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CONSTRUCTION OF HIGH-RANK ELLIPTIC CURVES

WITH A NONTRIVIAL TORSION POINT

KOH-ICHI NAGAO

Abstract. We construct a family of infinitely many elliptic curves over Q with
a nontrivial rational 2-torsion point and with rank ≥ 6, which is parametrized
by the rational points of an elliptic curve of rank ≥ 1.

1. Introduction

The problem of constructing high-rank elliptic curves over Q with a nontrivial
torsion point has been studied by several people. Among them, Kretschmer [1]
found an example of rank ≥ 10 and Zimmer and Schneiders [6] found two examples
of rank ≥ 11. Regarding the problem of constructing infinitely many such curves,
Mestre [3] found elliptic curves of the form y2 = x3 + kx (where (0,0) is a 2-torsion
point) with rank ≥ 4. In this note, we show the following.

Theorem 1. There are infinitely many elliptic curves over Q with a nontrivial
2-torsion point and with rank ≥ 6.

2. The curve Y 2 = aX4 + bX2 + c

In this note, high-rank elliptic curves of the form Y 2 = aX4 +bX+c are treated.
First, we show that curves of this form have nontrivial 2-torsion points.

Lemma 2.1. Let E : Y 2 = aX4 + bX2 + c be a curve of genus one over a field
K. Assume that E has a K-rational point (x, y) and regard E as an elliptic curve
whose group structure is given by (x, y) as origin. Then one has 2(−x,−y) = 0.

Sketch of the proof. We denote the two points at infinity on E by ∞ and ∞′.
More precisely, ∞ and ∞′ are written as (0,

√
a), (0,−

√
a), respectively, on the

dual model of E given by the equation Y 2 = cX4 + bX2 + a. Then we have
(1) 2∞− 2∞′ = div(−Y +

√
aX2 + b

2
√
a
) ∼ 0,

(2) (x, y) + (x,−y)−∞−∞′ = div(X − x) ∼ 0,
(3) (x,−y) + (−x,−y)− 2∞ = div(Y +

√
aX2 − y +

√
ax2) ∼ 0,

where the symbol ∼ means the relation of rational equivalence class of divisors. By
eliminating (x,−y) from (2) and (3), we have

(−x,−y)− (x, y) ∼ ∞−∞′,
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and hence we obtain

2(−x,−y)− 2(x, y) ∼ 2∞− 2∞′ ∼ 0,

which completes the proof.

In §3, we will construct an elliptic curve overQ(T ) of the form E : Y 2 = a(T )X4+
b(T )X2 + c(T ), which contains at least six Q(T )-rational points P1,...,P6. Further,
we consider E as a curve defined over the function field Q(C), where C is the curve
defined by the equation S2 = a(T ). So the two points ∞ and ∞′ at infinity of E
become Q(C)-rational points and we can choose the point ∞ as the origin. We
know the point ∞′ is a nontrivial 2-division point, and we can use all six points
P1,...,P6 to obtain independent points. It is remarked that a rational point p = (t, s)
on the curve C gives rise to an elliptic curve over Q, which is obtained from E by
the specialization (T, S)→ (t, s). Thus, if C has infinitely many rational points, we
can obtain infinitely many elliptic curves over Q with a nontrivial 2-torsion point
and rank ≥ 6.

3. Construction

For any 6-tuple A = (a1, a2, a3, a4, a5, a6) ∈ A6(Q(T )), let

pA(X) = (X2 − a2
1)(X2 − a2

2)(X2 − a2
3)(X2 − a2

4)(X2 − a2
5)(X2 − a2

6) ∈ Q(T )[X ].

Then we see easily that there are uniquely determined (up to the signature of rA)
polynomials gA(X), rA(X) ∈ Q(T )[X ] satisfying deg gA(X) = 6, deg rA(X) ≤ 4
and pA(X) = gA(X)2 − rA(X) . (We note that gA(X) and rA(X) are contained
in Q(T )[X2].) In this note, we only treat the case when deg rA(X) is 4 and the
equation rA(X) = 0 has no double root. Then the curve Y 2 = rA(X) is an elliptic
curve over Q(T ), which is denoted by EA, and contains the six Q(T )-rational points
Pi = (ai, gA(ai)) (i = 1, ..., 6).

By Lemma 2.1, we see that EA is an elliptic curve over Q(T ) with nontrivial
2-torsion points since rA(X) is an element of Q(T )[X2]. When A is of the form
(±T + α1, ...,±T + α6) (αi ∈ Q), the coefficient of X4 in rA(X) seems to be
(however we cannot prove it) a quartic polynomial of T , which will be important
for our purpose.

Thus we consider the case A = (T + 1, T + 2, T + 3,−T + 5,−T + 6,−T + 9).
Then the equation of E = EA is written as

Y 2 = 4((−311T 4 − 2814T 3 + 58104T 2− 239744T + 297024)X4

+ (622T 6 − 1848T 5 + 2380T 4 − 90410T 3− 6696T 2 + 2080960T − 3928704)X2

− 311T 8 + 4662T 7 − 4288T 6 − 171446T 5 + 410752T 4

+ 2203272T 3− 5965776T 2− 10364480T + 28872256)

and Pi are as follows:

P1 = (T + 1, 2(−200T 3 + 711T 2 + 1512T − 5024)),
P2 = (T + 2, 4(−73T 3 + 192T 2 + 714T − 2116)),
P3 = (T + 3, 2(12T 3 + 323T 2 + 304T − 4192)),
P4 = (−T + 5, 2(316T 3 − 3165T 2 + 10080T − 10784)),
P5 = (−T + 6, 4(159T 3 − 1832T 2 + 6902T − 8252)),
P6 = (−T + 9, 2(−300T 3 + 5411T 2 − 27128T + 40736)).
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Let us consider the elliptic curve

C : S2 = −311T 4 − 2814T 3 + 58104T 2 − 239744T + 297024

in the (T, S)-plane.

Lemma 3.1. The curve C contains infinitely many rational points.

Proof. By a direct calculation, we see that C has rational points whose T -
coordinates are −4,−8/3,−13/4,16/5,24/5,20/7,37/8, 29/12,43/12,32/13,232/47,
272/79,−230/113. By the theorem of Mazur [2], stating that the number of torsion
points of an elliptic curve over Q is ≤ 16, we see that C has infinitely many rational
points since C has more than 26 rational points.

Proposition 3.1. The points P1, P2, ..., P6 are independent Q(C)-rational points
when the group structure is given by ∞ as origin.

We give the proof of Proposition 3.1 in the next section. Now, by a theorem of
Silvermann [5, Theorem 20.3], which says the specialization map is injective for all
but finitely many points p ∈ C, and by Proposition 3.1, we obtain easily that the
rank of curves which are obtained by the specialization from E by a rational point
p ∈ C(Q) is ≥ 6 for all but finitely many cases. Hence we get Theorem 1.

4. Independence of rational points

To prove Proposition 3.1, since the specialization map is always a homomor-
phism, we have only to show that there exists a rational point p on C such
that P1,..., P6 are specialized to six independent rational points on the elliptic
curve obtained by the specialization from E by p. We claim this is the case for
p = (272/79, 11067/26). Now, we consider the case that E∗ is the elliptic curve
obtained by the specialization (T, S) → (272/79, 11067/26) from E . Let the p∗i ’s
be the rational points on E∗ obtained by the above specialization from Pi. The
equation of E∗ and the rational points p∗i ’s are written as follows (for simplicity,
we change the coordinate (1008/38950081) · Y to Y ):

E∗ : Y 2 = 10817567046049X4− 339753752030234X2 + 3686523169893001,

p∗1 = (351/79, 34570084),

p∗2 = (430/79,−55818951),

p∗3 = (509/79, 90688524),

p∗4 = (123/79,−54096988),

p∗5 = (202/79, 43904487),

p∗6 = (439/79,−59247156).

Lemma 4.1. Let E∗ : Y 2 = a2X4 +bX2+c (a, b, c ∈ K) be an elliptic curve over a
field K. Then E∗ is K-isomorphic to the curve E : Y 2 = X(X2−2bX+ b2−4a2c),
which has a nontrivial rational 2-torsion (0, 0), by the map φ : E∗ → E,

φ(X,Y ) = (−2aY + 2a2X2 + b, 4a2XY − 4a3X3 − 2abX).

(We note that the two points at infinity of E∗ map respectively to the unique
point at infinity and the point of coordinate (0, 0) of E.)

Proof. See Mordell [4, p.77].
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We remark that this lemma gives another proof of the fact that EA has a non-
trivial Q(C)-rational 2-torsion point.

Using Lemma 4.1, we see easily that a Weierstrass model of E∗, which is denoted
by E, and the rational points pi = φ(p∗i ) can be written as follows:

E : Y 2 = X(X2 + 679507504060468X− 44084234209900772519029117440),

p1 = (−140066013780432, 4093620582907949270112),

p2 = (668400902705280,−23931679912802873126400),

p3 = (−38170471955952, 1617755981603108309088),

p4 = (68543386187360,−702002032096036284480),

p5 = (−487106389903140, 8192998933658320758480),

p6 = (718064066419488,−26247951601418953547712).

Now, in order to show the independence of p1, ..., p6 on E, we need notation and
two lemmas. Let E : Y 2 = X3 + aX2 + bX be an elliptic curve over Q. Then E
is 2-isogenous to E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X by the map ψ : E′ → E,
ψ(x, y) = (y2/4x2, y(a2 − 4b − x2)/8x2). Let α : E(Q) → Q∗/Q∗2 be the map
defined by

α(P ) =

 1 ·Q∗2/Q∗2 if P =∞,
b ·Q∗2/Q∗2 if P = (0, 0),
x ·Q∗2/Q∗2 if P = (x, y), P 6=∞, (0, 0),

and α′ : E′(Q)→ Q∗/Q∗2 the map defined by

α′(P ) =

 1 ·Q∗2/Q∗2 if P =∞,
(a2 − 4b) ·Q∗2/Q∗2 if P = (0, 0),
x ·Q∗2/Q∗2 if P = (x, y), P 6=∞, (0, 0).

(We consider Q∗/Q∗2 as a vector space over Z/2Z.)
In the following, we assume that E(Q)tor = E′(Q)tor = {∞, (0, 0)}.

Lemma 4.2. The Q-rank of E is equal to

rankZ/2Z(α(E(Q))) + rankZ/2Z(α′(E′(Q)))− 2.

Proof. See Zimmer [7, Theorem 8.1].

More precisely, we easily obtain the following lemma.

Lemma 4.3. Let G be a subgroup of E(Q). Then the Q-rank of G is greater than,
or equal to, rankZ/2Z(α(G)) + rankZ/2Z(α′(ψ−1(G))) − 2.

We apply Lemma 4.3 to our curve E and the subgroup G = 〈(0, 0), p1, p2, ..., p6〉.
In this case, the equation of E′ is written as

Y 2 = X(X2 − 1359015008120936X+ 638067384914090025583516848784).

We see easily that E(Q)tor = E′(Q)tor = {∞, (0, 0)} by Zimmer [7, Theorem 7.3].
Thus, the assumption of Lemma 4.3 holds.
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By a direct calculation we have

α((0, 0)) = −2 · 5 · 7 · 19 · 47 · 67 · 83 · 139 · 181 ·Q∗2/Q∗2,
α(p1) = −19 · 79 · 83 · 139 ·Q∗2/Q∗2,
α(p2) = 2 · 3 · 5 · 47 · 79 · 83 · 181 ·Q∗2/Q∗2,
α(p3) = −3 · 7 · 19 · 67 · 79 · 181 ·Q∗2/Q∗2,
α(p4) = 2 · 5 · 7 · 19 · 47 · 79 · 139 ·Q∗2/Q∗2,
α(p5) = −3 · 5 · 7 · 47 · 67 · 79 · 83 ·Q∗2/Q∗2.

So they are independent elements in the Z/2Z-vector space Q∗/Q∗2. On the
other hand, let

p′ = (32608658554556738404/169, 185553135139334125323174897696/2197)

be the rational point on E′ such that ψ(p′) = p1 + p2 + p3 + p4 + p5 + p6. Then we
have

α′(p′) = 627169 ·Q∗2/Q∗2,
α′((0, 0)) = 17 · 7103 · 48679 · 627169 ·Q∗2/Q∗2.

So they are independent in Q∗/Q∗2. Using Lemma 4.3, we can now conclude
that p1, ..., p6 are independent points on E, and the proof is complete.

Remark. Using the computer system PARI, we can compute the determinant of
the matrix of height pairings 〈pi, pj〉 (1 ≤ i, j ≤ 6). Since this determinant is
48107.7640..., the points p1, ..., p6 are independent on E, which gives another proof
of Proposition 3.1.
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