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A UNIFYING CONVERGENCE ANALYSIS OF SECOND-ORDER

METHODS FOR SECULAR EQUATIONS

A. MELMAN

Abstract. Existing numerical methods of second-order are considered for a
so-called secular equation. We give a brief description of the most important of
these methods and show that all of them can be interpreted as improvements
of Newton’s method for an equivalent problem for which Newton’s method
exhibits convergence from any point in a given interval. This interpretation
unifies the convergence analysis of these methods, provides convergence proofs
where they were lacking and furnishes ways to construct improved methods.
In addition, we show that some of these methods are, in fact, equivalent. A
second secular equation is also briefly considered.

1. Introduction

Modifying eigenvalue problems plays a role in several applications. Among these
are, to name just a few, updating the singular value decomposition of matri-
ces (e.g., [4]) and divide and conquer methods, based on the important paper
by J.J.M. Cuppen ([6]), for the singular value decomposition of matrices ([1])
and for eigenproblems for symmetric matrices (e.g., [6, 7, 13, 16, 17, 18]). In
these applications, a so-called secular equation appears ([14]). Related secular
equations are found when solving constrained least squares type problems (e.g.,
[5, 9, 11, 12, 15, 19, 23, 24, 25]). A similar equation appears in invariant sub-
space computations ([10]), or when using the “escalator method” for computing
the eigenvalues of a matrix ([8, pp. 183–192]). In this paper we consider some
general approximation results and apply them to analyze numerical methods for
the solution of two types of secular equations, the first of which is given by

1 + σ
n∑
j=1

ζ2
j

dj − λ
= 0 .(1)

All quantities are assumed real. If the ζj ’s are all nonzero and the dj ’s are distinct,
then this equation in λ has n solutions separated by the n values dj . We assume
without loss of generality that σ > 0. Should this not be the case, then dj can
be replaced by −dn−j+1 and σ by −σ. Such an equation is obtained, e.g., when
computing the eigenvalues of the matrix D + σzzT , where z is a real vector with
components ζj and D a real diagonal matrix with diagonal entries dj . Since equa-
tion (1) has poles, Newton’s method for its solution is not appropriate and other
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methods, based on nonlinear first-order approximations have been proposed. The
most widely used method seems to be the one in [3]. Recently, different and more
efficient methods were developed in [21] and in [22]. These methods all exhibit a
quadratic order of convergence.

We use a few basic results to show that all these methods can be interpreted as
improvements of Newton’s method for an equivalent problem for which Newton’s
method converges from any point in a given interval. This not only unifies the
convergence analysis of these methods, it also provides convergence proofs where
none existed before, shortens existing ones and furnishes ways of improving some of
these methods. In particular, we show how an approximation, deemed inadequate
in [21], can nevertheless be used to yield a better method. In addition, we show
that some of the methods appearing in [21] are equivalent to methods in [22].
We do not go into implementation details, such as when certain methods should
be preferred over others, or initial points and stopping rules, as this was rather
extensively covered in [21]. We also do not consider higher-order methods such as,
e.g., “Gragg’s zero finder” in [2].

The second type of secular equation we consider is given by
n∑
j=1

ζ2
j

(λ− dj)2
− s2 = 0 ,(2)

where the unknown is, again, λ. All quantities are real and d1 < d2 < · · · < dn.
This equation appears, e.g., in [12] and [24]. We have largely used the same notation
as in [12]. This equation needs to be solved for the smallest root, which lies to the
left of d1. A problem of this kind is encountered, e.g., when computing the smallest
λ such that bT (A − λI)−2b = α2 is satisfied, with α a real number, b a real vector
and A a real symmetric matrix with known eigenvalues. We again use our basic
results to prove the convergence of a method, proposed in [12, 24, 25]. Other types
of secular equations can be treated similarly.

In §2 preliminary results are presented, which are used in §3 to obtain our main
results concerning equation (1). In §4 we consider equation (2). All quantities in
this paper are real.

2. Preliminary results

Lemma 2.1. Let f(t) be a strictly positive and twice continuously differentiable
real function, defined on some interval I ⊂ R. With ρ a nonzero integer, consider
the real function of t: a(t + b)ρ, where the parameters a and b are such that it
interpolates f up to first order at a point t̄ ∈ I with f ′(t̄ ) 6= 0. Then a(t + b)ρ =
(L(t))ρ, where L(t) denotes the linear Taylor approximation to f1/ρ(t) at t = t̄.
Moreover, if

1− ρ
ρ

f ′
2
(t) + f(t)f ′′(t)

is positive (negative) for all t ∈ I, then for all t such that a(t + b)ρ ≥ 0, the
interpolant lies below (above) the function f .

Proof. We obtain from the interpolation requirements that a(t̄ +b)ρ = f(t̄ ). Keep-
ing in mind that f(t̄ ) > 0, we therefore have that a1/ρ is well defined. Now, since
a(t+ b)ρ interpolates f(t) up to first order, εa1/ρ(t + b) interpolates f1/ρ(t) up to
first order also, where, depending on the situation, ε = ±1 (ε appears only for ρ
even). This means that a(t + b)ρ = (εa1/ρ(t + b))ρ = (L(t))ρ, where L(t) denotes
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the linear Taylor approximation to f1/ρ(t) at t = t̄ . This proves the first part of

the lemma. We now compute
(
f

1
ρ

)′′
:

(
f

1
ρ

)′′
=

(
1

ρ
f

1
ρ−1f ′

)′
=

1

ρ
f

1
ρ−2

(
1− ρ
ρ

f ′
2

+ ff ′′
)
.

This means, for ρ > 0, that if for all t ∈ I :(
1− ρ
ρ

f ′
2
(t) + f(t)f ′′(t)

)
≥ 0 ,

then f
1
ρ (t) is a convex function. The linear approximation at a point t̄ consequently

lies below it, i.e., L(t) ≤ f 1
ρ (t), and therefore, as long as L(t) ≥ 0, we have (L(t))ρ ≤

f(t). The opposite is true for a concave function. We proceed analogously for ρ < 0,

where now L(t) ≥ f
1
ρ (t) implies (L(t))ρ ≤ f(t). This proves the lemma.

Remark. When ρ is odd, Lemma 2.1 is easily adapted for negative functions as well.

Notation. When there can be no misunderstanding, we will denote the linear Taylor
approximation to a function f at a point t = t̄ by Lf .

Lemma 2.2. In this lemma, all interpolations are assumed to be with respect to
the same point t = t̄ .

(i) If w(t) and f(t) are real and continuously differentiable functions of t with
w(t) nonzero, and a and b are such that a+ b

w(t) interpolates f(t) up to first order,

then b+ aw(t) interpolates w(t)f(t) up to first order.
(ii) The following holds for the linear Taylor approximations of continuously

differentiable real functions f and g:

L(f+g) = Lf + Lg, Lfg = LfLg = LgLf = LLfLg .

(iii) If Lfg = 1, then Lf ≡ L1/Lg .

Proof. The proof of parts (i) and (ii) is straightforward. For part (iii), we have
LfLg = 1 and the interpolation was carried out at the point t = t̄ , which means

that f(t̄ ) = (Lg(t̄ ))
−1

. It also means that (fLg)
′(t̄ ) = 0. This gives

f ′(t̄ ) = −
f(t̄ )L′g(t̄ )

Lg(t̄ )
=

(
1

Lg

)′
(t̄ ) .

This concludes the proof.

Lemma 2.3. The function

f(t) =
n∑
j=1

αj(t+ βj)
ρ ,

with ρ a nonzero integer and the αj ’s nonnegative, satisfies

1− ρ
ρ

f ′
2
(t) + f(t)f ′′(t) ≥ 0 ,

for all t such that ∀j : t+ βj ≥ 0.



336 A. MELMAN

Proof. Let us first compute f ′ and f ′′ :

f ′(t) = ρ
n∑
j=1

αj(t+ βj)
ρ−1, f ′′(t) = ρ(ρ− 1)

n∑
j=1

αj(t+ βj)
ρ−2 .

We then have

ρ− 1

ρ
f ′

2
(t) = ρ(ρ− 1)

 n∑
j=1

αj(t+ βj)
ρ−1

2

= ρ(ρ− 1)

 n∑
j=1

√
αj(t+ βj)

ρ
2
√
αj(t+ βj)

ρ
2−1

2

.

We note that 1
ρ(ρ − 1) and ρ(ρ − 1) are nonnegative when ρ is a nonzero integer.

Applying the Cauchy-Schwarz inequality yields

ρ− 1

ρ
f ′

2
(t) ≤ ρ(ρ− 1)

n∑
j=1

(√
αj(t+ βj)

ρ
2

)2 n∑
j=1

(√
αj(t+ βj)

ρ
2−1
)2

= f(t)f ′′(t) .

This completes the proof.

3. Secular equation 1

We now consider the secular equation from [3], which is equation (1) in our
introduction. To compute the ith root (1 ≤ i < n), the transformation of variables

λ = di + σt is carried out, which, with δj =
dj−di
σ , yields the following rootfinding

problem on (0, δi+1) :

f(t)
4
= 1 +

i∑
j=1

ζ2
j

δj − t
+

n∑
j=i+1

ζ2
j

δj − t
= 0 ,

where

δ1 < · · · < δi = 0 < δi+1 < · · · < δn .

This transformation is not essential to our results. On the interval (0, δi+1), f is
monotonically increasing and has simple poles at t = 0 and t = δi+1. In what
follows, δi+1 will be denoted by δ. Note that i is fixed and 1 ≤ i < n. We do not
consider the case i = n, as it can be treated analogously and is simpler (there is
only one pole). We define, as in [3],

ψ(t) =
i∑

j=1

ζ2
j

δj − t
, φ(t) =

n∑
j=i+1

ζ2
j

δj − t
·
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The following easily verified properties hold for all t ∈ (0, δ) :

(1) ψ(t) < 0, ψ′(t) > 0, ψ′′(t) < 0 ;

(2) φ(t) > 0, φ′(t) > 0, φ′′(t) > 0 ;

(3) ((δ − t)ψ(t))
′′

= (δ − t)ψ′′(t)− 2ψ′(t) < 0 ;

(4) ((δ − t)φ(t))
′′

=

 n∑
j=i+1

(δ − t)ζ2
j

δj − t

′′ =

 n∑
j=i+1

(
ζ2
j +

(δ − δj)ζ2
j

δj − t

)′′ < 0 ;

(5) (tφ(t))
′′

= tφ′′(t) + 2φ′(t) > 0 ;

(6) (tψ(t))
′′

=

 i∑
j=1

tζ2
j

δj − t

′′ =

 i∑
j=1

(
−ζ2

j +
δjζ

2
j

δj − t

)′′ > 0 ;

(7) (δ − t)f(t) and tf(t) are concave and convex functions, respectively .

Notation. Throughout the remainder of this section we will consider i fixed, and
the solution on (0, δ) of the resulting problem f(t) = 0 will be denoted by t∗.

3.1. The BNS1 and BNS2 methods. The method by Bunch, Nielsen and
Sorensen in [3], which will henceforth be called the “BNS1 method”, is based on
local nonlinear approximations, where ψ(t) is interpolated up to first order by
p(q − t)−1 and φ(t) by r + s(δ − t)−1. The constants p, q, r and s are determined
by the interpolation requirements at some point t̄ ∈ (0, t∗], where f has a negative
function value. The new iterate is then obtained by solving

1 +
p

q − t + r +
s

δ − t = 0 .

It is straightforward to show that p, s > 0 and q < 0 (see also [3]). This means that
the approximating function is strictly increasing on (0, δ). Since its value is negative
at t̄ and tends to +∞ at δ−, it has exactly one root in (0, δ). The convergence as
well as the quadratic order of convergence of this method were proved in [3].

An analogous method can be devised (see [21]) by interpolating φ with a ra-
tional function of the type that was used to interpolate ψ and vice versa, i.e., the
interpolant becomes

1 + r̄ +
s̄

t
+

p̄

q̄ − t ·

The method based on this approximation will be called the “BNS2 method”. Con-
vergence results can be proved analogously to the the proof in [3] for the BNS1
method.

We now use the results from §2 to present an alternative, and quite a bit shorter,
convergence proof. This proof’s distinctive feature is that it shows that both meth-
ods can be interpreted as an improved Newton method for an equivalent problem,
for which Newton’s method converges from any point in a suitably chosen interval.

Theorem 3.1. The BNS1 and BNS2 methods monotonically converge to the root
t∗ of f(t) on (0, δ) at least as fast as Newton’s method applied to computing the
(same) root on (0, δ) of (δ − t)f(t) and tf(t), respectively, and starting from an
initial point in (0, t∗] and [t∗, δ), respectively.

Proof. The theorem will be proved for the BNS1 method. The proof for the BNS2
method is very similar and we will only outline it. We start by deriving a few
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inequalities on (0, δ). From part (i) in Lemma 2.2 we know that if r + s(δ − t)−1

interpolates φ(t) up to first order at t = t̄ , then s+ r(δ− t) interpolates (δ− t)φ(t)
up to first order, i.e.,

r + s(δ − t)−1 =
s+ r(δ − t)

δ − t =
L∆φ(t)

δ − t ,

where ∆(t) = δ − t. From part (ii) in Lemma 2.2 we have that L∆ψ ≡ L∆Lψ .
We also have that ((δ − t)Lψ(t))′′ = −2L′ψ(t) = −2ψ′(t̄ ) < 0, i.e., the function

(δ − t)Lψ is concave. Therefore,

L∆ψ(t) = L∆Lψ(t) ≥ (δ − t)Lψ(t) .(3)

Applying part (iii) in Lemma 2.2 with f = ψ and g = 1/ψ yields Lψ ≡ L(L1/ψ)−1 .

We also observe that Lemma 2.1 holds for −ψ with ρ = −1. Since p(t− q)−1 is the
approximation to −ψ(t), we have (L1/ψ(t))−1 = p(q−t)−1. As we mentioned before,

p > 0 and q < 0, which means that (L1/ψ(t))−1 is concave on (0, δ). Therefore,

Lψ(t) = L(L1/ψ)−1(t) ≥
(
L1/ψ(t)

)−1
.(4)

We now use (3) and (4) to obtain the following for t ∈ (0, δ) :

L∆f(t) = δ − t+ L∆ψ(t) + L∆φ(t) ≥ δ − t+ (δ − t)Lψ(t) + L∆φ(t)

≥ δ − t+
δ − t
L1/ψ(t)

+ L∆φ(t) = (δ − t)
(

1 +
1

L1/ψ(t)
+
L∆φ(t)

δ − t

)
·(5)

With ρ = −1, Lemma 2.1, together with Lemma 2.3, yields −(L1/ψ(t))−1 ≤ −ψ(t).
Also, (δ − t)φ(t) is a concave function, and therefore L∆φ(t) ≥ (δ − t)φ(t). As a
consequence, inequality (5) implies for t ∈ (0, δ)

L∆f(t)

δ − t ≥ 1 +
1

L1/ψ(t)
+
L∆φ(t)

δ − t ≥ f(t) ,(6)

or
L∆f(t)

δ − t ≥ 1 +
p

q − t + r +
s

δ − t ≥ f(t) .

We observe that L∆f(t) and
L∆f(t)
δ−t have the same root and that f(t) < 0 for

t ∈ (0, t∗), implying (∆f)′(t) = −f(t) + (δ − t)f ′(t) > 0. We also know from the
definition of the method that the interpolating function has exactly one root in
(0, δ). Therefore, the meaning of (6) is that this method is at least as fast as New-
ton’s method for the equivalent (i.e., having the same root) problem (δ− t)f(t) = 0
on (0, δ). Since this is a concave and increasing function for t ∈ (0, t∗], monotonic
convergence and second-order convergence are immediate from any starting point in
(0, t∗] (see, e.g., [20]). For the BNS2 method the appropriate functions are convex
instead of concave (see properties (5) and (6)). This yields for t ∈ (0, δ)

Ltf (t)

t
≤ 1 +

Ltψ(t)

t
+

1

L1/φ(t)
≤ f(t) ,(7)

or
Ltf(t)

t
≤ 1 + r̄ +

s̄

t
+

p̄

q̄ − t ≤ f(t) .

For t ∈ (t∗, δ) : f(t) > 0, and therefore (tf)′(t) = f(t) + tf ′(t) > 0. The same
conclusions can be drawn as for the BNS1 method. This concludes the proof.
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Remark. We implicitly use the fact that one iteration of Newton’s method, in the
situation that it is applied here, will yield a better approximation to the root the
closer the starting point lies to that root. The reason for this is the convexity or
concavity (whichever applies) of the functions involved. The same is true for the
BNS methods and the fixed weight methods (which are still to come).

The BNS1 and BNS2 methods are called in [21] “approaching from the left” and
“approaching from the right”, respectively. In [21], a method based on the BNS
methods, “the middle way”, is also considered. It is based on interpolation of ψ(t)
and φ(t) by a + bt−1 and c+ d(δ − t)−1, respectively. Using similar arguments as
in the previous proof, it is not hard to show that

1 +
Ltψ(t)

t
+

1

L1/φ(t)
≤ 1 + a+

b

t
+ c+

d

δ − t ≤ 1 +
1

L1/ψ(t)
+
L∆φ(t)

δ − t ·

We note that for this method convergence cannot be guaranteed unless the starting
point lies close enough to the root. The second-order convergence then follows from
the last inequality and the second-order convergence of the BNS methods.

3.2. Fixed weight and hybrid methods. The methods in this subsection are
taken from [21], where they are stated without convergence proofs. We first briefly
describe these methods before proving their convergence.

(1) The fixed weight 1 method. The function f(t) is interpolated up to first
order at a point t̄ by an expression of the form

r +
s

δ − t −
ζ2
i

t
·

The next iterate is then found, as usual, by computing the root of the interpolant.
It is straightforward to show that the interpolant is strictly increasing on (0, δ) from
−∞ to +∞, regardless of which side of the root t̄ lies on, and therefore that it has
a unique root in (0, δ). As we shall see, the iterates approach the root of f(t) from
the left-hand side. We abbreviate this method as the “FW1 method”.

(2) The fixed weight 2 method. Here, the interpolant is given by a function
of the form

r̄ +
s̄

t
+
ζ2
i+1

δ − t ·

This function has a unique root on (0, δ) and now the iterates approach the root of
f(t) from the right-hand side. We abbreviate this method as the “FW2 method”.

(3) Hybrid methods. The interpolating function in this case is arrived at by
including more than two poles. For example, when three poles are included, the
interpolant could take the form

r̂ +
ŝ

δ − t +
ζ2
i−1

δi−1 − t
− ζ2

i

t
·

Again, the interpolant has a unique root on (0, δ). An alternative interpolant can
be constructed in the same way as in the FW2 method.

We now proceed to prove the convergence of these methods. Let us define

ψ̃ (t) = ψ(t) +
ζ2
i

t =
∑i−1
j=1

ζ2
j

δj−t , φ̂(t) = φ(t) − ζ2
i+1

δ−t =
∑n
j=i+2

ζ2
j

δj−t ,

f̃ (t) = f(t) +
ζ2
i

t = 1 + ψ̃ (t) + φ(t), f̂ (t) = f(t)− ζ2
i+1

δ−t = 1 + ψ(t) + φ̂(t) .

The following theorem then shows the convergence of the fixed weight and hybrid
methods.
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Theorem 3.2. The fixed weight and hybrid methods converge from any point in
(0, δ) to the solution t∗ of f(t) = 0 and their order of convergence is at least
quadratic.

Proof. We start with the FW1 method. Analogously to the proof of Theorem 3.1,
we have the following inequalities, valid on (0, δ) :

L∆f(t) = L∆f̃ (t) + L−∆ζ2
i /t

(t) ≥ L∆f̃ (t) + (δ − t) ζ
2
i

−t

≥ (δ − t)f̃ (t) + (δ − t) ζ
2
i

−t = (δ − t)f(t) .

We have therefore obtained

L∆f (t)

δ − t ≥
L∆f̃ (t)

δ − t −
ζ2
i

t
≥ f(t) ,(8)

or
L∆f(t)

δ − t ≥ r +
s

δ − t −
ζ2
i

t
≥ f(t) .

As in the proof of Theorem 3.1, this proves the convergence of the method starting
from any point in (0, t∗], along with the second-order convergence. Now, let us have
a look at what happens when the starting point belongs to (t∗, δ). We know that
the zero of the interpolant must lie in (0, δ) and because (8) holds, this zero will lie
to the left of the root. From here on, the iterates remain in (0, t∗], and convergence
is monotonic.

The proof for the FW2 method goes along the same lines. In this case one
obtains

Ltf (t)

t
≤
Ltf̂ (t)

t
+
ζ2
i+1

δ − t ≤ f(t) ,

or
Ltf (t)

t
≤ r̄ +

s̄

t
+
ζ2
i+1

δ − t ≤ f(t) .

Convergence from any point in (0, δ) and the quadratic order of convergence follow
as before. Note that the iterates now approach the root from the right-hand side.
The convergence proof for hybrid methods is analogous, and for the interpolant
mentioned as an example in the definition of the method, e.g., one obtains

L∆f(t)

δ − t ≥
L∆f̃ (t)

δ − t −
ζ2
i

t
≥ L∆h(t)

δ − t +
ζ2
i−1

δi−1 − t
− ζ2

i

t
≥ f(t) ,

where

h(t) = f(t)−
ζ2
i−1

δi−1 − t
+
ζ2
i

t
,

or
L∆f(t)

δ − t ≥ r +
s

δ − t −
ζ2
i

t
≥ r̂ +

ŝ

δ − t +
ζ2
i−1

δi−1 − t
− ζ2

i

t
≥ f(t) .

This shows that this particular hybrid method is an improvement over the FW1
method, which concludes the proof.

The following theorem shows that using a rational approximation as in Lemma
2.1 improves the fixed weight methods, in spite of the fact that in [21] such an ap-
proximation was considered to be inadequate. Analogously, a similar improvement
can be obtained for the hybrid methods.
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Theorem 3.3. Interpolating f̃ (f̂) as in the BNS1 (BNS2 ) method improves the
FW1 (FW2 ) method.

Proof. We prove the theorem for the FW1 method and, as it is analogous, only
outline the proof for the FW2 method. We have from (8)

L∆f(t)

δ − t ≥
L∆f̃ (t)

δ − t −
ζ2
i

t
·(9)

Now, because ψ̃ has similar properties as ψ, inequality (6) still holds with ∆f

replaced by ∆f̃ , ψ replaced by ψ̃ and f replaced by f + ζ2
i /t. This gives

L∆f̃ (t)

δ − t ≥ 1 +
1

L1/ψ̃ (t)
+
L∆φ(t)

δ − t ≥ f(t) +
ζ2
i

t
·(10)

Inequalities (9) and (10) therefore yield

L∆f(t)

δ − t ≥
L∆f̃ (t)

δ − t −
ζ2
i

t
≥ 1 +

1

L1/ψ̃ (t)
+
L∆φ(t)

δ − t −
ζ2
i

t
≥ f(t) .

This completes the proof for the FW1 method. For the FW2 method, one obtains

Ltf(t)

t
≤
Ltf̂ (t)

t
+
ζ2
i+1

δ − t ≤ 1 +
Ltψ(t)

t
+

1

L1/φ̂(t)
+
ζ2
i+1

δ − t ≤ f(t) .

This concludes the proof.

An iterative method, based on the improvement in Theorem 3.3, requires the
solution of a cubic equation. This can be accomplished with, e.g., Newton’s method.
This means that in the hybrid method, where an iterative method has to be used in
any case to find the root of the interpolant, the BNS interpolants should be favored
over the ones in the fixed weight methods.

3.3. Transformation methods. In [22], a transformation of variables of the form
t = 1/w(γ) is used to obtain a convex function for which Newton’s method converges
from any point in a given interval. Such a transformation transforms f(t) into
F (γ) = f(1/w(γ)). Here we consider a particular transformation, w(γ) = γ. For
this transformation one obtains after some algebra

F (γ) = 1 +
n∑
j=1
j 6=i

ζ2
j

δj
− ζ2

i γ +
n∑
j=1
j 6=i

(
ζj
δj

)2

γ − 1
δj

·

The approximation to F at a point γ = γ̄, suggested in [22], is obtained by retaining
the term having 1/δi+1 ≡ 1/δ as a pole and by interpolating the remaining terms
at γ = γ̄ with a linear function (the linear Taylor approximation). It takes the form

a+ bγ +

(
ζi+1

δi+1

)2

γ − 1
δ

·(11)

The monotonic convergence and quadratic order of convergence on (1/δ,+∞) of
this method were proved in [22]. The following theorem shows that this method is
equivalent to the FW2 method. Thus, [22] provides yet another convergence proof.

Theorem 3.4. The transformation method in [22] with w(γ) = γ is equivalent to
the FW2 method.
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Proof. All interpolations are implicitly understood to be with respect to the same
point γ = γ̄. The function in (11) can be rewritten as(

a−
ζ2
i+1

δ

)
+ bγ +

ζ2
i+1

δ − 1
γ

·

With r = a− ζ2
i+1/δ and s = b, the interpolant takes the form

r + sγ +
ζ2
i+1

δ − 1
γ

·(12)

Since r and s are such that r + sγ interpolates the function

−ζ2
i γ +

n∑
j=1

j 6=i,i+1

ζ2
j

δj − 1
γ

up to first order, r + st−1 must also interpolate up to first order the function

−ζ
2
i

t
+

n∑
j=1

j 6=i,i+1

ζ2
j

δj − t
·

Substituting this back into (12) and setting t = 1/γ in the last term yields exactly
the interpolant used in the FW2 method.

The idea of the hybrid method is also suggested in [22]. However, here the form
of the approximation to the transformed function facilitates the computation of
its root if more poles are included, as it is always convex and decreasing, so that
Newton’s method exhibits guaranteed convergence from any feasible point to the
left of the (transformed) root. We stress that this is not true for the hybrid methods
in [21].

The FW1 method is similarly equivalent to interpolating F (γ) with r̄ +
s̄(γ − 1/δ)−1− ζ2

i γ and the convergence of this method can be proved analogously.

4. Secular equation 2

We now briefly consider the following secular equation :
n∑
j=1

ζ2
j

(t− dj)2
− s2 = 0 ,(13)

with s a given constant and d1 < d2 < · · · < dn. This is equation (2) from the
introduction, where, for consistency, we have used t instead of λ to denote the
variable. This equation needs to be solved for the smallest root, which lies to the
left of d1. Let us define

h(t) =
n∑
j=1

ζ2
j

(t− dj)2
·

The method proposed for this problem in [12, 23, 25] interpolates h(t) up to first
order with the rational function a(t − b)−2. The convergence properties of the
iterative method based on this interpolant, are given in the following theorem.

Theorem 4.1. The iterative method for equation (13), based on the successive
roots of the first-order interpolant a(t − b)−2 − s2, converges to t∗ < d1 from any
initial point in [t∗, d1).
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Proof. From Lemma 2.1, with ρ = −2, the interpolant a(t − b)−2 can be written
as (Lh−1/2(t))−2. Since this function interpolates h(t) up to first order, Lh−1/2(t)
interpolates h−1/2(t) up to first order also. Now, since (Lh−1/2(t))−2 − s2 = 0
is equivalent to Lh−1/2(t) − |s|−1 = 0, we obtain the exact same iterates by ap-
plying Newton’s method to the equivalent problem h−1/2(t) − |s|−1 = 0. Since

(h−1/2)′′ = −(1/2)h−5/2(−(3/2)h′2 + hh′′), we have from Lemma 2.3 with ρ = −2
that (h−1/2)′′ < 0 and therefore that h−1/2 is a concave function. It is also easily
verified that h−1/2(t) is decreasing for t ∈ [t∗, δ1). Therefore, Newton’s method
converges for h−1/2(t) − |s|−1 = 0 from any point in [t∗, δ1) (see, e.g., [20]), and
therefore our method converges likewise on the same interval with a quadratic order
of convergence.

A similar proof appears in [24] and [25], but we have included this proof never-
theless as a further illustration of our techniques.
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