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A STOCHASTIC PARTICLE METHOD FOR THE

MCKEAN-VLASOV AND THE BURGERS EQUATION

MIREILLE BOSSY AND DENIS TALAY

Abstract. In this paper we introduce and analyze a stochastic particle meth-
od for the McKean-Vlasov and the Burgers equation; the construction and
error analysis are based upon the theory of the propagation of chaos for inter-
acting particle systems.

Our objective is three-fold. First, we consider a McKean-Vlasov equa-
tion in [0, T ] × R with sufficiently smooth kernels, and the PDEs giving the
distribution function and the density of the measure µt, the solution to the
McKean-Vlasov equation. The simulation of the stochastic system with N
particles provides a discrete measure which approximates µk∆t for each time
k∆t (where ∆t is a discretization step of the time interval [0, T ]). An integra-
tion (resp. smoothing) of this discrete measure provides approximations of the
distribution function (resp. density) of µk∆t. We show that the convergence

rate is O
(

1/
√
N +

√
∆t
)

for the approximation in L1(Ω× R) of the cumula-

tive distribution function at time T , and of order O
(
ε2 + 1

ε

(
1√
N

+
√

∆t
))

for

the approximation in L1(Ω×R) of the density at time T (Ω is the underlying
probability space, ε is a smoothing parameter). Our second objective is to
show that our particle method can be modified to solve the Burgers equation
with a nonmonotonic initial condition, without modifying the convergence rate

O
(

1/
√
N +

√
∆t
)
. This part extends earlier work of ours, where we have lim-

ited ourselves to monotonic initial conditions. Finally, we present numerical
experiments which confirm our theoretical estimates and illustrate the numer-
ical efficiency of the method when the viscosity coefficient is very small.

1. Introduction

Consider two Lipschitz kernels b(x, y), s(x, y) from R2 to R, a probability mea-
sure µ0 and the differential operator L(µ) defined by

L(µ)f(x) =
1

2

(∫
R
s(x, y)dµ(y)

)2

f ′′(x) +

(∫
R
b(x, y)dµ(y)

)
f ′(x) .

Consider the probability measure µt, the solution to the McKean-Vlasov equa-
tion {

d
dt〈µt, f〉 = 〈µt, L(µt)f〉 , ∀f ∈ C∞K (R) ,
µt=0 = µ0 .

(1.1)
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References concerning this equation and its connection with Physics can be found
in Gärtner [9].

The distribution function V (t, x) of µt solves
∂V
∂t (t, x) = 1

2
∂
∂x

[
(
∫
R s(x, y)∂V∂x (t, y)dy)2 ∂V

∂x (t, x)
]

−
[ ∫
R b(x, y) ∂V

∂x (t, y)dy
]
∂V
∂x (t, x),

V (0, x) = V0(x),

(1.2)

where V0(·) is the distribution function of µ0.
Under suitable hypotheses on b(x, y), s(x, y), for each t > 0 the measure µt has

a smooth density u(t, ·), which is the classical solution to
∂u
∂t (t, x) = 1

2
∂2

∂x2

[
u(t, x)

(∫
R s(x, y)u(t, y)dy

)2]
− ∂

∂x

[
u(t, x)

∫
R b(x, y)u(t, y)dy

]
,

u(0, x) = u0(x) ,

(1.3)

where u0(·) is the density of µ0.
In this paper, we construct an approximation method for the solutions of (1.1),

(1.2) and (1.3) and give its convergence rate. Our analysis is based upon the
following probabilistic interpretation. Consider the discrete measure

µNt =
1

N

N∑
i=1

δXi,Nt
,

where the Xi,N
t ’s (1 ≤ i ≤ N) denote the locations at time t of a suitable weakly

interacting stochastic particle system; the PDE (1.1) describes the time evolution
of the weak limit of the empirical measure µNt when the number of particles goes
to infinity. Likewise, the corresponding distribution functions (V Nt (·)) converge
pointwise to the solution V (t, ·) of the PDE (1.2).

In practice, the Xi,N
t ’s cannot be computed exactly; our algorithm involves their

approximation by a discrete-time stochastic process (X̄i
k∆t , 1 ≤ i ≤ N), where ∆t

is a discretization step of the time interval [0, T ]; we denote by µ̄N,∆tk∆t the empirical
measure

µ̄N,∆tk∆t :=
1

N

N∑
i=1

δX̄ik∆t
;

the distribution function of µ̄N,∆tk∆t is denoted by V̄ N,∆tk∆t .

We first analyze the convergence rate of V̄ N,∆tT to V (T, ·) when the kernels b and
s are bounded functions with bounded first derivatives, and s is bounded below by
a strictly positive constant. Under these hypotheses, µt for all t > 0 has a density
u(t, ·) with respect to Lebesgue measure. We show

E‖V (T, ·)− V̄ N,∆tT (·)‖L1(R) = O
(

1√
N

+
√

∆t

)
(1.4)

and

E‖u(T, ·)− ūN,∆t,εT (·)‖L1(R) = O
(
ε2 +

1

ε

(
1√
N

+
√

∆t

))
,(1.5)

where ūN,∆t,εT denotes a smoothing of µ̄N,∆t.
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Now consider a constant kernel s(x, y) equal to σ, and instead of choosing a
Lipschitz kernel b, choose b(x, y) = H(x − y), where H is the Heaviside function
(H(z) = 1 if z ≥ 0, H(z) = 0 if z < 0); then the equation (1.2) becomes the Burgers
equation 

∂V

∂t
(t, x) =

1

2
σ2 ∂

2V

∂x2
(t, x) − V (t, x)

∂V

∂x
(t, x) in [0, T ]× R ,

V (0, x) = V0(x) .

(1.6)

The corresponding analysis of

E‖V (T, ·)− V̄ N,∆tT (·)‖L1(R)

is made in Bossy and Talay [3] under the hypothesis that V0 is the distribution
function of a probability measure: we prove that (1.4) also holds in spite of the
discontinuity at the origin of the Heaviside function. As this discontinuity generates
technical difficulties and the study of a nonlinear martingale problem, a reader
unfamiliar with the stochastic calculus should first read the present paper, even
though in other respects some key arguments are similar in the Lipschitz and the
Heaviside situations.

The second objective of this article is to extend our approach and our theoretical
estimate to the Burgers equation when the initial condition V0 is not a distribution
function: we prove a suitable probabilistic interpretation of the solution, which
suggests a slight modification of our stochastic particle method; the convergence
rate (1.4) is preserved. This work is done for the Burgers equation because this
case is technically more complex than the situation of Lipschitz kernels, but the
algorithmic principle and the error analysis would also apply in this latter situation.

The last objective of the paper is to present numerical results which illustrate
the following points: our theoretical estimates are optimal with respect to N , and
our stochastic particle method efficiently solves the Burgers equation even when
the viscosity coefficient σ is very small.

Another stochastic particle method for the Burgers equation has been proposed
by Roberts [27]; his algorithm is based on the splitting of the nonlinear opera-
tor, similarly to the well-known random vortex methods for the incompressible 2D
Navier-Stokes equation developed by Chorin, Hald, etc. (Chorin [6], Chorin and
Marsden [5], Goodman [10], Hald ([12] and [13]), Long [18], Puckett [24] e.g.; see
also the bibliography in [6] and in the different contributions of [11]. A stochastic
particle method for convection-reaction-diffusion equations with a nonlinear reac-
tion term has been proposed by Puckett [25], and its convergence rate has been
analyzed by Bernard, Talay and Tubaro [1]).

The novelty of our approach consists in ignoring the splitting: the particle
method is interpreted through the link between the nonlinear PDE and systems
of interacting particles. Furthermore, we emphasize that the choice of the Heavi-
side function for the interaction kernel b is not the only one possible for the Burgers
equation. One can also interpret the Burgers equation as the Fokker-Planck equa-
tion for the limit law of a particle system corresponding to a kernel b, roughly
speaking, equal to a Dirac measure (see Sznitman [28]). The corresponding algo-
rithm must involve a smoothing of this kernel. The numerical analysis is made
complex by a necessary relation between the smoothing parameter and the number
of particles: see Bossy [2] for a discussion.
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In §2 we prove the estimates (1.4) and (1.5). In §3 we establish a probabilistic
interpretation of the solution of the Burgers equation with a not necessarily mono-
tonic initial condition: this new interpretation leads to a stochastic particle method
for which the estimate (1.4) still holds. In §4 we present the results of numerical
experiments. Our main results are stated in the subsections 2.2 and 3.4.

2. McKean-Vlasov equations with smooth kernels

Consider the system of stochastic differential equations describing the dynamics
of weakly interacting particles:

dXi,N
t =

∫
R
b(Xi,N

t , y)µNt (dy) dt +

∫
R
s(Xi,N

t , y)µNt (dy)dwit ,

Xi,N
0 = Xi

0 , i = 1, . . . , N ,

(2.1)

where (w1
t ), . . . ,(wNt ) are independent one-dimensional Brownian motions and µNt

is the random empirical measure

µNt =
1

N

N∑
i=1

δXi,Nt
.

The functions b and s are the “interaction kernels”. When the initial distribution
of the particles is symmetric, and when the kernels are Lipschitz, the propagation
of chaos theory shows that the random probability measure

µN =
1

N

N∑
i=1

δXi,N·

on the space of trajectories converges in law, as N goes to infinity, to a deterministic
probability measure µ (see Sznitman [28] for a review, Gärtner [9], Léonard [17],
Méléard and Roelly [20], Métivier [21], Oelschläger [23] for other types of interac-
tion). For each t, denote by µt the one-dimensional distribution of µ (µt is the
limit in law of µNt ). There exists a unique strong solution (Xt) to the nonlinear
stochastic differential equation (see Sznitman [28] e.g.)

Xt = X0 +

∫ t

0

∫
R
b(Xθ, y)µθ(dy)dθ +

∫ t

0

∫
R
s(Xθ, y)µθ(dy)dwθ ,

µt is the law of the random variable Xt, for all t ≥ 0.

(2.2)

One consequence of the propagation of chaos is that the law of one particle, for
example the law of (X1,N

t ), tends to the law of the process (Xt) when N goes to
infinity.

Applying Itô’s formula, one deduces from (2.2) that µt is the solution to (1.1).
We suppose that the following assumptions hold:

(H1) There exists a strictly positive constant s∗ such that s(x, y)≥s∗>0 , ∀(x, y).
(H2) The kernels b and s are uniformly bounded functions on R2; b is globally

Lipschitz and s has uniformly bounded first partial derivatives.
(H3) The initial law µ0 satisfies:

(i) either µ0 is a Dirac measure at x0, or
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(ii) µ0 has a continuous density u0 satisfying: there exist constants M > 0,

η ≥ 0 and α > 0 such that u0(x) ≤ η exp(−αx2

2 ) for | x |> M.
(If η = 0, µ0 has compact support.)

2.1. The algorithm. In this subsection we construct an approximation method
for the solutions of (1.2) and (1.3), based upon the time discretization of the sys-
tem (2.1). From now on, the number N of particles is fixed.

The algorithm starts with an approximation of the initial condition V (0, ·) =
V0(·), the distribution function of the law µ0. The N points (y1

0, . . . , y
N
0 ) are chosen

in R such that the piecewise constant function

V 0(x) =
1

N

N∑
i=1

H(x− yi0)

approximates V0 in L1(R) with a sufficiently high accuracy. As we will see, a
possible choice is the following: if µ0 is a Dirac measure at x0, the N particles are
located at yi0 = x0 (and then V 0(·) = V0(·)); when µ0 satisfies (H3-ii), we set

yi0 =

 inf{y;V0(y) = i
N } , i = 1, . . . , N − 1 ,

inf{y;V0(y) = 1− 1
2N } .

We set

µ0 :=
1

N

N∑
i=1

δyi0 .

Consider the system (2.1) with the initial condition Xi,N
0 = yi0, and denote its

solution by (Xi
t , 1 ≤ i ≤ N). There holds

dXi
t =

1

N

N∑
j=1

b
(
Xi
t , X

j
t

)
dt +

1

N

N∑
j=1

s
(
Xi
t , X

j
t

)
dwit , t ∈ [0, T ] ,

Xi
0 = yi0 , i = 1, . . . , N .

We recall that the propagation of chaos suggests that 1/N
∑N
i=1 δXit approximates

the solution µt of (1.1).
To get a simulation procedure for a trajectory of each (Xi

t), we discretize in
time: ∆t > 0 and K ∈ N are chosen such that T = K∆t; the discrete times are
denoted by tk = k∆t, with 1 ≤ k ≤ K. The Euler scheme leads to the following
discrete-time system:

Y itk+1
= Y itk +

1

N

N∑
j=1

b(Y itk , Y
j
tk

)∆t+
1

N

N∑
j=1

s(Y itk , Y
j
tk

)
(
witk+1

− witk
)
,

Y i0 = yi0 , i = 1, . . . , N.

(2.3)

Thus, we approximate µtk by the empirical measure

µtk :=
1

N

N∑
i=1

δY itk
.
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In the same way, we approximate V (tk, ·), solution to (1.2), by the cumulative
distribution function of µtk :

V tk(x) :=
1

N

N∑
i=1

H(x− Y itk) , ∀ x ∈ R .

Note that we have changed the notation of the introduction: Y itk corresponds to

X̄i
k∆t and µ̄tk stands for µ̄N,∆ttk

.

2.2. Main results. In the next subsection we will prove the following two theo-
rems.

Theorem 2.1. Assume (H1), (H2) and (H3). Let V (t, x) be the solution of the
PDE (1.2). For T > 0 fixed, let ∆t < 1 be such that T = ∆tK, K ∈ N. Let V tk(x)
be the approximation corresponding to the above algorithm with N particles. Then
there exist strictly positive constants L1 and L2 depending on s, b, V0 and T such
that for all k ∈ {1, . . . ,K} one has

E
∥∥V (tk, ·)− V tk(·)

∥∥
L1(R)

≤ L1

(
‖V0 − V 0‖L1(R) +

1√
N

+
√

∆t

)
(2.4)

and

Var
(∥∥V (tk, ·)− V tk(·)

∥∥
L1(R)

)
≤ L2

(
‖V0 − V 0‖2L1(R) +

1

N
+ ∆t

)
.(2.5)

Furthermore, ∥∥V0 − V 0

∥∥
L1(R)

≤ C
√

log(N)

N
,

where C depends on M , η and α.

As we will see, (H1) and (H2) imply that for all t > 0 the measure µt has a density
u(t, ·) with respect to Lebesgue measure. In order to obtain an approximation of
u(tk, ·), we construct a regularization by convolution of the discrete measure µtk .

Let Φε be the density of the Gaussian law N(0, ε2) and set

uεtk(x) :=
(
Φε ∗ µtk

)
(x) =

1

N

N∑
i=1

1√
2πε

exp

(
−

(x− Y itk)2

2ε2

)
.

We strengthen our hypotheses as follows :

(H2′) The kernel b is in C2
b (R2) and s is in C3

b (R2).
(H3′) The initial law µ0 has a strictly positive density u0 in C2(R) satisfying: there

exist strictly positive constants M , η and α such that

u0(x) + |u′0(x)| + |u′′0(x)| ≤ η exp

(
−αx

2

2

)
for |x| > M.

Theorem 2.2. Assume (H1), (H2′) and (H3′). Let u(t, ·) be the classical solution
to the PDE (1.3). Then there exists a strictly positive constant C, depending on s,
b, u0 and T , such that for all k ∈ {1, . . . ,K} one has

E
∥∥u(tk, ·)− uεtk(·)

∥∥
L1(R)

≤ C

[
ε2 +

1

ε

(
‖V0 − V 0‖L1(R) +

1√
N

+
√

∆t

)]
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and

Var
(∥∥u(tk, ·)− uεtk(·)

∥∥
L1(R)

)
≤ C

[
ε4 +

1

ε2

(
‖V0 − V 0‖2L1(R) +

1

N
+ ∆t

)]
.

Remark 2.3. The hypothesis (H1) could be somewhat relaxed: what is used in the
proof is the existence of a density for the law of the process (zt) defined below in
(2.6), this density satisfying the exponential bounds (2.11) below.

2.3. Proof of Theorem 2.1. Throughout this section, C denotes any positive
constant depending only on T , V0 and the functions b, s.

Before entering the technical parts of the rather lengthy proof, we present a
sketch of it.

2.3.1. Decomposition of the error and sketch of the proof. The proof of Theorem 2.1
is based upon a decomposition of the error E

∥∥V (tk, .)− V tk(·)
∥∥
L1(R)

at each time

tk of the discretization: this decomposition corresponds to local errors of different
natures in the algorithm.

Define β : [0, T ]× R −→ R by

β(t, x) :=

∫
R
b(x, y) µt(dy) ,

and σ : [0, T ]× R −→ R by

σ(t, x) :=

∫
R
s(x, y) µt(dy) .

Under (H2), β and σ are Lipschitz in x and uniformly bounded in (t, x); this ensures
the strong existence and uniqueness of the inhomogeneous Markov process solution
to the stochastic differential equation dzt = β(t, zt)dt + σ(t, zt) dwt ,

zt=0 = z0 ,
(2.6)

where z0 is a square integrable random variable. When the law of z0 is µ0, the two
processes (zt) and (Xt), solution to (2.2), have the same law and

V (t, x) = EH(x−Xt) = Eµ0H(x− zt) =

∫
R
EH(x− zt(y)) µ0(dy) ,

where (zt(y)) is the solution to (2.6) starting at y at time 0. Note that (zt) is a
Markov process, whereas (Xt) is not: this is used in the sequel.

A first approximation of V (t, ·) is given by

V (t, x) ' Eµ0
H(x− zt) =

1

N

N∑
i=1

EH(x− zt(yi0)) .

Now consider N independent Brownian motions (wit)
N
i=1 and the family of inde-

pendent processes (zit)(i=1,... ,N), solutions to dzit = β(t, zit) dt + σ(t, zit) dw
i
t ,

zi0 = yi0 .
(2.7)
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A new approximation of V (t, ·) is given by

V (t, x) ' 1

N

N∑
i=1

H(x− zit) .

Applying the Euler scheme to (2.7), one defines the independent discrete-time
processes (zitk):

zitk+1
= zitk + β(tk, z

i
tk

) ∆t+ σ(tk, z
i
tk

)
(
witk+1

− witk
)
,

zi0 = yi0.

(2.8)

Thus, at time tk (with k = 1, . . . ,K), V (tk, ·) can be approximated by

V (tk, x) ' 1

N

N∑
i=1

H(x− zitk) .

This latter approximation is not useful from a numerical point of view since the
functions β(t, ·) and σ(t, ·) are unknown (they are defined through the unknown
measure µt). We therefore substitute the empirical approximation to µt, which
leads to the system (2.3); in other words, we make the additional approximations

β(tk, x) =

∫
R
b(x, y)µtk(dy) '

∫
R
b(x, y)µtk(dy) =

1

N

N∑
i=1

b(x, Y itk) ,

σ(tk, x) ' 1

N

N∑
i=1

s(x, Y itk) .

Finally, the algorithm consists in approximating the function V (tk, x) by

V tk(x) =
1

N

N∑
i=1

H(x− Y itk) .

The preceding considerations suggest the following decomposition of the global
error:

E
∥∥V (tk, x) − V tk(x)

∥∥
L1(R)

≤
∥∥Eµ0H(x− ztk) − Eµ0

H(x− ztk)
∥∥
L1(R)

+ E

∥∥∥∥∥Eµ0
H(x− ztk) − 1

N

N∑
i=1

H(x− zitk)

∥∥∥∥∥
L1(R)

+ E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− zitk)

∥∥∥∥∥
L1(R)

+ E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk)− 1

N

N∑
i=1

H(x− Y itk)

∥∥∥∥∥
L1(R)

.

(2.9)

The first term on the right-hand side corresponds to the approximation error of the
measure µ0; the second term essentially is a statistical error related to the strong
Law of Large Numbers; the third term is the discretization error induced by the
Euler scheme; the last term corresponds to the approximation of the coefficients
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β(tk, ·) and σ(tk, ·) by means of the empirical measure µtk , which introduces the

family of dependent processes (Y itk).
The objective of the next subsections is to bound each term of the above error

decomposition; we successively prove that for all t ∈ (0, T ]∥∥Eµ0H(x− zt) − Eµ0
H(x− zt)

∥∥
L1(R)

≤ C ‖ V0 − V 0 ‖L1(R) ,

E

∥∥∥∥∥Eµ0
H(x− zt)−

1

N

N∑
i=1

H(x− zit)
∥∥∥∥∥
L1(R)

≤ C√
N
,

and for all k ∈ {0, . . . ,K}

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− z̄itk)

∥∥∥∥∥
L1(R)

≤ C
√

∆t,

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− z̄itk)− 1

N

N∑
i=1

H(x− Y itk)

∥∥∥∥∥
L1(R)

≤ C
(√

∆t+
1√
N

+ ‖V0 − V̄0‖L1(R)

)
.

Obviously, this proves (2.4). Similar inequalities, explicitly proven in the next
subsections, prove (2.5).

To complete the proof of Theorem 2.1, it then remains to estimate the approxi-
mation error of V0 by V 0.

To obtain the preceding estimates, we need well-known estimates for the density
of µt.

2.3.2. Exponential estimates for the density of µt. The hypothesis (H2) implies that
the functions σ(·, ·) and β(·, ·) are Lipschitz in x and Hölder in t: for all t ∈ [0, T ]
and for all (x, y) ∈ R2 one has

|β(t, x) − β(t, y)| ≤
∫
R
|b(x, z)− b(y, z)|µt(dz) ≤ C |x− y| ,

|σ(t, x)− σ(t, y)| ≤
∫
R
|s(x, z)− s(y, z)|µt(dz) ≤ C |x− y| ;

(2.10)

on the other hand, β(t, x) = Eb(x,Xt). Thus, for all θ, t ∈ [0, T ], there holds

|β(θ, x) − β(t, x)| ≤ E|b(x,Xθ)− b(x,Xt)| ≤ CE|Xθ −Xt| ≤ C|t− θ|1/2 ;

finally we note that (H1) and (H2) imply

s∗ ≤ |σ(t, x)| ≤ s∗

for some s∗. All these properties of the functions β and σ imply (cf. pp. 139–150
in Friedman [8]) that the transition probability of (zt(y)) has a smooth density
denoted by p(t, y, z) which satisfies: for any T and for all σ̄ > s∗, there exists a
strictly positive constant C such that for all t ∈ (0, T ] and all y, z,

p(t, y, z) ≤ C√
t

exp

(
− (z − y)2

2σ̄2t

)
,∣∣∣∣ ∂∂yp(t, y, z)

∣∣∣∣ ≤ C

t
exp

(
− (z − y)2

2σ̄2t

)
.

(2.11)
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Since the processes (Xt) and (zt) with the same initial law µ0 are identical in
law, the law µt has a density denoted by u(t, ·) given by

u(t, z) =

∫
R
p(t, y, z)µ0(dy) , ∀z ∈ R , ∀t > 0 .

2.3.3. Error induced by the approximation of the initial condition. Under (H3-i),
we have ∥∥Eµ0H(x− zt) − Eµ0

H(x− zt)
∥∥
L1(R)

= 0 .

Under (H3-ii), this error is described by

Lemma 2.4. Assume (H1)–(H3-ii). There exists a positive constant C depending
only on T , b and σ, such that, for any t ∈ [0, T ],∥∥Eµ0H(x− zt) − Eµ0

H(x− zt)
∥∥
L1(R)

≤ C ‖ V0 − V 0 ‖L1(R) .(2.12)

Furthermore, ∥∥V0 − V 0

∥∥
L1(R)

≤ C
√

log(N)

N
,(2.13)

where C depends on M , η and α. If µ0 has compact support, then one even has

‖V0 − V 0‖L1(R) ≤
C

N
.

Proof. We observe that

Eµ0
H(x− zt) =

∫
R
EH(x− zt(y)) µ0(dy) =

∫
R
EH(x− zt(y)) dV 0(y)

=

∫ 0

−∞
EH(x− zt(y))dV 0(y)−

∫ +∞

0

EH(x− zt(y))d(1− V 0(y)) .

The integration by parts formula for a Stieltjes integral gives

Eµ0
H(x− zt) = EH(x− zt(0))V 0(0) −

∫ 0

−∞

∂

∂y
EH(x− zt(y))V 0(y)dy

+ EH(x− zt(0))(1− V 0(0))

+

∫ +∞

0

∂

∂y
EH(x− zt(y))(1− V 0(y))dy.

A similar computation for Eµ0H(x− zt) gives

Eµ0H(x− zt) − Eµ0
H(x− zt) = −

∫
R

∂

∂y
EH(x− zt(y))(V0(y)− V 0(y)) dy ,

so that

‖Eµ0H(x− zt)− Eµ0
H(x− zt)‖L1(R)

≤
∫
R

∫
R

∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ |V0(y)− V 0(y)|dydx .

To complete the proof of (2.12), it remains to derive an upper bound for∫
R

∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ dx .
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We note∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ =

∣∣∣∣ ∂∂yP (zt(y) < x)

∣∣∣∣ ≤ ∫ x

−∞

∣∣∣∣ ∂∂yp(t, y, α)

∣∣∣∣ dα ;

from (2.11) we deduce∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ ≤ C

t

∫ x

−∞
exp

(
− (α− y)2

2σ̄2t

)
dα .(2.14)

Similarly, one has∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ =

∣∣∣∣ ∂∂yP (zt(y) > x)

∣∣∣∣
≤ C

t

∫ +∞

x

exp

(
− (α− y)2

2σ̄2t

)
dα .

(2.15)

Thus, from (2.14) one gets∫ y

−∞

∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ dx ≤ C

t

∫ y

−∞

∫ x

−∞
exp

(
− (α− y)2

2σ̄2t

)
dαdx

=
C

t

∫ 0

−∞

∫ x

−∞
exp

(
− α2

2σ̄2t

)
dα dx ,

and from (2.15)∫ +∞

y

∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ dx ≤ C

t

∫ +∞

0

∫ +∞

x

exp

(
− α2

2σ̄2t

)
dαdx .

We now use the following estimates, which are easy to prove. Let gα(x) be the
density of a Gaussian law N(0, α), and let Gα(x) be its distribution function; then

(i) ∀ x ≤ 0 , Gα(x) =

∫ x

−∞
gα(y)dy ≤ 1

2
exp

(
− x2

2α2

)
,

(ii) ∀ x ≥ 0 , (1−Gα) (x) =

∫ +∞

x

gα(y)dy ≤ 1

2
exp

(
− x2

2α2

)
.

(2.16)

Thus, ∫
R

∣∣∣∣ ∂∂yEH(x− zt(y))

∣∣∣∣ dx ≤ C ,

from which

‖ Eµ0H(x− zt) − Eµ0
H(x− zt) ‖L1(R) ≤ C

∫
R

∣∣V0(y)− V 0(y)
∣∣ dy ,

which proves (2.12).
To prove (2.13), we observe

‖V0 − V 0‖L1(R) =

∫ y1
0

−∞
V0(x) dx +

N−1∑
i=1

∫ yi+1
0

yi0

(
V0(x) − i

N

)
dx

+

∫ +∞

yN0

(1− V0(x)) dx .
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Then, using (H3-ii), we find by easy computations (see [2] for details) that

‖V0 − V 0‖L1(R) ≤
C

N

(
1 +

√
log(N)

N

)
in the general case, and

‖V0 − V 0‖L1(R) ≤
C

N

in the case where µ0 has compact support.

2.3.4. The statistical error. The statistical error is described by

Lemma 2.5. There exists a positive constant C depending on T , b, σ and µ0 such
that for all t ∈ [0, T ] one has

(i) E

∥∥∥∥∥Eµ0
H(x− zt) −

1

N

N∑
i=1

H(x− zit)
∥∥∥∥∥
L1(R)

≤ C√
N

and

(ii) E

∥∥∥∥∥Eµ0
H(x− zt) −

1

N

N∑
i=1

H(x− zit)
∥∥∥∥∥
L1(R)

2

≤ C

N
.

Proof. By definition of the processes (zit), there holds

Eµ0
H(x− zt) =

1

N

N∑
i=1

EH(x− zt(yi0)) =
1

N

N∑
i=1

EH(x− zit) .

Thus, the statement (i) is related to the usual Central Limit Theorem, but is not a
consequence of it: we want a nonasymptotic result (N is arbitrary), and above all
the random error on

Eµ0
H(x− zt)

owing to the Strong Law of Large Number, which depends on x, must be controlled
in L1(R) with respect to x.

Set

A := E

∥∥∥∥∥ 1

N

N∑
i=1

[
EH(x− zit) − H(x− zit)

]∥∥∥∥∥
L1(R)

≤
∫
R

√√√√E ∣∣∣∣∣ 1

N

N∑
i=1

[
EH(x− zit) − H(x− zit)

]∣∣∣∣∣
2

dx .

The (zit)
N
i=1 being independent, one gets

E

∣∣∣∣∣ 1

N

N∑
i=1

[
EH(x− zit)−H(x− zit)

]∣∣∣∣∣
2

=
1

N2

N∑
i=1

E
[
EH(x− zit)−H(x− zit)

]2
=

1

N2

N∑
i=1

EH(x− zit)× EH(zit − x) ,
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so that

A ≤ 1√
N

∫
R

√√√√ 1

N

N∑
i=1

EH(x− zit)× EH(zit − x) dx .

Let Γit denote the density of the law of zit; one obtains

A ≤ 1√
N

∫
R

√√√√ 1

N

N∑
i=1

∫ x

−∞
Γit(y)dy ×

∫ +∞

x

Γit(y)dy dx .

From (2.11), there exists a constant C such that, for t > 0,

Γit(y) ≤ C√
t

exp

(
− (y − yi0)2

2σ̄2t

)
, ∀ y ∈ R .

Thus,

A ≤ C√
N

∫
R

√√√√ 1

N

N∑
i=1

∫ x−yi0

−∞

1√
t

exp(− y2

2σ̄2t
)dy ×

∫ +∞

x−yi0

1√
t

exp(− y2

2σ̄2t
)dy dx.

In the Appendix we prove the following lemma, which completes the proof of (i):

Lemma 2.6. Under the hypothesis (H3), one has

∫
R

√√√√ 1

N

N∑
i=1

∫ x−yi0

−∞

1√
t

exp(− y2

2σ̄2t
)dy ×

∫ +∞

x−yi0

1√
t

exp(− y2

2σ̄2t
)dy dx ≤ C.

We now prove (ii). We have

E

∥∥∥∥∥Eµ0
H(x− zt)−

1

N

N∑
i=1

H(x− zit)
∥∥∥∥∥

2

L1(R)

= E

(∫
R

∣∣∣∣∣ 1

N

N∑
i=1

EH(x− zit)−H(x− zit)
∣∣∣∣∣ dx

)2

=

∫
R

∫
R
E

(∣∣∣∣∣ 1

N

N∑
i=1

EH(x1 − zit)−H(x1 − zit)
∣∣∣∣∣

×
∣∣∣∣∣ 1

N

N∑
i=1

EH(x2 − zit)−H(x2 − zit)
∣∣∣∣∣
)
dx1dx2

and we apply the Cauchy-Schwarz inequality and (i).

2.3.5. The discretization error. The aim of this subsection is to prove the following
lemma.
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Lemma 2.7. For all k = 1, . . . ,K, one has

(i) E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− z̄itk)

∥∥∥∥∥
L1(R)

≤ C
√

∆t

and

(ii) E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− z̄itk)

∥∥∥∥∥
L1(R)

2

≤ C ∆t .

Proof. Noting that

∀ a, b ∈ R,
∫
R
|H(x− a)−H(x− b)|dx = |a− b| ,(2.17)

one gets

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− z̄itk)

∥∥∥∥∥
L1(R)

≤ 1

N

N∑
i=1

|zitk − z̄itk |

and

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− zitk) − 1

N

N∑
i=1

H(x− z̄itk)

∥∥∥∥∥
L1(R)

2

≤ 1

N

N∑
i=1

E|zitk − z̄itk |
2 .

The quadratic mean convergence with order
√

∆t of the Euler scheme for SDEs
with coefficients which are Lipschitz functions in x and Hölder of order 1/2 in t
is an easy generalization of a result of Milshtein [22]; see M. Bossy’s thesis [2] for
details.

2.3.6. The dependency error. In this subsection we study the error caused by the
substitution of the dependent Y i’s to the independent z̄i’s.

Lemma 2.8. For all k = 1, . . . ,K, there holds

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− z̄itk)− 1

N

N∑
i=1

H(x− Y itk)

∥∥∥∥∥
L1(R)

≤ C

(√
∆t+

1√
N

+ ‖V0 − V̄0‖L1(R)

)
and

E

∥∥∥∥∥ 1

N

N∑
i=1

H(x− z̄itk)− 1

N

N∑
i=1

H(x− Y itk)

∥∥∥∥∥
L1(R)

2

≤ C

(
∆t+

1

N
+ ‖V0 − V̄0‖2L1(R)

)
.

Proof. From (2.17) it follows that∥∥∥∥∥ 1

N

N∑
i=1

H(x− z̄itk)−H(x− Y itk)

∥∥∥∥∥
L1(R)

≤ 1

N

N∑
i=1

| z̄itk − Y
i
tk | .
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Note that

E|z̄itk − Y
i
tk |

2

≤ E|z̄itk−1
− Y itk−1

|2 + ∆t2E

∣∣∣∣∣∣
∫
b(z̄itk−1

, y)µtk−1
(dy)− 1

N

N∑
j=1

b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

+ ∆t E

∣∣∣∣∣∣
∫
s(z̄itk−1

, y)µtk−1
(dy) − 1

N

N∑
j=1

s(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

+ 2∆tE

|z̄itk−1
− Y itk−1

|

∣∣∣∣∣∣
∫
b(z̄itk−1

, y)µtk−1
(dy)− 1

N

N∑
j=1

b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
 .

Set Ek :=
1

N

N∑
i=1

E|z̄itk − Y
i
tk |

2; one has

(2.18)

Ek ≤ Ek−1 + ∆t2
1

N

N∑
i=1

E

∣∣∣∣∣∣
∫
b(z̄itk−1

, y)µtk−1
(dy) − 1

N

N∑
j=1

b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

+ ∆t
1

N

N∑
i=1

E

∣∣∣∣∣∣
∫
s(z̄itk−1

, y)µtk−1
(dy) − 1

N

N∑
j=1

s(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

+ 2 ∆t
√
Ek−1×

√√√√√ 1

N

N∑
i=1

E

∣∣∣∣∣∣
∫
b(z̄itk−1

, y)µtk−1
(dy)− 1

N

N∑
j=1

b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

=: Ek−1 +A1 +A2 +A3.

The term A1 is bounded from above by C(∆t)2. We estimate A2 in the following
way:

1

N

N∑
i=1

E

∣∣∣∣∣∣
∫
s(z̄itk−1

, y)µtk−1
(dy) − 1

N

N∑
j=1

s(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

≤ 2

N

N∑
i=1

E

∣∣∣∣∣∣
∫
s(z̄itk−1

, y)µtk−1
(dy) − 1

N

N∑
j=1

s(z̄itk−1
, z̄jtk−1

)

∣∣∣∣∣∣
2

+
2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

s(z̄itk−1
, z̄jtk−1

) − s(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

.

As the function s is Lipschitz, we observe

2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

s(z̄itk−1
, z̄jtk−1

) − s(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

≤ CEk−1 .
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Now set µ̃tk :=
1

N

N∑
j=1

δz̄jtk
and Ṽtk(x) :=

1

N

N∑
j=1

H(x− z̄jtk). Note that

∫
s(z̄itk−1

, y)µtk−1
(dy)− 1

N

N∑
j=1

s(z̄itk−1
, z̄jtk−1

)

=

∫
s(z̄itk−1

, y)(µtk−1
(dy)− µ̃tk−1

(dy)) ;

as the function s is differentiable, one obtains∫
s(z̄itk−1

, y)
(
µtk−1

(dy)− µ̃tk−1
(dy)

)
=

∫
∂s

∂y
(z̄itk−1

, y)
(
V (tk−1, y)− Ṽtk−1

(y)
)
dy

≤ C
∥∥∥V (tk−1, x) − Ṽtk−1

(x)
∥∥∥
L1(R)

.

From (2.9) and Lemmas 2.4, 2.5 and 2.7, it follows that

E
(
‖V (tk−1, x) − Ṽtk−1

(x)‖L1(R)

)2

≤ C

(
‖V0 − V 0‖2L1(R) +

1

N
+ ∆t

)
,

from which

A2 ≤ C ∆t

(
‖V0 − V 0‖2L1(R) +

1

N
+ ∆t

)
+ C∆tEk−1 .(2.19)

Now consider A3. We need a precise estimate on
√
A1.

As µtk−1
is the law of ztk−1

, one has that

∫
b(x, y)µtk−1

(dy) = Eµ0b(x, ztk−1
).

We set

Eµ0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

:= Eµ0b(x, ztk−1
)

∣∣∣∣
x=z̄itk−1

:=

∫
b(z̄itk−1

, y)µtk−1
(dy) .

Observe that

1

N

N∑
i=1

E

∣∣∣∣∣∣
∫
b(z̄itk−1

, y)µtk−1
(dy)− 1

N

N∑
j=1

b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

≤ 2

N

N∑
i=1

E

∣∣∣∣∣∣Eµ0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

− Eµ̄0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

∣∣∣∣∣∣
2

+
2

N

N∑
i=1

E

∣∣∣∣∣∣Eµ̄0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

− 1

N

N∑
j=1

Eb(x, z̄jtk−1
)

∣∣∣∣
z̄itk−1

∣∣∣∣∣∣
2

+
2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

Eb(x, z̄jtk−1
)

∣∣∣∣
z̄itk−1

− 1

N

N∑
j=1

b(z̄itk−1
, z̄jtk−1

)

∣∣∣∣∣∣
2

+
2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

b(z̄itk−1
, z̄jtk−1

)− b(Y itk−1
, Y jtk−1

)

∣∣∣∣∣∣
2

=: ε1
k−1 + ε2

k−1 + ε3
k−1 + ε4

k−1 .
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A preceding computation shows

ε4
k−1 ≤ C Ek−1 .(2.20)

On the other hand, one has

ε3
k−1 =

2

N3

N∑
i=1

N∑
j=1

E

Eb(x, z̄jtk−1
)

∣∣∣∣
z̄itk−1

− b(z̄itk−1
, z̄jtk−1

)

2

+
2

N3

N∑
i=1

N∑
(j,l=1;j 6=l)

E


Eb(x, z̄jtk−1

)

∣∣∣∣
z̄itk−1

− b(z̄itk−1
, z̄jtk−1

)


×

Eb(x, z̄ltk−1
)

∣∣∣∣
zitk−1

− b(z̄itk−1
, z̄ltk−1

)

 .

Since the z̄i’s are independent and b is bounded, one deduces

ε3
k−1 ≤

C

N
.(2.21)

Now observe that

ε2
k−1 =

2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

Eb(x, ztk−1
(yj0))

∣∣∣∣
z̄itk−1

− 1

N

N∑
j=1

Eb(x, z̄jtk−1
)

∣∣∣∣
z̄itk−1

∣∣∣∣∣∣
2

=
2

N

N∑
i=1

E

∣∣∣∣∣∣ 1

N

N∑
j=1

E( b(x, zjtk−1
) − b(x, z̄jtk−1

) )

∣∣∣∣
z̄itk−1

∣∣∣∣∣∣
2

,

from which

ε2
k−1 ≤ C

 1

N

N∑
j=1

E | zjtk−1
− z̄jtk−1

|


2

.

Applying Lemma 2.7, we conclude that

ε2
k−1 ≤ C ∆t .(2.22)

It remains to estimate ε1
k−1. Note that

Eµ0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

− Eµ̄0b(x, ztk−1
)

∣∣∣∣
z̄itk−1

=
(
Eµ0b(x, ztk−1

)− Eµ̄0b(x, ztk−1
)
) ∣∣∣∣
z̄itk−1

;

moreover, for all x,

Eµ0b(x, ztk−1
) − Eµ̄0b(x, ztk−1

) =

∫
R
Eb(x, ztk−1

(y)) (µ0(dy) − µ̄0(dy)) .

Now integrate by parts and apply (2.11); it then follows that, for all x,∣∣Eµ0b(x, ztk−1
) − Eµ0

b(x, ztk−1
)
∣∣ ≤ C√

tk−1
‖V0 − V̄0‖L1(R) ,
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so that, for k > 1,

ε1
k−1 ≤

C

tk−1
‖V0 − V̄0‖2L1(R) .(2.23)

Combining (2.20), (2.21), (2.22), (2.23), one gets

A3 ≤ C ∆t
√
Ek−1.

√
‖V0 − V̄0‖2L1(R)

tk−1
+ ∆t +

1

N
+ C ∆t Ek−1 .

Set

δ := ‖V0 − V̄0‖2L1(R) +
1

N
+ ∆t .(2.24)

In view of this upper bound and (2.19), the inequality (2.18) becomes

 Ek ≤ (1 + C∆t)Ek−1 + C ∆t (δ + ∆t) + C ∆t

√
Ek−1√
tk−1

√
δ for k > 1 ,

E1 ≤ C∆t .

Consider the sequence (γk) defined by

 γk := (1 + C∆t)γk−1 + C ∆t (δ + ∆t) + C ∆t

√
γk−1√
tk−1

√
δ for k > 1 ,

γ1 := C∆t .

Then, for all k = 1, . . . ,K, we have Ek ≤ γk. Suppose that there exists an integer
q < K such that

γq ≤ δ and γq+1 ≥ δ .

As (γk) is increasing, one then has

∀ r ≤ q , γr ≤ ‖V0 − V̄0‖2L1(R) +
1

N
+ ∆t ,

∀ r ≥ q + 1 , γr ≥ ‖V0 − V̄0‖2L1(R) +
1

N
+ ∆t .

Thus,

 γk ≤
(

1 + C ∆t + C
∆t√
tk−1

)
γk−1 + C ∆t (δ + ∆t), k = q + 2, . . . ,K,

γq+1 ≤ Cδ .

Noting that
K−1∑
j=q

1√
j
≤
∫ K

q

1√
x
dx = 2 (

√
K − √q), an induction gives

γK ≤ Cδ .

The conclusion follows from the definition of δ (see (2.24)).
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2.4. Proof of Theorem 2.2. Under the hypothesis (H2′), the functions β and σ
are of class C2(R); then (H1) and standard arguments imply that u(t, ·), the density
of the law of zt solution to (2.6), is a classical solution to the PDE (1.3).

We observe that

‖u(tk, ·)− uεtk(·)‖L1(R) ≤ ‖u(tk, ·)− (u(tk, ·) ∗ Φε) ‖L1(R)

+ ‖ (u(tk, ·)− utk(·)) ∗ Φε‖L1(R) .(2.25)

The first term of the right-hand side corresponds to the rate of convergence of the
regularization by a Gaussian kernel Φε. Below we show that the density u(t, ·)
belongs to the Sobolev space W 2,1(R). Thus, we can use the well-known estimate
(cf. Raviart [26])

‖u(tk, ·)− (u(tk, ·) ∗Φε) ‖L1(R) ≤ C ε2 ‖u(tk, ·)‖W2,1(R) .(2.26)

Using the integration by parts formula for a Stieltjes integral, the second term
of (2.25) can be rewritten

‖ (u(tk, ·)− utk(·)) ∗ Φε‖L1(R) =

∫
R

∣∣∣∣∫
R

Φ′ε(x− y)
(
V (tk, y)− V tk(y)

)
dy

∣∣∣∣ dx ,
so that

E‖ (u(tk, ·)− utk(·)) ∗Φε‖L1(R) ≤
2√
2πε

E ‖V (tk, .)− V tk(.)‖L1(R).(2.27)

The estimates of Theorem 2.2 are obtained by combining (2.26) and (2.27); it
remains to show that the assumptions (H2′) and (H3′) ensure that the norm of
u(t, ·) in W 2,1(R) is bounded uniformly in t ∈ [0, T ].

To prove this, we use a criterion due to Cannarsa and Vespri (see below) ensuring
that the solution of a parabolic PDE belongs to C1([0, t];L2(R))∩C([0,T ];W 2,2(R)).
Thus, we will consider a function ũ(t, x), a solution of a parabolic PDE satisfying
the conditions imposed by Cannarsa and Vespri, and such that, if the W 2,2(R)
norm of ũ(t, ·) is uniformly bounded on [0, T ], then the W 2,1(R) norm of u(t, ·) is
uniformly bounded on [0, T ]. The latter is easy to prove for

ũ(t, x) := (1 + x2) u(t, x) .

We now observe that ũ(t, x) solves the linear parabolic equation
∂ũ

∂t
(t, x) = L(t)ũ(t, x), (t, x) ∈ [0, T ]× R ,

ũ(0, x) = exp (π(x)) u0(x) ,

(2.28)

where

π(x) = ln(1 + x2) ,

L(t) = ã(t, x)
∂2

∂x2
+ b̃(t, x)

∂

∂x
− c̃(t, x) ,

and

ã :=
1

2
σ2, b̃ :=

∂(σ2)

∂x
− β − σ2π′ ,

c̃ :=
∂β

∂x
− 1

2

∂2(σ2)

∂x2
+ π′

(
∂(σ2)

∂x
− β

)
+

1

2
σ2(π′′ − (π′)2) .
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We now check the different conditions required to apply the result of Cannarsa
and Vespri.

As π′ and π′′ are bounded functions, under the assumption (H2′), ∂pxpσ and ∂qxqβ
are bounded functions in R and their norms in L∞(R) are uniform with respect to
t ∈ [0, T ], for p = 0, 1, 2 and q = 0, 1. Moreover, as β(t, x) = Eb(x,Xt) and σ(t, x) =
Es(x,Xt), these functions are Hölder in [0, T ], uniformly on R, with exponent 1

2 ,

(see § 2.3.2). Finally, under (H3′), ũ0(·) is in W 2,2(R). Therefore (see Cannarsa
and Vespri [4]), the problem (2.28) has a unique solution in C1([0, t];L2(R)) ∩
C([0, T ];W 2,2(R)). Thus, x → exp(π(x))u(t, x) has a W 2,2(R) norm uniformly
bounded with respect to t ∈ [0, T ]; as already noticed, one can easily deduce that
u(t, ·) is in W 2,1(R) with a norm uniformly bounded with respect to t ∈ [0, T ].

3. The algorithm for the Burgers equation with nonmonotonic

initial conditions

3.1. Preliminaries. In Bossy and Talay [3] we analyze the convergence rate of the
preceding stochastic particle method when the kernel b(x, y) is equal to H(x− y),
H being the Heaviside function (H(z) = 1 if z ≥ 0, H(z) = 0 if z < 0), and the
kernel s(x, y) is the constant function σ; in view of (1.2), V (t, x) solves the Burgers
equation with an initial condition equal to the distribution function of a probability
law: 

∂V

∂t
=

1

2
σ2 ∂

2V

∂x2
− V

∂V

∂x
in [0, T ]× R ,

V (0, x) = V0(x) .

(3.1)

The error analysis is based upon arguments similar to those of the preceding section,
plus specific and tricky computations owing to the discontinuity of b.

In this section, we extend the algorithm to a larger class of initial conditions by
considering V0 as the “distribution function” of a signed and finite measure. For
this extension, the convergence rates given in Theorem 2.1 still hold (see § 3.4).

Let M(R) be the set of measures on R and M+(R) the set of positive parts of
measures on M(R). For any measure µ in M(R), we denote by µ+ and µ− the
positive measures coming from the Jordan decomposition of µ. Let M(R; a+; a−)
be defined by

M(R; a+; a−) = {µ ∈ M(R) , ‖µ+‖ = a+ , ‖µ−‖ = a−} ,
where ‖µ‖ denotes the total variation of µ.

Suppose that V0 satisfies

V0(x) =

∫ x

−∞
W0(dy) with W0 ∈M(R; a+; a−) .

Our first objective is to show that V (t, x) =

∫ x

∞
Wt(dy), where the measure Wt

belongs to M(R; a+; a−) for all t, and is the unique weak solution to the PDE
∂Wt

∂t
=

1

2
σ2 ∂

2Wt

∂x2
− ∂

∂x

(
Wt

(∫
R
H(x− y)Wt(dy)

))
,

Wt=0 = W0 .

(3.2)
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This is done by adapting ideas of Marchioro and Pulvirenti [19] for the probabilistic
interpretation of the incompressible 2-D Navier-Stokes equation.

3.2. Probabilistic interpretation. The measure W0∈M(R; a+; a−) being fixed,
set

U+
0 :=

W+
0

a+
and U−0 :=

W−0
a−

,

where W+
0 and W−0 are the positive measures coming from the Jordan decompo-

sition of W0. Note that U+
0 and U−0 are probability measures. Throughout the

sequel, we assume:

(H0) U+
0 and U−0 satisfy one of the two conditions:

(i) U±0 has a continuous and strictly positive density u±0 and there exist
strictly positive constants M , η and α such that

u±0 (x) ≤ η exp

(
−αx

2

2

)
for |x| > M .

(ii) U±0 has compact support included in an interval (−M,M) .

Theorem 3.1. Suppose that W0 ∈ M(R; a+; a−) satisfies the hypothesis (H0).
Then:

(a) There exists a unique function [0, T ] 3 t → Wt ∈ M(R; a+; a−) such that,
for any function f in C2

K(R),
d

dt

(∫
R
f(y)Wt(dy)

)
=

1

2
σ2

∫
R
f ′′(y)Wt(dy) +

∫
R
V (t, y)f ′(y)Wt(dy) ,

Wt=0 = W0 ,
(3.3)

where V (t, x) =

∫
R
H(x− y)Wt(dy), and moreover,

Wt(A) =

∫
R
Pt(x0,A)W0(dx0),

for any Borel set A ⊂ R, where Pt(x0, ·) is the transition probability of the
process (zt) solution to

dzt = V (t, zt)dt + σdwt .

(b) The function V so defined is the classical solution to the Burgers equation
in [0, T ]× R, and for all t ∈ (0, T ] one has∥∥∥∥∂V∂x (t, ·)

∥∥∥∥
L∞(R)

≤ C√
t
,(3.4)

where C depends on σ, T and W0.

To prove Theorem 3.1, we need an analogous statement for a regularized problem
that we now present.

For ε > 0, denote again by Φε the density of a Gaussian random variable of
mean 0 and variance ε2; define

Hε(x) = (H ∗ Φε)(x) =

∫ x

−∞

1√
2πε2

exp

(
− y2

2ε2

)
dy .
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Theorem 3.2. Let W0 ∈ M(R; a+; a−). There exists a unique function [0, T ] 3
t→W ε

t ∈ M(R; a+; a−) such that, for all functions f in C2
K(R),

d

dt

(∫
R
f(y)W ε

t (dy)

)
=

1

2
σ2

∫
R
f ′′(y)W ε

t (dy) +

∫
R
V ε(t, y)f ′(y)W ε

t (dy) ,

Wt=0 = W0 ,
(3.5)

where V ε(t, x) =

∫
R
Hε(x− y)W ε

t (dy), and moreover,

W ε
t (A) =

∫
R
P εt (x0,A)W0(dx0),

for all Borel sets A ⊂ R, where P εt (x0, ·) is the transition probability of the process
(zεt ) solution to

dzεt = V ε(t, zt)dt + σdwt .

In the Appendix we give a sketch of the proof of Theorem 3.2, which adapts
arguments appearing in [19].

3.3. Proof of Theorem 3.1. In [19], Marchioro and Pulvirenti assume that the
initial condition of the 2-D Navier-Stokes equation is in L1(R) ∩ L∞(R); they use
this hypothesis to go from a regularized problem (similar to (3.5)) to the Navier-
Stokes equation. We have not succeeded in adapting their technique for our case
because W0 may be singular.

Thus, we proceed differently: first, we construct a solution to (3.3) by considering
a convergent subsequence of (W ε

t )ε; second, we show that this solution is related
to the law of the appropriate stochastic process.

Observe that for all (t, x) in [0, T ]× R, we have

|V ε(t, x)| ≤
∣∣∣∣∫
R
W ε
t (dy)

∣∣∣∣ ≤ a+ + a− := A .

Thus (see [3] for a proof), for all x0 in R the process (zεt (x0)) has a density, denoted
by pεt (·, x0), such that

∃C > 0, ∀ ε > 0, ‖pεt (·, x0)‖L2(R) ≤
C

t
1
4

.(3.6)

Denote by M1 (C([0, T ];R)) the set of probability measures on C([0, T ];R) and
consider the sequence (P ε(x0))ε of measures belonging toM1 (C([0, T ];R)) defined
by

P ε(x0) = IP ◦ (zε(x0))−1 .

For all 0 ≤ s ≤ t ≤ T , one has that

E |zεt (x0)− zεs(x0)| ≤ E |σ(wt − ws)|4 + A4(t− s)4 ≤ C (t− s)2 ,

which implies that (P ε(x0))ε is tight (cf. Karatzas and Shreve [15] e.g.).

Let P̃ (x0) be the limit of a convergent subsequence (again denoted by (P ε(x0))ε).

Lemma 3.3.
(i) For any x0 in R and t ∈ (0, T ] the one-dimensional distribution P̃t(x0) of

P̃ (x0) has a density p̃t(x0, ·) with respect to Lebesgue measure and

∀ t ∈ (0, T ], ‖p̃t(·, x0)‖L2(R) ≤
C

t
1
4

.
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(ii) The function [0, T ] 3 t→ W̃t ∈ M(R; a+; a−) defined by W̃t(A) =

∫
R
P̃t(x,A)W0(dx) for all Borel sets A ⊂ R and t ∈ (0, T ] ,

W̃0 = W0 ,

is a solution to (3.3).

Proof. We first prove (i). For any t > 0 and any function f in L2(R), we have∣∣∣∣∫
R
f(x)P εt (x0, dx)

∣∣∣∣ =

∣∣∣∣∫
R
f(x)pεt (x0, x)dx

∣∣∣∣ ≤ C

t
1
4

‖f‖L2(R) .

From the weak convergence of P εt (x0) to P̃t(x0) and (3.6) it follows that for any
function f in CK(R), ∣∣∣∣∫

R
f(x)P̃t(x0)(dx)

∣∣∣∣ ≤ C

t
1
4

‖f‖L2(R) .

This implies that P̃t(x0, ·) has a density p̃t(x0, ·) in L2(R) for all t > 0, and

‖p̃t(x0, ·)‖L2(R) ≤
C

t
1
4

.

We now show (ii). We prove that for all functions f in C2
K(R),∫

R
f(y)W̃t(dy) −

∫
R
f(y)W0(dy)(3.7)

=

∫ t

0

(∫
R

1

2
σ2f ′′(y)W̃s(dy)

)
ds +

∫ t

0

(∫
R
V (s, y)f ′(y)W̃s(dy)

)
ds,

where V (t, x) =

∫
R
H(x− y)W̃t(dy).

Observe that W̃t has a density γ̃t(·) for all t > 0, given by

γ̃t(x) =

∫
R
p̃t(x0, x)W0(dx0) .

As P εt (x0, ·) converges weakly to P̃t(x0, ·), it follows that

lim
ε→0

∫
R
f(y)W ε

t (dy) =

∫
R
f(y)W̃t(dy)

and

lim
ε→0

∫
R

1

2
σ2f ′′(y)W ε

t (dy) =

∫
R

1

2
σ2f ′′(y)W̃t(dy) .

Since W ε
t solves (3.5), to obtain (3.7), it simply remains to prove that

lim
ε→0

∫ t

0

(∫
R
V ε(s, y)f ′(y)W ε

s (dy) −
∫
R
V (s, y)f ′(y)W̃s(dy)

)
ds = 0.(3.8)
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We estimate∫ t

0

∣∣∣∣∫
R
V ε(s, y)f ′(y)W ε

s (dy) −
∫
R
V (s, y)f ′(y)W̃s(dy)

∣∣∣∣ ds
≤
∫ t

0

∣∣∣∣∫
R

(V ε(s, y) − V (s, y)) f ′(y)W ε
s (dy)

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∫
R
V (s, y)f ′(y)

(
W ε
s (dy) − W̃s(dy)

)∣∣∣∣ ds .
For all t > 0, we have that V (t, ·) is the distribution function of a finite measure

which is absolutely continuous with respect to Lebesgue measure; thus, V (t, ·) is a
bounded continuous function, from which we deduce the convergence towards 0 of
the second term of the right-hand side when ε tends to 0.

Denote by F the first term of the right-hand side. We have

F ≤
∫
R

[∫ t

0

∣∣∣∣∫
R

(V ε(s, y)− V (s, y)) f ′(y)pεs(x0, y)dy

∣∣∣∣ ds]W0(dx0) .

As pεs(x0, ·) belongs to L2(R) for all s > 0, we get from (3.6)

F ≤ C

∫ t

0

√∫
R

(V ε(s, y) − V (s, y))
2
f ′2(y)dy

1

s
1
4

ds .

By definition of V ε(s, ·) and V (s, ·), we have that∫
R

(V ε(s, y) − V (s, y))
2
f
′2(y)dy

=

∫
R

(∫
R
Hε(z − y)W ε

s (dz) −
∫
R
H(y − z)W̃s(dz)

)2

f
′2(y)dy

≤
∫
R

2

(∫
R

(Hε(y − z) − H(y − z))W ε
s (dz)

)2

f
′2(y)dy

+

∫
R

2

(∫
R
H(y − z)

(
W ε
s (dz)− W̃s(dz)

))2

f
′2(y)dy .

Therefore,

F ≤ A
∫ t

0

√∫
R

(∫
R
|Hε(y − z) − H(y − z)| dz

)
f ′2(y)dy

C√
s
ds

+ A

∫ t

0

√∫
R

(∫ y

−∞
W ε
s (dz)−

∫ y

−∞
W̃s(dz)

)2

f ′2(y)dy
C

s
1
4

ds .

One easily sees that for all y in R,(∫
R
|(H ∗ Φε)(y − z) − H(y − z)| dz

)
≤ 2ε√

2π
.

Moreover, as W ε
s and W̃s are absolutely continuous with respect to Lebesgue mea-

sure, the term

(∫ y

−∞
W ε
s (dz)−

∫ y

−∞
W̃s(dz)

)
tends to 0 for all y in R. Now it

remains to use the bounded convergence theorem (note that f
′2 is integrable on R
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since it is continuous and it has compact support; also note that

(
1√
s

)
and

(
1

s
1
4

)
are integrable on [0, t]): F tends to 0 when ε tends to 0, which proves (3.8).

We are now in position to complete the proof of Theorem 3.1.
As V is bounded on [0, T ]× R, the stochastic differential equation

dzt = V (t, zt) dt + σ dwt , t ∈ [0, T ] ,(3.9)

has a unique solution in the sense of probability law (see Karatzas and Shreve [15]
e.g.).

We now show that for all Borel sets A ⊂ R we have

W̃t(A) =

∫
R
Pt(x0,A)W0(dx0) ,(3.10)

where Pt(x0, ·) is the transition probability of (zt).
For any x0 in R, consider the process (zt(x0)), solution to (3.9) and emanating

from x0 at time t = 0. For all t ∈ (0, T ], the law of zt(x0) has a density, denoted
by pt(x0, ·); define the function γt(·) on R by

γt(x) =

∫
R
pt(x0, ·)W0(dx0) .

We now show that the density γ̃t(·) of W̃t is equal to γt(·).
Consider the equation

qt = StW0 −
∫ t

0

St−s

(
∂

∂x
(qs V (s, ·))

)
ds , ∀ t ∈ (0, T ] ,(3.11)

where St is the semigroup defined by StU = gt ∗U and gt is the density of the law
of σwt.

Lemma 3.4.
(i) For any x0 in R, for any solution in the sense of probability law (zt(x0))

of (3.9), the corresponding function γt is a weak solution of (3.11) .
(ii) There exists at most one function qt in L1(R) which is a weak solution

of (3.11).

Proof. We first prove (i).
Fix t in (0, t] and f in C∞(R) with compact support, and set

G(s, x) = St−sf(x) for 0 ≤ s < t .

The function G(s, x) solves ∂G

∂s
+

1

2
σ2 ∂

2G

∂x2
= 0 , 0 ≤ s < t ,

G(t, x) = f(x) .
(3.12)

Itô’s formula shows that

G(t, zt(x0))=G(0, x0) +

∫ t

0

∂G

∂x
(s, zs(x0)) dws +

∫ t

0

∂G

∂x
(s, zs(x0))V (s, zs(x0)) ds,

from which∫
R
f(x)γt(x)dx =

∫
R
G(0, x)W0(dx) +

∫ t

0

∫
R

∂

∂x
G(s, x) V (s, x)γs(x)dx ds .

One can easily deduce that γt solves (3.11) in the weak sense.
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We now prove (ii). Let ut and vt be two weak solutions of (3.11) belonging to
L1(R); then, for all t ∈ (0, T ], one has

‖ut − vt‖L1(R) =

∥∥∥∥∫ t

0

St−s
∂

∂x
{(us(x) − vs(x)) V (s, x)}

∥∥∥∥
L1(R)

≤
∫ t

0

∥∥∥∥gt−s ∗ ∂

∂x
{(us(x) − vs(x)) V (s, x)}

∥∥∥∥
L1(R)

ds

≤
∫ t

0

∥∥∥∥ ∂∂xgt−s
∥∥∥∥
L1(R)

×A ‖us(x) − vs(x)‖L1(R) ds

≤
∫ t

0

2A√
2π(t− s)σ2

‖us(x) − vs(x)‖L1(R) ds .

Noting that s → 1/
√
t− s is integrable on [0, t], one applies Gronwall’s lemma to

conclude.

To show that γ̃t(·) and γt(·) are equal, it now remains to prove that γ̃t(·) is also a

solution to (3.11) in the weak sense. As γ̃t(·) is the density of W̃t, it satisfies (3.3),
and an easy computation shows∫

R
f(x)γ̃t(x)dx =

∫
R
G(0, x)W0(dx) +

∫ t

0

∫
R

∂

∂x
G(s, x) V (s, x)γ̃s(x)dx ds .

Then one can show that γ̃t is a solution in the weak sense of (3.11), which proves
(3.10). Thus, we have proven part (a) of Theorem 3.1.

For part (b), see our paper [3] for the proof when the initial condition is mono-
tonic and M. Bossy’s thesis [2] for the extension to the present situation.

3.4. The algorithm and its convergence rate. We have obtained that the

solution of the Burgers equation with the initial condition V0(x) =

∫ x

−∞
W0(dy),

where W0 ∈ M(R; a+; a−), satisfies

V (t, x) = a+EU+
0
H(x− zt) − a−EU−0 H(x− zt) ;

here the process (zt) satisfies

dzt = V (t, zt)dt + σdwt

and U+
0 and U−0 are such that

W0 = a+ U+
0 − a− U−0 .

This probabilistic representation of the solution allows us to adapt the approxima-
tion method developed for smooth interaction kernels.

In the sequel we assume:

(H0′) The positive and negative parts, U+
0 and U−0 , of W0 satisfy :

(i) either U±0 is the Dirac measure at x0, or
(ii) U±0 has a smooth density u±0 satisfying one of the two conditions:

• u±0 (·) is a continuous and bounded function and there exist strictly
positive constants M , η and α such that for all |x| > M, u±0 (x) ≤
η exp(−αx2

2 );
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• u±0 is a function with compact support and is continuous on this
support.

Let N be an even number of particles. We denote by yi0 for i = 1, . . . , N
the initial locations of the particles. The N/2 first (respectively last) locations are
chosen in order to approximate the distribution function of the probability measure
U+

0 (respectively U−0 ) by a piecewise constant function: if U±0 is a Dirac mass at
point x0, we locate the corresponding particles at x0; if U±0 has a density function,
we invert its distribution function (see § 2). Thus, the piecewise constant function

V 0(x) :=
1

N

N∑
i=1

AiH(x− yi0)

with {
Ai = 2a+, i = 1, . . . , N/2 ,
Ai = −2a−, i = N/2 + 1, . . . , N ,

approximates V0 and (cf. above) the initialization error ‖V0(·) − V 0(·)‖L1(R) is of

order O
(

1

N

√
log(N)

)
.

Instead of identical weights equal to
1

N
, the particles now have different weights

fixed at time 0. At each discretization time tk, we approximate the solution V (tk, ·)
by

V tk(x) =
1

N

N∑
i=1

AiH(x− Y itk),

where the (Y itk)’s are defined by
Y itk+1

= Y itk + V tk(Y itk) ∆t + σ
(
witk+1

− witk
)

= Y itk +
1

N

N∑
j=1

Aj H(Y itk − Y
j
tk

) ∆t + σ
(
witk+1

− witk
)
,

Y i0 = yi0 .

The rate of convergence is the same as in the case of monotonic initial conditions
(the proof given in Bossy and Talay [3] needs only a few modifications consisting
in bounding the Ai’s from above by a constant):

Theorem 3.5. With T fixed, let ∆t > 0 be such that T = ∆tK, K ∈ N.
Let V (tk, x) be the solution at time tk = k∆t of the Burgers equation with the

initial condition V0, and let V tk(x) be defined as above.
Under (H0′), there exists a strictly positive constant C, depending on σ, W0 and

T but uniform in N and ∆t, such that, for all k ∈ {1, . . . ,K}

E ‖V (tk, ·)− V tk(·)‖L1(R) ≤ C

(
‖V0 − V 0‖L1(R) +

1√
N

+
√

∆t

)
.

4. Numerical results for the Burgers equation

In order to compare our theoretical bounds with the real performance of our
method, we consider the Burgers equation with an initial condition for which the
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solution can be written in an explicit form. Our experiments show that our esti-
mates are not crude and illustrate the good behavior of the algorithm when the
diffusion coefficient tends to zero.

For any initial condition V0 such that∫ x

0

V0(y)dy = O(x) ,(4.1)

the solution of the Burgers equation has the following form (cf. Hopf [14])

V (t, x) =

∫
R
V0(y) exp

(
− 1

σ2

[
(x− y)2

2t
+

∫ y

0

V0(z)dz

])
dy∫

R
exp

(
− 1

σ2

[
(x− y)2

2t
+

∫ y

0

V0(z)dz

])
dy

, (t, x) ∈ [0, T ]× R .

We choose

V0(x) = 1−H(x),(4.2)

where H is the Heaviside function. In that case the above expression can be nu-
merically approximated with good accuracy; the exact value is

V (t, x) = 1 −
erfc

(
−x√
2σ2t

)
erfc

(
−x√
2σ2t

)
+ exp

(
t− 2x

2σ2

)(
2 − erfc

(
t− x√
2σ2t

)) ,

where the function erfc is defined by

erfc x =
2√
π

∫ +∞

x

exp(−u2) du .

As 1 − V0 is the “cumulative function of the Dirac mass centered at zero”, the
initialization of the particles is very simple: we just place the N particles at zero.

Figure 1 shows the general shape of the solution of our test problem: it is a
travelling wave with speed 1/2. The discontinuity of V0 immediately disappears
under the effect of the diffusion term of the equation, and for all t > 0 the solution
propagates without any deformation.

We are interested in the dependence of the error E‖V (T, ·)−V T (·)‖L1(R) on the
two parameters of the algorithm: the number of particles N and the time step ∆t.

For a fixed initialization ρ of the random number generator, we compute an
approximation of the L1 norm of the error at time T = K∆t with the discrete
norm

‖V (T, ·) − V T (·)‖L1(R) '
N∑
i=1

(
Y i+1
T − Y iT

) ∣∣V (T, Y iT )− V T (Y iT )
∣∣ := Errorρ ,

where the
(
Y iT
)

are the positions of the particles arranged in nondecreasing order.
When the interacting kernel is the Heaviside function, a very simple way to compute 1

N

N∑
j=1

H
(
Y itk − Y

j
tk

)
for all i
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Figure 1. General shape of the solution

is to sort the positions at each time step. If the positions are sorted in nondecreasing
order, at each time step and for each i we must compute

V tk(Y itk) =
1

N

N∑
j=1

H
(
Y itk − Y

j
tk

)
=

i

N
, ∀ k = 1, . . . , N .

We estimate the expectation of the error by an average based on 20 independent
trials corresponding to different initializations of the random number generator; we
also estimate the variance:

E‖V (T, ·) − V T (·)‖L1(R) '
1

20

20∑
ρ=1

Errorρ := EError,

Var‖V (T, ·) − V T (·)‖L1(R) '
1

20

20∑
ρ=1

(
Errorρ − EError

)2
.

Dependence on N . Table 1 presents numerical estimates of the L1 norm of the
error, computed as described above. We study the dependence of the error on N
as follows: ∆t is fixed, small enough to only observe the effect of N on the error,
and we give the results correponding to N = 250× 4k; we observe that changing k
to k + 1 induces a division by 2 of the expectation and of the standard deviation

of the error, which confirms the order O
(

1/
√
N
)

.
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Table 1. Dependence on N of the error; 1
2σ

2 = 0.1, T=1

Estimation of the expectation of the error in the L1 norm
Number of particles

∆t 250 1000 4000 16000 64000 256000

0.01 3.194.10−2 1.474.10−2 6.949.10−3 3.484.10−3 2.097.10−3 1.899.10−3

0.005 2.959.10−2 1.199.10−2 6.699.10−3 3.845.10−3 1.993.10−3 1.083.10−3

Estimation of the standard deviation of the error in the L1 norm

Number of particles

∆t 250 1000 4000 16000 64000 256000

0.01 3.458.10−2 1.685.10−2 7.42.10−3 3.674.10−3 2.230.10−3 1.615.10−3

0.005 3.231.10−2 1.299.10−2 6.889.10−3 3.979.10−3 2.087.10−3 1.155.10−3

Table 2. Dependence on ∆t of the error

Estimation of the L1 norm of the error; N=100 000, 1/2σ2 = 0.1, T=1

∆t Expectation Variance S. D.

1/2 7.9666.10−2 4.1151.10−7 6.4149.10−4

1/4 3.5357.10−2 3.4869.10−7 5.9050.10−4

1/8 1.6719.10−2 5.1327.10−7 7.1643.10−4

1/16 8.3335.10−3 3.2875.10−7 5.7337.10−4

1/32 4.1286.10−3 4.7058.10−7 6.8599.10−4

1/64 2.7924.10−3 6.0759.10−7 7.7948.10−4

1/128 2.1373.10−3 6.6170.10−7 8.1345.10−4

1/256 1.6634.10−3 3.5202.10−7 5.9331.10−4

1/512 1.5902.10−3 2.3290.10−7 4.8260.10−4

Dependence on ∆t. We apply the same strategy to study the dependence of the
error on ∆t. Table 2 presents numerical estimates of the expectation, the variance
and the standard deviation of the L1 norm of the error. We fix the number of
particles sufficiently large to neglect the effect of N in the error. When the time
step ∆t is successively divided by 2, from ∆t = 1/2 to ∆t = 1/128, the expectation
of the error is also divided by 2. From ∆t = 128 to ∆t = 1/512 the error seems
constant because for so small discretization steps the effect of N cannot be neglected
unless N is extremely large. Thus the order of convergence in ∆t seems better than
predicted by our theoretical estimate: ∆t rather than

√
∆t. In our theoretical

analysis, to bound the error caused by the time discretization, we used the rate of
convergence in L2(Ω) of the Euler scheme for the SDE satisfied by (zt); this bound
is too crude and likely hides an additional averaging effect of the large number of
particles.
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Table 3. Dependence on σ of the error

Estimation of the L1 norm of the error; N = 100 000, T = 1, ∆t = 0.01

1
2σ

2 Expectation Variance S. D.

0.001 1.2266.10−3 3.0045.10−10 1.7333.10−5

0.01 1.3396.10−3 1.8990.10−8 1.3780.10−4

0.1 2.2841.10−3 7.2588.10−7 8.5198.10−4

1 6.6735.10−3 8.3870.10−6 2.8960.10−3

10 2.1060.10−2 8.3495.10−5 9.1376.10−3

100 6.6778.10−2 8.2950.10−4 2.8801.10−2

1000 0.2114 8.2611.10−3 9.0890.10−2

Remark 4.1. As we expected from our theoretical bounds, there is no need to cor-
relate ∆t with N in order to observe the convergence.

Moreover, we only have presented here results for the discrete L1 norm, but the
numerical rate of convergence for the discrete L∞ norm is similar.

Behavior of the algorithm with respect to the diffusion coefficient. In our theoretical
bounds, the dependence on σ does not appear explicitly but the effect of this
parameter in the convergence is very important. Table 3 presents numerical results
for various values of σ, the values of N and ∆t being fixed. As σ decreases, the
expectation and the variance of the error become smaller; this is due to the fact
that the particles tend to spread less when the diffusion coefficient decreases, which
improves the precision. The good behavior of the algorithm as σ tends to 0 makes
us believe that it could be used for the approximation of the solution of the inviscid
Burgers equation: the diffusion term added to the equation must then be seen as
an artificial viscosity term which permits the algorithm to operate. It is well known
that the solution Vε of the perturbed problem

∂Vε
∂t

+ Vε
∂Vε
∂x

= ε
∂2Vε
∂x2

in (0, T ]× R ,

Vε(0, x) = V0(x) ,

converges to the entropic solution of the inviscid Burgers equation
∂V

∂t
+ V

∂V

∂x
= 0 in (0, T ]× R,

V (0, x) = V0(x)

(see, for example, S. N. Kružkov [16]); thus, one can expect a convergence result
for the particle method when ε tends to 0; we have not obtained such a result,
but we illustrate it by studying the Riemann problem. In that case the initial
condition V0(x) = 1 −H(x) corresponds to a shock located at the origin and the
shock is stable; the solution of the inviscid Burgers equation is a shock wave which
propagates with a constant speed equal to 1/2. Figure 2 shows the approximation
of the shock wave by the particle method with a diffusion coefficient equal to 10−7.
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Figure 2. Shock wave, T=0 to T=5
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When the initial condition V0 is equal to the Heaviside function, the initial
shock is unstable. The discontinuity disappears immediately and an expanding
wave propagates (see Figure 3).

5. Concluding remarks

We have introduced a stochastic particle method to solve a McKean-Vlasov PDE
in [0, T ]× R with Lipschitz kernels. This method provides approximations for the
distribution function and the density of the measure solution to the McKean-Vlasov
equation. Our method and our convergence rate results could easily be extended
to a multidimensional state space (in this latter case, the distribution function is
not given by a PDE).

Our algorithm, our analysis and our numerical experiments for the Burgers equa-
tion with a nonmonotonic initial condition are a preliminary step: our aim now is
to treat the 2-D incompressible Navier-Stokes equation and to give new error es-
timates for Chorin’s random vortex methods. Compared to the present work, the
additional difficulty comes from the fact that the interaction kernel corresponding
to the Navier-Stokes equation is singular at the origin.

Appendix

A.1. Proof of Lemma 2.6. We must bound the following expression:

A :=

∫
R

√√√√ 1

N

N∑
i=1

∫ x−yi0

−∞

1√
t

exp

(
− y2

2σ̄2t

)
dy ×

∫ +∞

x−yi0

1√
t

exp

(
− y2

2σ̄2t

)
dy dx.

Under the hypothesis (H3-i), µ0 is the Dirac measure at the point x0; the particles
at time 0 are initialized to (y0

i = x0, ∀i = 1, . . . , N). Thus,

A =

∫
R

√∫ x−x0

−∞

1√
t

exp

(
− y2

2σ̄2t

)
dy ×

∫ +∞

x−x0

1√
t

exp

(
− y2

2σ̄2t

)
dy dx .

Applying the inequality (2.16), we obtain

∫ x−x0

−∞

1√
t

exp

(
− y2

2σ̄2t

)
dy ×

∫ +∞

x−x0

1√
t

exp

(
− y2

2σ̄2t

)
dy ≤ Cσ̄2 exp

(
− x2

2σ̄2t

)
.

Thus ,

A ≤ Cσ̄

∫
R

exp

(
− x2

4σ̄2t

)
dx ≤ Cσ̄2

√
t.

Assume now (H3-ii): µ0 has a smooth density. Let M be the constant appearing
in (H3-ii). Decomposing the integral A in three parts (from −∞ to −M , from −M
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to M and from M to +∞), we get

A ≤
∫ −M
−∞

√√√√ 1

N

N∑
i=1

∫ x−yi0

−∞

1√
t

exp

(
− y2

2σ̄2t

)
dy dx︸ ︷︷ ︸

I−

+ C

+

∫ +∞

M

√√√√ 1

N

N∑
i=1

∫ +∞

x−yi0

1√
t

exp

(
− y2

2σ̄2t

)
dy dx︸ ︷︷ ︸

I+

.

We only treat I−, since I+ can be treated by symmetry. By definition of the
yi0’s, there holds

I−≤ 1√
t

∫ −M
−∞

√√√√ 1

N

[
N−1∑
i=1

∫ x−V−1
0 ( i

N
)

−∞
exp

(
− y2

2σ̄2t

)
dy+

∫ x−V−1
0 (1− 1

2N
)

−∞
exp

(
− y2

2σ̄2t

)
dy

]
dx.

Let Ψ be the function on (0, 1) defined by

Ψ(θ) =

∫ x−V −1
0 (θ)

−∞
exp

(
− y2

2σ̄2t

)
dy .

As V0 is an increasing function, Ψ is a decreasing function and

1

2N

N−1∑
i=1

Ψ

(
i

N

)
≤ 1

N

N−1∑
i=1

Ψ

(
i

N

)
≤
∫ N

N−1

0

Ψ(θ)dθ ,

1

2N
Ψ

(
1− 1

2N

)
≤
∫ 1

N
N−1

Ψ(θ)dθ .

Thus,

I− ≤
√

2√
t

∫ −M
−∞

√∫ 1

0

∫ x−V −1
0 (θ)

−∞
exp

(
− y2

2σ̄2t

)
dy dθ dx

≤
√

2√
t

∫ −M
−∞

√∫
R

exp

(
− (x− u)2

2σ̄2t

)
V0(u) du dx .

From (H4) and (2.16), one deduces

1[u≤−M]V0(u) + 1[u≥M](1− V0(u)) ≤ C exp

(
−αu

2

2

)
,

which completes the proof.

A.2. Proof of Theorem 3.5. We follow arguments in [19] and only give a sketch
of the proof.

Let d be the Kantorovich-Rubinstein metric on M(R; a+; a−):

d(x, y) = min(|x− y|, 1) .

On the space M1(R) =M+(R; 1), consider the metric

R1(µ, ν) = inf
P∈C(µ,ν)

∫
R2

P (dx, dy)d(x, y) ,
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where C(µ, ν) denotes the set of the probability laws on R2 whose one-dimensional
distributions are µ and ν. On M(R; a+; a−), consider the metric

R̂(µ, ν) = R1

(
µ+

a+
,
ν+

a+

)
+ R1

(
µ−

a−
,
ν−

a−

)
,

where µ+ and µ− (resp. ν+ and ν−) are the positive parts of the Jordan decom-

position of µ (resp. ν). The topology induced by R̂ is equivalent to the topology
induced by the weak convergence and makesM(R; a+; a−) separable and complete
(see Dobrushin [7] e.g.).

Let C
(
[0, T ];M(R; a+; a−)

)
be the space of continuous functions µ̃ : [0, T ] 3

t→ µ̃t ∈M(R; a+; a−); this space is complete for the metric

RT (µ̃1, µ̃2) = sup
t∈[0,T ]

R̂(µ̃1
t , µ̃

2
t ) .

Let P µ̃t (·, y) denote the probability transition of the process solution to

dzεt = V µ̃(t, zεt ) dt + σdwt, t ∈ [0, T ],

with

V µ̃(t, x) =

∫
R
Hε(x− y)µ̃t(dy) .

Having fixed W0, define the map

S(W0) : C
(
[0, T ];M(R; a+; a−)

)
−→ C

(
[0, T ];M(R; a+; a−)

)
,

µ̃ −→ S(W0)µ̃ ,

where, for all Borel sets A ⊂ R,

[S(W0)µ̃]t (A) =

∫
R
P µ̃t (y,A)W0(dy).

Itô’s formula implies that S(W0)µ̃ satisfies, for any function f in C2
K(R),


d

dt

(∫
R
f(y) [S(W0)µ̃]t (dy)

)
=

(∫
R

1

2
σ2f ′′(y) [S(W0)µ̃]t (dy)

)
+

(∫
R
V µ̃(t, y)f ′(y) [S(W0)µ̃]t (dy)

)
,

[S(W0)µ̃]0 = W0 .

(A.1)

Then, one can show that S(W0) is a contraction on C
(
[0, T ];M(R; a+; a−)

)
.

From (A.1), one deduces that the fixed point of S(W0), W ε = {W ε
t }t∈[0,T ], is the

unique solution of the regularized problem: see [19] for details.
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