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ON WEIGHT FUNCTIONS WHICH ADMIT EXPLICIT

GAUSS-TURÁN QUADRATURE FORMULAS

LAURA GORI AND CHARLES A. MICCHELLI

Abstract. The main purpose of this paper is the construction of explicit
Gauss-Turán quadrature formulas: they are relative to some classes of weight
functions, which have the peculiarity that the corresponding s-orthogonal poly-
nomials, of the same degree, are independent of s. These weights too are
introduced and discussed here. Moreover, highest-precision quadratures for
evaluating Fourier-Chebyshev coefficients are given.

1. Introduction

Given a function w which is positive and integrable on the interval [−1, 1], the ze-
ros x1, . . . , xn of the nth-degree orthogonal polynomial corresponding to w provide
the nodes of a quadrature rule for the integral

I(f ;w) :=

∫ 1

−1

f(x)w(x)dx(1.1)

which is of maximum degree of precision. That is, there are positive weights
λ1, λ2, . . . , λn such that

I(f ;w) = Q0(f ;w) :=
n∑
j=1

λjf(xj), f ∈ π2n−1,(1.2)

where πk := the space of all polynomials of degree ≤ k. Moreover, there is no
formula using a linear combination of n values of f that gives I(f ;w) for all poly-
nomials of degree 2n. This classical result on “Gaussian quadrature” was extended
by Turán in his interesting paper [13]. Turán considered quadrature rules of the
form

Qs(f ;w) :=
2s∑
k=0

n∑
j=1

λkjf
(k)(xj,s)(1.3)

and showed that such rules have a maximum degree of precision 2(s + 1)n − 1.
Moreover, he showed that the n zeros x1,s, . . . , xn,s of the monic polynomial of
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degree n which minimizes the expression∫ 1

−1

|p(x)|2s+2w(x)dx(1.4)

over all such polynomials gives a quadrature rule of maximum degree of accuracy,

I(f ;w) = Qs(f ;w), f ∈ π2(s+1)n−1.(1.5)

Turán’s elegant extension of Gauss quadrature attracted considerable interest
and still remains an attractive area of investigation. For instance, Gauss-Turán
formulas are dealt with in the book [2], and the numerical problem of computing
Turán formulas was studied in [3] and also [11], while an application to singular
integrals is treated in [5].

Even in the case s = 1, Turán left unsettled in [13] the determination of the
signs of λ0j and λ1j in his formula. Using some facts about monosplines, one of us
proved in [8] that alternate weights are always positive, namely,

λkj > 0, k = 0, 2, . . . , 2s, j = 1, 2, . . . , n.(1.6)

Later, it was shown in [9] for the Chebyshev weight

w∞(x) := (1− x2)−1/2, x ∈ (−1, 1),(1.7)

that λk,j , j = 1, . . . , n, can be both positive and negative. Explicit formulas for
all the Gauss-Turán formulas corresponding to this weight function were also given
in [9], in terms of certain divided difference functionals at the zeros of the nth
Chebyshev polynomial,

Tn(x) = cosnθ, x = cos θ, θ ∈ [0, π],(1.8)

ξj = cos[(2j − 1)π/2n], j = 1, 2, . . . , n.(1.9)

In another paper [10], these ideas were extended and also related to the work
in [7] and [2] on certain periodic versions of the Gauss-Turán formulas. This ad-
ditional information allowed the identification of the asymptotic behavior of λkj
corresponding to the Chebyshev weight function w∞ when n → ∞ and s is fixed,
a problem raised in [14].

Recently, it was observed by one of us in [4] that for the class of weight functions

w2,µ(x) := |x|2µ+1(1− x2)µ, µ > −1 ,(1.10)

explicit Gauss-Turán quadrature formulas can be given for all s, at least when
n = 2. Convergence properties of these formulas as s→∞ were studied in [4], and
later in [6] these new quadrature formulas were used for the efficient computation
of Cauchy principal value integrals.

The weight functions (1.10) studied in [4] and [6] fall into the category of “gen-
eralized Jacobi weights”, which have been studied from other points of view in [1],
[12], among others.

In this paper, sparked by the observations made in [4] about Gauss-Turán quad-
rature formulas, we introduce for each n a class of weight functions (which include
certain generalized Jacobi weight functions) for which explicit Gauss-Turán quad-
rature formulas of all orders can be found. Our results therefore extend and unify
some of the results in [4] and [9].

The paper is organized as follows. In §2, we define the class of weight functions
which are of interest to us. We then develop some of their properties and also
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give a few examples. Section 3 contains extensions and improvements on results
from [9] and [10]. Finally, the last section contains explicit Gauss-Turán quadrature
formulas for the class of weight functions described in §2.

2. Weight functions

The Fourier-Chebyshev expansion of a function f defined and integrable on
[−1, 1] is given by

∞∑
n=0

′
AnTn(x),(2.1)

where

An = An(f) =
2

π

∫ 1

−1

f(x)Tn(x)w∞(x)dx(2.2)

are its corresponding Fourier-Chebyshev coefficients. The prime on the summation
indicates that the term corresponding to n = 0 is halved.

For each n, we define the class Wn to consist of all nonnegative integrable func-
tions w on [−1, 1] such that the function w/w∞ has a Fourier-Chebyshev series of
the form

w/w∞ =
∞∑
`=0

′
ρ`T2`n ,(2.3)

where convergence holds relative to the weighted L1-norm∫ 1

−1

|f(x)|w∞(x)dx.(2.4)

Accordingly, for every w ∈ Wn and f ∈ C[−1, 1] we have

I(f ;w) =
π

2

∞∑
`=0

′
ρ`A2`n(f).(2.5)

In particular, it follows that

I(f ;w) =
ρ0

2

∫ 1

−1

f(x)w∞(x)dx, f ∈ π2n−1.(2.6)

Consequently, if pk, k = 0, 1, . . . , are the polynomials orthogonal relative to w,
normalized so that p0(x) = 1, and

pk(x) = 2k−1xk + · · · , k ≥ 1 ,

then (2.6) implies that

pk = Tk, k = 0, 1, . . . , n.(2.7)

Moreover, recalling the fact that∫ 1

−1

f(x)w∞(x)dx =
π

n

n∑
j=1

f(ξj), f ∈ π2n−1(2.8)
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(cf. [2]), we conclude that the Gauss quadrature formula for any w ∈ Wn is likewise
given by

I(f ;w) =
πρ0

2n

n∑
j=1

f(ξj), f ∈ π2n−1.(2.9)

This formula is our first indication that it is feasible that explicit Gauss-Turán
quadrature formulas for any w ∈ Wn can be found. In fact, (2.9) accomplishes this
goal for s = 0, the Gaussian case.

The first step in our quest for Gauss-Turán quadrature formulas identifies the
s-orthogonal polynomials of degree n for any w ∈ Wn.

Proposition 2.1. Let w ∈ Wn and 1 ≤ γ <∞. Then

min

{∫ 1

−1

|Tn(x)− p(x)|γw(x)dx : p ∈ πn−1

}
=

∫ 1

−1

|Tn(x)|γw(x)dx.

Specializing this result to γ = 2s + 2 implies that the n-th degree s-orthogonal
polynomial relative to the weight function w is Tn (independently of s).

Proof. For every polynomial p we have∫ 1

−1

|Tn(x) − p(x)|γw(x)dx =

∫ π

0

| cosnθ − p(cos θ)|γg(θ)dθ(2.10)

where

g(θ) := w(cos θ)| sin θ|, θ ∈ [−π, π].(2.11)

According to (2.3),

g(θ) =
∞∑
`=0

′
ρ` cos 2`nθ, a.e. θ ∈ [−π, π] ,(2.12)

and hence

g(θ) = g
(
θ +

π

n

)
, a.e. θ ∈ [−π, π].(2.13)

Now, without loss of generality we suppose that 1 < γ < ∞, and therefore the
polynomial p0 ∈ πn−1 which minimizes the left-hand side of (2.10) is unique. Using
equation (2.13) and also the fact that

cosn(θ +
π

n
) = − cosnθ ,

we conclude that the function

q0(θ) := p0(cos θ)(2.14)

necessarily satisfies the equation

q0(θ +
π

n
) = −q0(θ) .(2.15)

Next, we express q0 in the form

q0(θ) =
∑
|j|≤n−1

qje
ijθ

for some constants qj , |j| ≤ n− 1. Then formula (2.15) implies that

qj(1 + eij
π
n ) = 0, |j| ≤ n− 1 ,

from which we conclude that q0 = 0.
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We end this section with an example of a family of weight functions in Wn.
Recall that the (n− 1)st-degree Chebyshev polynomial Un−1 of the second kind is
given by

Un−1(cos θ) =
sinnθ

sin θ
, θ ∈ [0, π].

For every µ > −1 we consider the generalized Gegenbauer weight

wn,µ(x) := |Un−1(x)/n|2µ+1(1− x2)µ, x ∈ [−1, 1].(2.16)

When n = 2 we get

w2,µ(x) = |x|2µ+1(1− x2)µ, x ∈ [−1, 1] ,

which is the weight function studied in [4] and [6]. In general, we have

wn,µ(cos θ)| sin θ| = n−2µ−1| sinnθ|2µ+1 ,(2.17)

and so for all n = 1, 2, . . . and µ > −1

wn,µ ∈ Wn.

Moreover, we have∫ 1

−1

T2`n(x)wn,µ(x)dx = κ`/n
2µ+1, ` = 0, 1, . . . ,(2.18)

where

κ` :=

∫ 1

−1

T2`(x)(1− x2)µdx, ` = 0, 1, . . . .(2.19)

Thus, we obtain for f ∈ C[−1, 1]

I(f ;wn,µ) =
1

n2µ+1

∞∑
`=0

κ`A2`n(f),

where

I(f ;wn,µ) =

∫ 1

−1

f(x)wn,µ(x)dx.(2.20)

3. Divided difference functionals at the Chebyshev nodes

To obtain explicit expressions for the Gauss-Turán quadrature formulas for
weight functions in Wn we need to review some results from [9] and, at the same
time, provide improvements and extensions of them.

We begin by recalling the form of the generating function of the Chebyshev
polynomials. Specifically, for x ∈ [−1, 1] and complex t in the unit disc, viz. |t| < 1,
we have

1− t2
1− 2xt+ t2

= 2
∞∑
j=0

′
tjTj(x).(3.1)

We write the left-hand side of equation (3.1) in the form

Gt(x) :=
α(t)

x− β(t)
,(3.2)

where

α(t) := (t− t−1)/2(3.3)
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and

β(t) := (t+ t−1)/2.(3.4)

Therefore, (3.1) takes the form

Gt = 2
∞∑
j=0

′
tjTj .(3.5)

Observe that to express a linear functional L(f) in a series of Fourier-Chebyshev
coefficients is tantamount to identifying the constants L(Tk), k = 0, 1, . . . , which
can be found directly from (3.5) by expanding L(Gt) in a power series in t. We
consider the functionals

L0(f) :=
n∑
j=1

f(ξj)(3.6)

and

Lk(f) := f ′(ξk1 , . . . , ξ
k
n), k = 1, 2, . . . ,(3.7)

where the last functional signifies the divided difference of f ′ at the points ξ1, . . . , ξn
each repeated with multiplicity k. Lemmas 1 and 2 in [9] provide expansions of
these functionals in terms of the Fourier-Chebyshev coefficients of f . To explain
these results, we introduce the functions

gk(z) := zk(1− z2)/(1 + z2)k+1, k = 0, 1, . . . ,(3.8)

each of which has a power series expansion in the unit disc

gk(z) =
∞∑
`=0

gk`z
`, |z| < 1,(3.9)

whose coefficients are given by

g0` =


1, ` = 0,

2(−1)j, ` = 2j, j ≥ 1,

0, otherwise,

g1` =

{
(−1)j, ` = 2j + 1 ,

0, otherwise,
(3.10)

and for k ≥ 2

gk` =

{
(−1)j (j+1)···(j+k−1)(2j+k)

k! , ` = 2j + k,

0, otherwise.
(3.11)

Lemma 3.1. For every t in the unit disc,

L0(Gt) = ng0(tn)(3.12)

and for k ≥ 1

Lk(Gt) = nk2nkgk(tn).(3.13)

Proof. First we prove (3.12). To this end, we observe that

L0(Gt) = α(t)
n∑
j=1

1

ξj − β(t)

= −α(t)T ′n(β(t))/Tn(β(t)).

(3.14)
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Since

Tn(β(t)) = (tn + t−n)/2, t ∈ C\{0} ,(3.15)

it follows that

T ′n(β(t)) = n(tn − t−n)/(t− t−1), t ∈ C\{0} ,(3.16)

and so substituting these formulas in (3.14) gives

L0(Gt) = n(t−1 − t)(tn − t−n)/(t− t−1)(tn + t−n)

= n(1− t2n)/(1 + t2n) = ng0(tn).

For the proof of (3.13) we use the easily verified fact that for any x1, . . . , xm and
z ∈ C\{x1, . . . , xm}

hz(x1, . . . , xm) =
1

(z − x1) · · · (z − xm)
,(3.17)

where

hz(x) :=
1

z − x.(3.18)

Equation (3.17) even holds if the points x1, . . . , xm are not distinct. In particular,
by specializing (3.17) to the nodes

{xk1, . . . , xkn} := {ξ1, . . . , ξ1︸ ︷︷ ︸
k

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
k

},

differentiating both sides of (3.17) with respect to z, we get

h′z(ξ
k
1 , . . . , ξ

k
n) = k2(n−1)kT ′n(z)/T k+1

n (z),(3.19)

and consequently

Lk(Gt) = −kα(t)2(n−1)kT ′n(β(t))/T k+1
n (β(t)).(3.20)

Once again, we appeal to equations (3.14) and (3.15) and after some simplification
(3.13) follows.

This result leads to a series expansion of Lkf in terms of the Fourier-Chebyshev
coefficients of f . In particular, for f = Gt where |t| < 1 we have from (3.5) that

Aj(Gt) = 2tj , j = 0, 1, . . . ,(3.21)

and so for k ≥ 1

Lk(Gt) = nk2nk−1
∞∑
j=0

gk,2j+kA(2j+k)n(Gt).(3.22)

Therefore, for any f ∈ G := algebraic span{Gt : |t| < 1} we conclude that

Lk(f) = nk2nk−1
∞∑
j=0

gk,2j+kA(2j+k)n(f).(3.23)

Similarly, for the same functions f ∈ G

L0(f) =
n

2

∞∑
j=0

g0,2jA2jn(f).(3.24)

Our goal is to invert these formulas, that is, to solve for the Fourier-Chebyshev
coefficients of f in terms of the linear functionals Lk(f), k = 0, 1, . . . ; of course,
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only multiples of n can be found from the functionals Lk. We do this in two
stages. First, for each ` ≥ 0 we solve for A2`n(f) as a linear combination of
L2k(f), k = 0, 1, . . . . Then for each ` ≥ 0, we solve for A(2`+1)n(f) as a linear
combination of L2k+1(f), k = 1, 2, . . . . In each case it is helpful to express equations
(3.23) and (3.24) in matrix notation.

For the first case, we introduce the upper triangular matrix G = (Gk`)k,`=0,1,...

whose elements are defined as

Gk` =


n

2
g0,2`, k = 0,

nk4nkg2k,2`, ` ≥ k ≥ 1,

0, ` < k.

(3.25)

Then, replacing k by 2k in (3.23), we get

(L0(f),L2(f), . . . )T = G(A0(f), A2n(f), . . . )T .(3.26)

Since the elements of G on its main diagonal are nonzero, G has a unique upper
triangular inverse. This matrix will allow us to invert equation (3.26), and therefore
we identify it in the next lemma.

Lemma 3.2. Let H = (Hk`)k,`=0,1,... be the upper triangular matrix defined for
k, ` ≥ 1 by

∞∑
`=1

Hk``z
` = n−14(n−1)kz−k(1−

√
1− 4−n+1z)2k(1− 4−n+1z)−1/2, |z| < 4n−1,

(3.27)

for k = 0, ` ≥ 1 by
∞∑
`=1

H0``z
` = n−1((1− 4−n+1z)−1/2 − 1), |z| < 4n−1 ,(3.28)

and

Hk0 =

{
2
n , k = 0 ,

0, k ≥ 1 .
(3.29)

Then

H = G−1.

Proof. According to the definition of H we have for all τ in the unit disc and k ≥ 0
that

n

2
Hk0

√
1− τ +

∞∑
r=1

Hkrnr4
(n−1)r

√
1− ττr =

(
1−
√

1− τ
1 +
√

1− τ

)k
.(3.30)

Now, choose any t in (−1, 1) and observe that |Tn(β(t))| > 1 and set τ := T−2
n (β(t))

in (3.30). Recalling that

Tn(β(t)) = (tn + t−n)/2 ,(3.31)

we see that

1− τ =

(
1− t2n
1 + t2n

)2

,(3.32)



GAUSS-TURÁN QUADRATURE FORMULAS 1575

and therefore

t2n =
1−
√

1− τ
1 +
√

1− τ
.(3.33)

Substituting these equations into (3.30) gives

n

2
Hk0

1− t2n
1 + t2n

+
∞∑
r=1

Hkrnr4
nrt2rn

1− t2n
(1 + t2n)2r+1

= t2kn(3.34)

or equivalently

n

2
Hk0g0(tn) +

∞∑
r=1

Hkrnr4
nrg2r(t

n) = t2kn.(3.35)

Moreover, from (3.25) we see that

∞∑
`=0

Gr`t
2`n =

{n
2
g0(tn), r = 0 ,

nr4nrg2r(t
n), r ≥ 1 .

Therefore, we get
∞∑
`=0

∞∑
r=0

HkrGr`t
2`n = t2kn ,

which proves
∞∑
r=0

HkrGr` = δk`, k, ` = 0, 1, . . . .

To present the next result, we let Γn denote the lemniscate {z : |Tn(z)| = 1}.
The function z = β(t) gives a 1-to-1 conformal mapping of the unit disc |t| < 1 onto
the extended complex plane with the segment [−1, 1] deleted. Hence the preimage
of the exterior of the lemniscate under this map is the domain

Dn := {t : |t| < 1, |Tn(β(t))| > 1}.(3.36)

This is a symmetric subset of the unit disc which includes the interval (−1, 1). Let
R be a region which contains the lemniscate Γn in its interior and A(R) the class
of all functions holomorphic in R.

Theorem 3.1. Let f ∈ A(R). Then for all k ≥ 0

A2kn(f) =
∞∑
r=0

HkrL2r(f).(3.37)

In the case k = 0 equation (3.28) implies that

H0r =
(−1)r

nr

(
− 1

2

r

)
4−(n−1)r, r = 1, 2, . . .(3.38)

and (3.29) gives

H00 =
2

n
.(3.39)

Thus, setting

αj :=
(−1)j

2j4(n−1)j

(
− 1

2

j

)
, j = 1, 2, . . . ,(3.40)
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we get from Theorem 3.1 the formula∫ 1

−1

f(x)
dx√

1− x2
=
π

2

∞∑
r=0

H0rL2r(f)

=
π

n

L0(f) +
∞∑
j=1

αjL2j(f)

 .

(3.41)

Formula (3.41) was proved in [9], where it was pointed out that the partial sums
of the series in (3.41) provide the Gauss-Turán formula for the Chebyshev weight.
Specifically, specializing (3.41) yields∫ 1

−1

f(x)
dx√

1− x2
=
π

n


n∑
j=1

f(ξj) +
s∑
j=1

αjf
′(ξ2j

1 , . . . , ξ2j
n )

(3.42)

for all f ∈ π2(s+1)n−1. Moreover, the right-hand side of (3.42) has the Gauss-Turán
form (1.3).

The case k ≥ 1 of Theorem 3.1 likewise yields Gauss-Turán formulas for the
Fourier-Chebyshev coefficients of f . Namely, for any s ≥ 1 we have

A2kn(f) =
s∑
j=1

Hkjf
′(ξ2j

1 , . . . , ξ2j
n ), f ∈ π2(s+1)n−1.(3.43)

Proof. The main idea of the proof is covered in the proof of Lemma 3.2. First, we
point out that for t ∈ Dn and f = Gt equation (3.37) reduces to (3.35) by using
Lemma 3.1. Hence, (3.37) has been proved for this case .

Now, let f ∈ A(R) and choose a δ > 0 so that the simple closed curve

Γ := {z : |Tn(z)| = 1 + δ}
is contained in R and contains Γn in its interior. For x ∈ [−1, 1], the Cauchy
integral formula gives

f(x) =
1

2πi

∫
Γ

f(ζ)

ζ − xdζ.

Every ζ ∈ Γ corresponds to a t ∈ Dn with ζ = β(t). Therefore,

|A2kn(f)−
m∑
`=1

Hk`L2k(f)|

≤ 1

2π

∫
Γ

|α(t)|−1|f(ζ)| |A2k(Gt)−
m∑
`=1

Hk`L2`(Gt)| |dζ|.

According to (3.35) the integrand goes to zero as m→∞, thereby establishing the
result.

Next, we turn our attention to the second case mentioned earlier. Namely, we
shall now find a formula for the Fourier-Chebyshev coefficients A(2k+1)n(f), k ≥ 0,
in terms of the functionals L2`+1(f), ` ≥ 0. For this purpose, we introduce another

upper triangular matrix Ĝ = (Ĝk`)k,`=0,1,... defined by

Ĝk` =

{
n(2k + 1)2n(2k+1)−1g2k+1,2`+1, ` ≥ k ,
0, 0 ≤ ` < k.

(3.44)
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Then (3.23) implies that for f ∈ G

(L1(f),L3(f), . . . )T = Ĝ(An(f)A3n(f), . . . )T ,(3.45)

and so again we are faced with the problem of finding the upper triangular inverse
of a prescribed upper triangular matrix. In this case, the matrix is Ĝ. To facilitate
the identification of Ĝ−1, we observe from (3.9) and (3.44) that

∞∑
`=0

Ĝk`t
(2`+1)n = n(k + 1/2)2n(2k+1)g2k+1(tn), |t| < 1 ∈ Dn.(3.46)

The next lemma follows from this formula.

Lemma 3.3. Define the upper triangular matrix Ĥ = (Ĥk`)k,`=0,1,... by the gener-
ating functions

∞∑
`=0

Ĥk`(2`+ 1)z`

=
2n

n
4(n−1)kz−k−1(1−

√
1− 4−n+1z)2k+1(1− 4−n+1z)−1/2, |z| < 4n−1.

(3.47)

Then Ĥ is the unique upper triangular inverse of Ĝ.

Proof. For every τ in the unit disc we have
∞∑
r=0

Ĥkr(2r + 1)4r(n−1)τr =
2−n+2

n

(1−
√

1− τ)k

(1 +
√

1− τ)k+1

1√
1− τ

.(3.48)

Now, for t ∈ Dn and τ = T−2
n (β(t)), equation (3.48) becomes

∞∑
r=0

Ĥkrn(2r + 1)2n(2r+1)t(2r+1)n 1− t2n
(1 + t2n)2r+2

= 2t(2k+1)n.(3.49)

By equation (3.46), the above equation has the equivalent form
∞∑
`=0

∞∑
r=0

ĤkrĜrmt
(2m+1)n = t(2k+1)n ,

which implies that
∞∑
r=0

ĤkrĜrm = δkm.

This lemma leads us to the next theorem whose proof is similar to that of The-
orem 3.1 and therefore is omitted.

Theorem 3.2. Let f ∈ A(R). Then for any k ≥ 0

A(2k+1)n(f) =
∞∑
r=0

ĤkrL2r+1(f).(3.50)

Specializing (3.50) to the case k = 0, we get

An(f) =
∞∑
r=1

Ĥ0,r−1L2r−1(f).(3.51)
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Since
∞∑
r=0

Ĥ0r(2r + 1)zr =
2n

n
z−1((1− 4−n+1z)−1/2 − 1)

we conclude from (3.40) that

∞∑
r=1

Ĥ0,r−1(2r + 1)zr =
2n+1

n

∞∑
r=1

rαrz
r.

That is,

Ĥ0,r−1 =
2n+1

n

r

2r − 1
αr, r ≥ 1 ,

and so equation (3.51) becomes

An(f) =
2n+1

n

∞∑
r=1

r

2r− 1
αrL2r−1(f).

In particular, this implies that

An(f) =
2n+1

n

s∑
j=1

j

2j − 1
αjL2j−1(f)(3.52)

for f ∈ π(2s+1)n−1, a formula from [10, Theorem 4.2], where it was pointed out that
(3.52) is of maximum degree of precision among all quadrature formulas of the type

2s−1∑
k=0

n∑
j=0

λkjf
(k)(xj,s).

4. Gauss-Turán quadrature formulas for weight functions in Wn

In this section, we combine our observations of the two previous sections and
derive Gauss-Turán quadrature formulas for any weight function w ∈ Wn.

Our first result is

Theorem 4.1. Let

γj =

j∑
`=0

′
H`jρ`, j = 0, 1, 2, . . . .

Then the Gauss-Turán quadrature of order s for w ∈ Wn is given by

I(f ;w) =
π

2

s∑
j=0

γjL2j(f), f ∈ π2(s+1)n−1.(4.1)

Proof. We eliminate the Fourier-Chebyshev coefficients from equations (2.5) and
(3.37) to obtain the result.

As an addition to (2.9), we specialize (4.1) to the case s = 1 and obtain the
quadrature formula∫ 1

−1

f(x)w(x)dx =
πρ0

2n

n∑
j=1

f(ξj) +
π(ρ0 + ρ1)

2n4n
f ′(ξ2

1 , . . . , ξ
2
n), f ∈ π4n−1.(4.2)
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Here we used the fact that(
G00 G01

G10 G11

)
=

(
n
2 −n
0 n4n

)
,

so that (
H00 H01

H10 H11

)
=

(
2
n

2
n4n

0 1
n4n

)
.

It is easy to check that

f ′(ξ2
1 , . . . , ξ

2
n) =

4n−1

n2

n∑
j=1

[(−ξj)f ′(ξj) + (1− ξ2
j )f ′′(ξj)],

and so, for any f ∈ π4n−1, we get from (4.2)∫ 1

−1

f(x)w(x)dx =
ρ0

n

n∑
j=1

f(ξj)−
(ρ0 + ρ1)

4n3

n∑
j=1

ξjf
′(ξj)

+
(ρ0 + ρ1)

4n3

n∑
j=1

(1− ξ2
j )f ′′(ξj).

We now provide a Gauss-Turán quadrature formula of highest degree of precision
for An(f).

Theorem 4.2. Let

µ` =

{
ρ0 + ρ1, ` = 0 ,
1
2 (ρ`+1 + ρ`), ` ≥ 1 ,

and

νj =

j∑
`=0

′
Ĥ`jµ`, j ≥ 0.

Then ∫ 1

−1

f(x)Tn(x)w(x)dx =
π

2

s∑
j=0

νjL2j+1(f), f ∈ π(2s+3)n−1.(4.3)

Proof. First we recall that whenever

f =
∞∑
j=0

′
AjTj

it follows that

fTn =
1

2

∞∑
j=0

′
Aj(Tn+j + T|n−j|)

=
1

2

2n∑
j=0

AjT|n−j| +
1

2

∞∑
j=n+1

(Aj−n +Aj+n)Tj .

Hence we conclude that

A2`n(fTn) =

{
An, ` = 0 ,
1
2 (A(2`−1)n +A(2`+1)n), ` ≥ 1 .
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Therefore, equation (2.5) implies that

2

π

∫ 1

−1

f(x)Tn(x)w(x)dx =
ρ0

2
An +

1

2

∞∑
j=1

ρ`(A(2`−1)n +A(2`+1)n)

=
(ρ0 + ρ1)

2
An +

∞∑
`=1

1

2
(ρ`+1 + ρ`)A(2`+1)n

=
∞∑
`=0

′
µ`A(2`+1)n.

We now use (3.50) to eliminate the Fourier-Chebyshev coefficients of f to obtain∫ 1

−1

f(x)Tn(x)w(x)dx =
π

2

∞∑
j=0

γjL(2j+1)(f),

which is certainly valid when f is a polynomial. Moreover, if f ∈ π(2s+3)n−1, then
L2j+1(f) = 0 for j > s, whence (4.3) follows.

We conclude with some comments about the quadrature formulas studied here
and also provide a convergence result for them.

Recall that the degree of exactness of any Gauss-Turán quadrature rule depends
on the number n and on the multiplicity 2s + 1 of the nodes. Moreover, in gen-
eral, the nodes vary both with n and s. In contrast, the rules (4.1) have nodes
independent of s. This allows one to get higher precision by increasing s, without
recalculating the nodes. Obviously, when s increases, more derivatives of f are
needed. However, in many cases, such evaluation can be performed using suitable
relations between successive derivatives of the function under consideration [6].

A rather natural question arises at this point concerning the convergence of
(4.1), for s→∞. With regard to this question, besides the general theorem in [10]
another convergence result can be stated here.

To this end, we write the quadrature (4.1) in the form

I(f ;w) =
π

2

s∑
j=0

γjL2j(f) +Rs,n(f ;w) ,

where

Rs,n(f ;w) = 0 for f ∈ π2(s+1)n−1 .(4.4)

Theorem 4.3. Let f ∈ C∞[−1, 1] and put |f (k)(x)| ≤Mk, k ∈ N , x ∈ [−1, 1]; if

lim
s→∞

M2(s+1)n

/
(2(n−1)(2s+1)[2(s+ 1)n]!) = 0 ,

then

lim
s→∞

Rs,n(f ;w) = 0 .(4.5)

Proof. From (4.4) and the Peano theorem there exists τ ∈ (−1, 1) such that

Rs,n(f ;w) =
f (2(s+1)n)(τ)

[2(s+ 1)n]!

∫ 1

−1

xn
[ n∏
i=1

(x− ξi)
]2s+1

w(x)dx ,

n∏
i=1

(x− ξi) = Tn(x)/2n−1 ;

equation (4.5) immediately follows.



GAUSS-TURÁN QUADRATURE FORMULAS 1581

References

1. V. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials
orthogonal on an interval, Math. U.S.S.R. - Sb. 24 (1974), 223–256. MR 50:7938

2. A. Ghizzetti and A. Ossicini, Quadrature Formulae, Academic Press, New York (1970). MR
42:4012

3. G.H. Golub and J. Kautsky, Calculation of Gauss quadrature with multiple free and fixed
knots, Numer. Math. 41 (1983), 147–162. MR 84i:65030

4. L. Gori and M.L. Lo Cascio, A note on a class of Turán type quadrature formulas with
generalized Gegenbauer weight functions, Studia Univ. Babeş - Bolyai Mathematica 37 (1992),
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