as an element of Kn.
The image of this map f is exactly the module M =

∑
j ajAj with which we have

worked.
We must now consider the more general situation where the map f is a linear

map from N = a1× · · ·× an to P = b1× · · ·× bp for some other ideals bi. If we call
ij the jth canonical injection from aj to N (defined by ij(a) = (0, . . . , 0, a, 0, . . . , 0)
where a is at the jth component) and pi the ith canonical projection of P to bi

(defined by pi(b1, . . . , bn) = bi), we will set
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fi,j = pi ◦ f ◦ ij .

This is a linear map from aj to bi. Conversely, given any linear maps gi,j from aj

to bi, we can define in a unique manner a linear map f from N to P such that
fi,j = gi,j .

Now let a and b be two ideals and g a linear map from a to b. By tensoring
with the field K we can extend this to a map (which we denote again by g) from
K to K (since a and b are nonzero fractional ideals), and such a map is of the form
g(x) = λx for some λ ∈ K. Conversely, such a λ gives a map from a to b if and
only if λa ⊂ b, i.e., λ ∈ ba−1. This leads us to the following definition.

Definition and Proposition 4.2. Let N = a1ω1 ⊕ · · · ⊕ anωn and P = b1η1 ⊕
· · · ⊕ bpηp be two torsion-free R-modules given by pseudobases, and let A = (ai,j)
be a p× n matrix. Let I = (b1, . . . , bp) and J = (a1, . . . , an).

(1) We will say that (A, I, J) is an integral pseudomatrix if for each i and j we
have ai,j ∈ bia

−1
j .

(2) Given such a pseudomatrix (A, I, J), the map f from N to P associated with
it is the map defined by setting

f(
∑
j

ajωj) =
∑
j

ajf(ωj) =
∑
j

aj
∑
i

ai,jηi =
∑
i

ηi(
∑
j

ai,jaj) ,

which makes sense since ai,jaj ∈ bi.
(3) The module M associated with (A, I, J) is the quotient module

P/f(N) = (b1η1 ⊕ · · · ⊕ bpηp)/f(a1ω1 ⊕ · · · ⊕ anωn) .

Note that the module M associated with a pseudomatrix (A, I, J) is a torsion
module if and only if p = n, i.e., if A is a square matrix (of nonzero determinant).

We can now state the main theorem of this section. For simplicity we state it
for square matrices, but it is easily extended to the general case.

Theorem 4.3 (Smith Normal Form in Dedekind domains). Let (A, I, J) be a
pseudomatrix as above, with A = (ai,j) an n × n matrix and I = (b1, . . . , bn),

and J = (a1, . . . , an) two vectors of n ideals such that ai,j ∈ bia
−1
j .

Then there exist vectors of ideals (b′1, . . . , b
′
n) and (a′1, . . . , a

′
n), and two n × n

matrices U = (ui,j) and V = (vi,j) satisfying the following conditions. For all i,

set di = a′ib
′
i
−1

, a = a1 · · · an, b = b1 · · · bn, a′ = a′1 · · · a′n and b′ = b′1 · · · b′n. Then

(1) a = det(U)a′ and b′ = det(V )b (note the reversal) .
(2) The matrix V AU is the n× n identity matrix.
(3) The di are integral ideals and for 2 ≤ i ≤ n we have di−1 ⊂ di.

(4) For all i, j we have ui,j ∈ aia
′
j
−1

and vi,j ∈ b′ib
−1
j .

Proof. Again we prove this theorem by giving an explicit algorithm for contructing
the Smith normal form. We follow closely [2, Algorithm 2.4.14], except that we do
not work modulo the determinant (although of course such a modular version of
the Smith Normal Form algorithm is easily written).

Algorithm 4.4 (SNF algorithm in Dedekind domains). Given an invertible n×n
matrix A = (ai,j), and two lists of n (fractional) ideals I = (bi) and J = (aj) in
a number field K, this algorithm computes two other lists of n ideals b′i and a′j
and two n × n matrices U and V such that this data satisfies the conditions of
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Theorem 4.3. We will make use only of elementary transformations of the type
given in Theorem 1.2 combined with Corollary 1.4. We denote by Aj (resp. Uj)
the columns of A (resp. U), and by A′j (resp. V ′j ) the rows of A (resp. V ).

1. [Initialize i] Set i← n, and let U and V be the n×n identity matrix. If n = 1,
output b1, a1, U , V and terminate the algorithm.

2. [Initialize j for row reduction] Set j ← i and c← 0.
3. [Check zero] If j = 1, go to step 5. Otherwise, set j ← j − 1. If ai,j = 0 go to

step 3.
4. [Euclidean step] Using the algorithm of Theorem 1.2, set d ← ai,iai + ai,jaj

and find u ∈ aid
−1 and v ∈ ajd

−1 such that ai,iu + ai,jv = 1. Then set
(Aj , Ai)← (ai,jAj − ai,iAi, uAi + vAj), (Uj , Ui)← (ai,jUj − ai,iUi, uUi+ vUj),
(aj , ai)← (aiajd

−1, d). Finally, go to step 3.
5. [Initialize j for column reduction] Set j ← i, and if ai,i 6= 1, set Ui ← Ui/ai,i,

ai ← ai,iai, ai,i ← 1.
6. [Check zero] If j = 1, go to step 8. Otherwise, set j ← j − 1. If aj,i = 0 go to

step 6.
7. [Euclidean step] Using the algorithm of Theorem 1.2, set d ← b

−1
i + aj,ib

−1
j

and find u ∈ b
−1
i d−1 and v ∈ b

−1
j d−1 such that u + aj,iv = 1. Then set

(A′j , A
′
i) ← (aj,iA

′
j − A′i, uA

′
i + vA′j), (V ′j , V

′
i ) ← (aj,iV

′
j − V ′i , uV

′
i + vV ′j ),

(bj , bi)← (bibjd, d
−1). Finally set c← c+ 1 and go to step 6.

8. [Repeat stage i?] If c > 0, go to step 2.
9. [Check the rest of the matrix] Set b ← aib

−1
i . For 1 ≤ k, l < i check whether

ak,lalb
−1
k ⊂ b. As soon as this is not the case, let d ← bib

−1
k . Let d be one of

the generators of d such that ak,ld /∈ aia
−1
l (such a generator must exist and is

easy to find, for example by looking at the Z-basis of d given by the ordinary
HNF). Set A′i ← A′i + dA′k, V ′i ← V ′i + dV ′k and go to step 2.

10. [Next stage] (Here ak,lalb
−1
k ⊂ b for all k, l < i). If i ≥ 3, set i← i− 1 and go

to step 2. Otherwise, set U1 ← U1/a1,1, a1 ← a1,1a1 and a1,1 ← 1, output the
matrices U and V , the two ideal lists (bi) and (aj) and terminate the algorithm.

Contrary to the HNF algorithm which was immediate, there are several things to
be checked. First we must check that this algorithm is valid. It is easily verified that
all the elementary operations that are used are legal ones and that the identities
a = det(U)a′ and b′ = det(V )b are preserved throughout. Furthermore, upon

termination the matrix A will be the identity matrix and we will have aj,jb
′
j
−1

a′j ⊂
ai,ib

′
i
−1

a′i for all j < i, hence since ai,i = aj,j = 1, we obtain from the definition
of the di that dj ⊂ di for all j < i. In addition, it is easily checked that the ideal

c =
∑
i,j ai,jajb

−1
i is preserved by all the elementary transformations of rows and

columns that we perform. Since we have assumed that ai,j ∈ bia
−1
j it follows that c

is an integral ideal. But on the final pseudomatrix we have c =
∑
i a
′
ib
′
i =

∑
i di =

dn since dj ⊂ di for j < i. It follows that dn is an integral ideal, hence all the di

are integral ideals.
Note that we could interpret all the di in the same way by taking the sum of all

(n− i)× (n− i) minor-ideals of the pseudomatrix.
We must now show that the algorithm terminates. First note that the effect of

steps 2 to 8 on the triplet (ai,i, ai, b
−1
i ) is to transform it into

(1,
∑
j≤i

ai,jaj, b
−1
i +

∑
j<i

a′j,ib
−1
j ) ,
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where the a′j,i are the coefficients of the matrix after step 4. Hence, the product

ai,iaib
−1
i , which is an integral ideal throughout the algorithm (since it is included

in the ideal c = dn) can only get larger. Now since all the ideals are nonzero, steps
2 to 8 can leave this product unchanged only if ai,j = 0 and a′j,i = 0 for all j < i,
and this implies that c = 0, which is the termination condition of the loop from
steps 2 to 8. Thus, we have a strictly increasing sequence of integral ideals, which
is thus finite. So we get to step 9 after a finite number of steps.

Now one loop from step 9 back to step 5 again transforms the triplet (1, ai, b
−1
i )

into

(1, ai +
∑
j<i

dak,jaj , b
−1
i )

and hence, since dak,l /∈ aia
−1
l , it follows that the new ideal ai is strictly larger,

and hence the new ai,iaib
−1
i also. We again have a strictly increasing sequence of

integral ideals, which is thus finite, hence we pass only a finite number of times
through step 9, so the algorithm terminates.

Remarks.

(1) Considering step 7 of the algorithm, in practice it will probably be better to
keep the ideals b

−1
i and not the ideals bi themselves, so as to diminish the

number of ideal inversions.
(2) As mentioned earlier, it is very easy to introduce a modular version of the

SNF algorithm, as in Algorithm 2.4.14 of [2]. Such a variant is necessary in
many cases to avoid coefficient explosion. In addition, the algorithm is easily
modified to deal with singular or nonsquare matrices.

(3) Note that the module M associated with the pseudomatrix (A, I, J) will be
isomorphic to

R/d1 ⊕ · · · ⊕R/dn ,

and thus this gives the complete structure of M as an R-module.
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