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AN ANALYSIS OF A CELL-VERTEX

FINITE VOLUME METHOD FOR A

PARABOLIC CONVECTION-DIFFUSION PROBLEM

WEN GUO AND MARTIN STYNES

Abstract. We examine a cell-vertex finite volume method which is applied
to a model parabolic convection-diffusion problem. By using techniques from
finite element analysis, local errors away from all layers are obtained in a
seminorm that is related to, but weaker than, the L2 norm.

1. Introduction

The cell-vertex finite volume method is a commonly used discretization scheme
for conservation laws. It has been highly successful in modelling flows in aerody-
namics. Since the method fits very naturally with convection problems, it has ad-
vantageous properties for convection-diffusion problems. Nevertheless, all analyses
for cell-vertex methods have been carried out either for pure convection problems
(see, e.g., Morton and Süli [10], Süli [15, 16] and Morton and Stynes [9]), or for
convection-diffusion two-point boundary value problems (see, e.g., Mackenzie and
Morton [8] and Morton and Stynes [9]). So far, there has been no similar analysis
for a parabolic convection-diffusion problem in the literature.

In this paper, we examine a cell-vertex finite volume method when applied to
the following model time-dependent convection-diffusion problem:

Lu(x, t) ≡ −εuxx + aux + bu+ rut = f(x, t) ∀(x, t) ∈ Ω,(1.1)

u(0, t) = u(1, t) = 0 for 0 < t ≤ T,(1.2)

u(x, 0) = u0(x) for 0 ≤ x ≤ 1,(1.3)

where 0 < ε� a and Ω = (0, 1)× (0, T ]. For simplicity, we assume that a, b and r
are constants with

a > 0, b > 0 and r > 0.(1.4)

We also assume that f ∈ L2(Ω) and u0 ∈ L2(0, 1).
The conditions (1.1) – (1.4) define a time-dependent convection-diffusion prob-

lem. Problems of this type arise, for example, in the modelling of steady and
unsteady viscous flow problems with large Reynolds numbers (see Peaceman and
Rachford [13] and Van Dyke [17]), convective heat transport problems with large
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Peclet numbers (see Jakob [6]), oil reservoir simulation (see Ewing [4]), radioac-
tive corrosion in the water cycles of an atomic reactor, adsorption processes in gas
pipelines, spread of medicaments with the blood circulation or of plumes of poi-
sonous industrial wastes in river systems (see Baumert et al. [2]), petroleum reser-
voir mechanics (see Price and Varga [14]) and electromagnetic field problems in
moving media (see Hahn [5]). In (1.1), ε is a diffusion coefficient and the function
a is a flow rate.

The differential operator in (1.1) is parabolic, but for small ε its behavior might
be considered as mixed parabolic-hyperbolic. The solution u(x, t) will in general
vary rapidly in a layer region of width O(ε ln(1/ε)) at boundary x = 1, even for
smooth initial-boundary data. This layer region is called a boundary layer. The
boundary layer phenomenon has been discussed by many authors since Prandtl’s
original work in 1905; see, e.g., Vishik and Lyusternik [18], Eckhaus and de Jager
[3], Nayfeh [11] and O’Malley [12]. It causes serious difficulties when solving (1.1)
– (1.4) numerically.

An outline of the paper is as follows. In §2 we describe the cell-vertex method
for (1.1) – (1.4) and reformulate it as a finite element method. Section 3 is devoted
to the derivation of a discrete G̊arding inequality that guarantees the existence and
uniqueness of the finite volume solution. Local errors in the l2 seminorm (defined
in §3) are analyzed in §4. (We note that, when restricted to certain piecewise
bilinear trial spaces, this seminorm becomes a norm.) Our analysis indicates that
on a general tensor product mesh, the method is first-order accurate away from
all layers, in the l2 seminorm. We can sharpen this result to local second-order
accuracy in l2, if either ε is very small compared to the mesh diameter or the mesh
is locally almost uniform.

Throughout the paper, we shall use C to denote a generic positive constant which
is independent of ε and of any mesh used.

2. Description of the cell-vertex scheme

To discretize (1.1) – (1.4), we first define a partition of Ω as follows. For any
pair of positive integers N and M , we consider the arbitrary tensor product grid

Ωh =
{

(xi, tj) ∈ Ω : 0 = x0 < x1 < · · · < xN = 1,

0 = t0 < t1 < · · · < tM = T
}
,

with hi = xi − xi−1, kj = tj − tj−1 and h = maxi,j{hi, kj}. Define the “finite
volume” or “cell” Ki,j by

Ki,j = (xi−1, xi)× (tj−1, tj), for i = 1, . . . , N and j = 1, . . . ,M.

In the finite volume context, the discretization of (1.1) is performed on each cell.
The basic idea is to integrate (1.1) over a cell so that the convection and diffusion
terms are converted into line integrals of normal fluxes along the cell edges, and
then use the trapezoidal rule to approximate the integrals. Thus, letting uh denote



ANALYSIS OF A CELL-VERTEX FINITE VOLUME METHOD 107

the computed solution, for cell Ki,j we set

∫ ∫
Ki,j

f(x, t) dxdt

= −εkj
2

(
uhx(xi, tj)− uhx(xi−1, tj) + uhx(xi, tj−1)− uhx(xi−1, tj−1)

)
+
akj
2

(
uh(xi, tj)− uh(xi−1, tj) + uh(xi, tj−1)− uh(xi−1, tj−1)

)
+
rhi
2

(
uh(xi, tj)− uh(xi, tj−1) + uh(xi−1, tj)− uh(xi−1, tj−1)

)
+
bhikj

4

(
uh(xi, tj) + uh(xi−1, tj) + uh(xi, tj−1) + uh(xi−1, tj−1)

)
.

(2.1)

With the approximation uh(x, t) parameterized by its values at the vertices, this
still leaves two problems to be solved. First, how do we define uhx at the nodes?
There are several ways in which this may be done, but we consider here the so-called
Method A in Mackenzie and Morton [8]. That is, we define

uhx(xi, tj) =
1

hi + hi+1

(
uh(xi+1, tj)− uh(xi−1, tj)

)
,(2.2)

for i = 1, . . . , N − 1, and

uhx(0, tj) =
2

h1

(
uh(x1, tj)− uh(0, tj)

)
− uhx(x1, tj).(2.3)

Similarly to (2.3), one can define uhx(1, tj). This solves the first problem.
The second difficulty is as follows. If we perform the discretization (2.1) on all

cells, we will have a system of NM equations in (N−1)M unknowns, since uh(x, t)
will be prescribed on three sides of Ω by (1.2) and (1.3). We have M equations too
many. To obtain an exact match, we choose upwind control volumes, that is, each
nodal unknown is associated with the cell upwind of it. We do this by discarding
the equations associated with KN,j for j = 1, . . . ,M . We then obtain a system of
equations (2.1) – (2.3), for i = 1, . . . , N − 1 and j = 1, . . . ,M , which has exactly
the same number of unknowns as that of equations. The second problem has been
eliminated.

Finite volume methods are often interpreted as finite difference methods. This
is reflected in the finite difference techniques used to analyze such schemes. For a
scheme such as (2.1) – (2.3), which does not satisfy a discrete maximum principle, it
is difficult to obtain a satisfactory finite difference analysis. Instead, we observe that
the cell-vertex formulation of the finite volume method has a natural interpretation
as a Petrov-Galerkin finite element method. The finite element framework then
affords the possibility of applying finite element techniques to estimate errors in
the finite volume method; see [10, 15, 16, 9].

To reformulate the cell-vertex finite volume scheme (2.1) – (2.3) as a finite ele-
ment method, we first define our trial and test spaces. Set

Uh0 =
{
v ∈ H1(Ω) ∩C(Ω̄) : v(0, t) = v(1, t) = 0 for t ∈ (0, T ],

v is bilinear on each cell K
}
,

Mh =
{
p ∈ L2(Ω) : p is constant on each cell K,

p ≡ 0 on cells KN,j for j = 1, . . . ,M
}
.
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In order to simplify the presentation, we introduce the averaging operators µ, µx
and µt, for i = 1, . . . , N and j = 1, . . . ,M ,

µwi,j =
1

hikj

∫ ∫
Ki,j

w(x, t) dxdt,

µxwi,j =
1

hi

∫ xi

xi−1

w(x, tj) dx,

µtwi,j =
1

kj

∫ tj

tj−1

w(xi, t) dt,

for all w(x, t) for which the right-hand side is defined.

Remark 2.1. One can easily verify that for each v ∈ Uh0 and for i = 1, . . . , N and
j = 1, . . . ,M ,

µvi,j =
1

4
(vi−1,j + vi,j + vi−1,j−1 + vi,j−1)(2.4)

=
1

2
(µxvi,j + µxvi,j−1)(2.5)

=
1

2
(µtvi,j + µtvi−1,j),(2.6)

µ(vx)i,j =
1

hi
(µtvi,j − µtvi−1,j),(2.7)

µ(vt)i,j =
1

kj
(µxvi,j − µxvi,j−1),(2.8)

where vi,j denotes v(xi, tj).
Now the cell-vertex finite volume approximation is defined as follows: find uh ∈

Uh0 satisfying

B̂
(
uh, p

)
= (f, p) ∀p ∈Mh,(2.9)

〈uh(·, 0), p+〉 = 〈u0, p+〉 ∀p ∈ Mh,(2.10)

where (·, ·) and 〈·, ·〉 are the usual L2(Ω) and L2(0, 1) inner products,

p+(x) = lim
t→0+

p(x, t),

and we set for any (v, p) ∈ H1(Ω)×Mh,

B̂(v, p) =− ε
M∑
j=1

N−1∑
i=1

kj µpi,j {µ̂t(vx)i,j − µ̂t(vx)i−1,j}

+ (avx + rvt + bv, p).

(2.11)

Here we define, for j = 1, . . . ,M and v ∈ C(Ω),

µ̂t(vx)i,j =


2

hi+hi+1
(µvi+1,j − µvi,j) if i = 1, . . . , N − 1,

2
h1
µtv1,j − µ̂t(vx)1,j if i = 0.

(2.12)

Remark 2.2. For the discretization of the diffusion term in B̂(v, p), we do not need
nodal values of vx, just its integral along two sides x = xi−1 and x = xi of Ki,j.
For i = 1, . . . , N − 1, µ̂t(vx)i,j is defined by associating µvi,j with the cell center,
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then taking the obvious divided difference. For i = 0, we define µ̂t(vx)i,j by an
extrapolation. It is easy to check that (2.1) – (2.3) is equivalent to (2.9) – (2.12).

In the next section, we shall demonstrate existence and uniqueness of the finite
volume solution.

3. Stability and convergence

We begin our analysis of the cell-vertex finite volume scheme (2.9) – (2.12) by
establishing the stability of the method in some appropriate mesh-dependent norms,
which in turn implies the existence and uniqueness of the finite volume solution uh.

We introduce the following mesh-dependent norms:

|v|l2(Ωh) =


M∑
j=1

N−1∑
i=1

hikj |µvi,j |2


1/2

,

|v|l2(∂+Ωh) =


M∑
j=1

kj |µtvN−1,j |2 +
N−1∑
i=1

hi|µxvi,M |2


1/2

,

|v|l2(∂−Ωh) =

{
N−1∑
i=1

hi|µxvi,0|2
}1/2

,

|vx|l̂2(Ωh) =


M∑
j=1

N−1∑
i=1

hi + hi+1

2
kj |µ̂t(vx)i,j |2 +

h1

4

M∑
j=1

kj |µ̂t(vx)0,j |2


1/2

,

for all v(x, t) for which the right-hand sides are defined.

Remark 3.1. We note that these norms are seminorms on L2(Ω). If | · |l2(Ωh) is

restricted to the subspace of Uh0 defined by{
v ∈ Uh0 : v(x, 0) = 0 for 0 ≤ x ≤ 1

}
,

then it is a norm. The first three of these seminorms are similar to those used in
Süli [16]. The last seminorm is introduced here to deal with the diffusion term.

Define a projection R : Uh0 →Mh by

Rv =

{
µvi,j on Ki,j, for i = 1, . . . , N − 1 and j = 1, . . . ,M,
0 otherwise.

The stability of the finite volume method (2.9) – (2.12) is proved by the following
discrete G̊arding inequality.

Theorem 3.1. Assume that ε ≤ a(hN−1 + hN). Then for each v ∈ Uh0 ,

B̂(v,Rv) ≥ ε

2
|vx|2l̂2(Ωh)

+ b|v|2l2(Ωh)

+
1

4
min{a, r}|v|2l2(∂+Ωh) −

r

2
|v|2l2(∂−Ωh).
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Proof. Recall the definition (2.11) of B̂(·, ·). For each v ∈ Uh0 ,

B̂(v,Rv) = −ε
M∑
j=1

N−1∑
i=1

kj µvi,j {µ̂t(vx)i,j − µ̂t(vx)i−1,j}

+ (avx + rvt + bv,Rv)

≡ I1 + I2.(3.1)

First, by summation by parts,

I1 = ε
M∑
j=1

kj
{
− µvN−1,j µ̂t(vx)N−1,j + µv1,j µ̂t(vx)0,j

+
N−2∑
i=1

(µvi+1,j − µvi,j)µ̂t(vx)i,j
}
.

(3.2)

Now we have

−µvN−1,j µ̂t(vx)N−1,j

= (µvN,j − µvN−1,j)µ̂t(vx)N−1,j − µvN,j µ̂t(vx)N−1,j

=
hN−1 + hN

2
|µ̂t(vx)N−1,j |2 −

1

2
µtvN−1,j µ̂t(vx)N−1,j,

using (2.12), (2.6) and µtvN,j = 0,

≥ hN−1 + hN
4

|µ̂t(vx)N−1,j |2 −
1

4(hN−1 + hN )
|µtvN−1,j |2,

(3.3)

by the arithmetic-geometric inequality

2αβ ≤ α2/q + qβ2

for all q > 0 and all α and β. Similarly, using (2.6) and µtv0,j = 0, we have

µv1,j µ̂t(vx)0,j

=
1

2
µtv1,j µ̂t(vx)0,j

=
h1

4
(µ̂t(vx)0,j + µ̂t(vx)1,j)µ̂t(vx)0,j , by (2.12),

≥ h1

8

(
|µ̂t(vx)0,j |2 − |µ̂t(vx)1,j |2

)
.

(3.4)

Also from (2.12), for i = 1, . . . , N − 2, we obtain

(µvi+1,j − µvi,j)µ̂t(vx)i,j =
hi + hi+1

2
|µ̂t(vx)i,j |2.(3.5)

Substituting (3.3) – (3.5) into (3.2), we get

I1 ≥ ε
M∑
j=1

kj

{
hN−1 + hN

4
| µ̂t(vx)N−1,j |2 −

1

4(hN−1 + hN)
|µtvN−1,j|2

+
h1

8

(
|µ̂t(vx)0,j |2 − |µ̂t(vx)1,j |2

)
+

N−2∑
i=1

hi + hi+1

2
|µ̂t(vx)i,j |2

}
.

(3.6)
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Next, we have

I2 =
M∑
j=1

N−1∑
i=1

hikj µ(avx + rvt + bv)i,j µvi,j

=
M∑
j=1

N−1∑
i=1

{akj (µtvi,j − µtvi−1,j) + rhi (µxvi,j − µxvi,j−1) + bhikjµvi,j}µvi,j ,

by (2.7) and (2.8),

=
a

2

M∑
j=1

kj

N−1∑
i=1

(
|µtvi,j |2 − |µtvi−1,j |2

)
+
r

2

N−1∑
i=1

hi

M∑
j=1

(
|µxvi,j |2 − |µxvi,j−1|2

)
+ b

M∑
j=1

N−1∑
i=1

hikj |µvi,j |2, using (2.5) and (2.6),

=
a

2

M∑
j=1

kj |µtvN−1,j |2 +
r

2

N−1∑
i=1

hi
(
|µxvi,M |2 − |µxvi,0|2

)
+ b

M∑
j=1

N−1∑
i=1

hikj |µvi,j |2,

(3.7)

by telescoping and using µtv0,j = 0, for j = 1, . . . ,M .
Hence,

B̂(v,Rv) = I1 + I2

≥ ε

2
|vx|2l̂2(Ωh)

+

(
a

2
− ε

4(hN−1 + hN )

) M∑
j=1

kj |µtvN−1,j |2

+
r

2

N−1∑
i=1

hi|µxvi,M |2 −
r

2
|v|2l2(∂−Ωh) + b|v|2l2(Ωh).

The desired result then follows from the assumption of the theorem.

As a corollary we obtain the following stability result.

Theorem 3.2. Assume that ε ≤ a(hN−1 + hN ). Then (2.9) – (2.12) has a unique
solution uh ∈ Uh0 and

ε
∣∣uhx∣∣2l̂2(Ωh)

+
∣∣uh∣∣2

l2(Ωh)
+
∣∣uh∣∣2

l2(∂+Ωh)

≤ C
{
|f |2l2(Ωh) +

∣∣u0
∣∣2
l2(∂−Ωh)

}
.

(3.8)

Here, C depends only on a, b and r.

Proof. As the existence of a unique solution follows from (3.8), because we are
dealing with a norm in this situation (cf. Remark 3.1), we need only establish
(3.8).

Taking p = Ruh in (2.9) and using the arithmetic-geometric inequality, we obtain

B̂(uh, Ruh) = (f,Ruh)

≤ b

2

∣∣uh∣∣2
l2(Ωh)

+
1

2b
|f |2l2(Ωh).
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Now an appeal to Theorem 3.1 completes the proof.

Theorems 3.1 and 3.2 are in the spirit of results obtained in finite element anal-
yses using standard “inf-sup” machinery; see, e.g., Babuška and Osborn [1] and the
references therein.

As another corollary of Theorem 3.1 we have the following global error bound.

Theorem 3.3. Assume that ε ≤ a(hN−1 +hN ). Let uI be the interpolant from Uh0
to u. Then

ε
∣∣µt(ux)− µ̂t(uhx)

∣∣2
l◦2(Ωh)

+
∣∣u− uh∣∣2

l2(Ωh)
+
∣∣u− uh∣∣2

l2(∂+Ωh)

≤ C
{
ε
∣∣µt(ux)− µ̂t(uIx)

∣∣2
l◦2(Ωh)

+
∣∣a(u− uI)x + r(u− uI)t

∣∣2
l2(Ωh)

+
∣∣u− uI ∣∣2

l2(Ωh)
+
∣∣u− uI∣∣2

l2(∂−Ωh)
+
∣∣u− uI ∣∣2

l2(∂+Ωh)

}
,

where

∣∣µt(ux)− µ̂t(uhx)
∣∣2
l◦2(Ωh)

=
M∑
j=1

kj

N−1∑
i=1

hi + hi+1

2

∣∣µt(ux)i,j − µ̂t(uhx)i,j
∣∣2

+
h1

4

M∑
j=1

kj
∣∣µt(ux)0,j − µ̂t(uhx)0,j

∣∣2 ,

(3.9)

and
∣∣µt(ux)− µ̂t(uIx)

∣∣2
l◦2(Ωh)

is similarly defined.

Proof. Set

ξ = uh − uI , η = u− uI .
Then

u− uh = η − ξ.
We begin by estimating ξ.

Applying Theorem 3.1, we obtain

ε

2
|ξx|2l̂2(Ωh)

+ b|ξ|2l2(Ωh) +
1

4
min{a, r}|ξ|2l2(∂+Ωh)

≤ B̂(ξ,Rξ) +
r

2
|ξ|2l2(∂−Ωh).

(3.10)

Set

ei,j = µt(ux)i,j − µ̂t(uIx)i,j .(3.11)

From (1.1) – (1.3) and (2.9) – (2.12), we have

B̂(ξ,Rξ) =− ε
M∑
j=1

N−1∑
i=1

kj µξi,j {ei,j − ei−1,j}

+ (aηx + rηt + bη,Rξ)

(3.12)

and, by (2.10),

|ξ|2l2(∂−Ωh) = |η|2l2(∂−Ωh).(3.13)
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We first estimate the term involving ε:

−ε
M∑
j=1

N−1∑
i=1

kj µξi,j {ei,j − ei−1,j}

= ε
M∑
j=1

kj

{
−µξN,j eN−1,j + µξ1,j e0,j +

N−1∑
i=1

(µξi+1,j − µξi,j) ei,j

}
,

by summation by parts,

= ε
M∑
j=1

kj

{
−1

2
µtξN−1,j eN−1,j +

1

2
µtξ1,j e0,j

+
N−1∑
i=1

hi + hi+1

2
µ̂t(ξx)i,j ei,j

}
,

by virtue of (2.12), (2.6) and µtξ0,j = µtξN,j = 0,(3.14)

= ε
M∑
j=1

kj

{
−1

2
µtξN−1,j eN−1,j +

h1

4
(µ̂t(ξx)0,j + µ̂t(ξx)1,j) e0,j

+
N−1∑
i=1

hi + hi+1

2
µ̂t(ξx)i,j ei,j

}
, by (2.12),

≤ ε
M∑
j=1

kj

{
min{a, r}

8ε
|µtξN−1,j |2 + Cε|eN−1,j|2

+
h1

16
|µ̂t(ξx)0,j |2 +

h1

16
|µ̂t(ξx)1,j |2 + Ch1|e0,j |2

+
1

8

N−1∑
i=1

hi + hi+1

2
|µ̂t(ξx)i,j |2 + 2

N−1∑
i=1

hi + hi+1

2
|ei,j |2

}
≤ 1

8
min{a, r}|ξ|2l2(∂+Ωh) +

ε

4
|ξx|2l̂2(Ωh)

+ Cε
∣∣µt(ux)− µ̂t(uIx)

∣∣2
l◦2(Ωh)

,

using ε ≤ a(hN−1 + hN).
As regards the other term in (3.12), we have

(aηx + rηt + bη,Rξ) ≤ b

2
|ξ|2l2(Ωh) + C|aηx + rηt + bη|2l2(Ωh).(3.15)

Thus, from (3.10), (3.12) – (3.15), it follows that

ε

4
|ξx|2l̂2(Ωh)

+
b

2
|ξ|2l2(Ωh) +

1

8
min{a, r}|ξ|2l2(∂+Ωh)

≤ C
{
ε
∣∣µt(ux)− µ̂t(uIx)

∣∣2
l◦2(Ωh)

+ |aηx + rηt + bη|2l2(Ωh) + |η|2l2(∂−Ωh)

}
.

This, together with the triangle inequality, yields the desired result.

4. Local error analysis

In this section we present local convergence results for the cell-vertex finite vol-
ume scheme (2.9) – (2.12). While the analysis is rather intricate, it ultimately
shows that the scheme yields accurate results on certain subsets of Ω where u is
smooth; see Remark 4.2 below for more details.
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We first derive various interpolation errors. Set

I = {(i, j) : i = 1, . . . , N − 1, j = 1, . . . ,M}.

We have

Lemma 4.1. For any (i, j) ∈ I, assume that u ∈ C3(Ki,j ∪Ki+1,j). Then

|µηi,j |+ |µ(aηx + rηt)i,j | ≤ C(hikj)
−1/2h2|u|H3(Ki,j),(4.1)

|µxηi,0| ≤ Ch3/2
i

∣∣u0
∣∣
H3(xi−1,xi)

,(4.2)

∣∣µt(ux)i,j − µ̂t(uIx)i,j
∣∣ ≤C{|hi − hi+1| ‖u‖C2(K̄i,j)

+
(
h2
i+1 + h2

i + k2
j

)
‖u‖C3(Ki,j∪Ki+1,j)}

(4.3)

with ∣∣µt(ux)0,j − µ̂t(uIx)0,j

∣∣ ≤C{|h1 − h2| ‖u‖C2(K̄1,j)

+
(
h2

2 + h2
1 + k2

j

)
‖u‖C3(K1,j∪K2,j)},

(4.4)

where | · |H3(D) denotes the usual seminorm on H3(D).

Proof. The proof of (4.1) can be found in the proof of Theorem 4 in Morton and
Süli [10]. In a similar manner one can prove (4.2).

We need only prove (4.3) and (4.4). For i ≥ 1, using (2.12), we have

µ̂t(u
I
x)i,j =

2

hi + hi+1

(
µuIi+1,j − µuIi,j

)
=

1

2(hi + hi+1)
(ui+1,j + ui+1,j−1 − ui−1,j − ui−1,j−1), by (2.4),

=
1

2
(ux(xi, tj) + ux(xi, tj−1)) +

hi+1 − hi
4

(uxx(xi, tj) + uxx(xi, tj−1))

+
1

12(hi + hi+1)

{
h3
i+1 (uxxx(θ1, tj) + uxxx(θ2, tj−1))

+h3
i (uxxx(θ3, tj) + uxxx(θ4, tj−1))

}
,

by a Taylor expansion, where

xi−1 < θ3, θ4 < xi < θ1, θ2 < xi+1.

Thus,

|µt(ux)i,j− µ̂t(u
I
x)i,j |

≤
∣∣∣∣∣ 1

kj

∫ tj

tj−1

ux(xi, t) dt−
1

2
(ux(xi, tj) + ux(xi, tj−1))

∣∣∣∣∣
+C|hi+1 − hi| ‖u‖C2(K̄i,j) + C

(
h2
i+1 + h2

i

)
‖u‖C3(Ki,j∪Ki+1,j)

≤ C|hi+1 − hi| ‖u‖C2(K̄i,j) + C
(
h2
i+1 + h2

i + k2
j

)
‖u‖C3(Ki,j∪Ki+1,j),

by the error estimate for the trapezoidal rule.
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Similarly, for i = 0, by a Taylor expansion about x = 0 and using u0,j = 0 for
all j, we have

µ̂t(u
I
x)0,j =

2

h1
µtu

I
1,j − µt(uIx)1,j

=
1

h1
(u1,j + u1,j−1)− 1

2(h1 + h2)
(u2,j + u2,j−1)

= ux(0, tj) + ux(0, tj−1) +
h1

2
(uxx(0, tj) + uxx(0, tj−1))

+
h2

1

6
(uxxx(θ5, tj) + uxxx(θ6, tj−1))

−1

2
(ux(0, tj) + ux(0, tj−1))− h1 + h2

4
(uxx(0, tj) + uxx(0, tj−1))

− (h1 + h2)2

12
(uxxx(θ7, tj) + uxxx(θ8, tj−1))

=
1

2
(ux(0, tj) + ux(0, tj−1)) +

h1 − h2

4
(uxx(0, tj) + uxx(0, tj−1))

+
h2

1

6
(uxxx(θ5, tj) + uxxx(θ6, tj−1))

− (h1 + h2)2

12
(uxxx(θ7, tj) + uxxx(θ8, tj−1)) ,

where

0 < θl < x2 for l = 5, . . . , 8.

Hence,

|µt(ux)0,j− µ̂t(u
I
x)0,j |

≤
∣∣∣∣∣ 1

kj

∫ tj

tj−1

ux(0, t) dt− 1

2
(ux(0, tj) + ux(0, tj−1))

∣∣∣∣∣
+C|h1 − h2| ‖u‖C2(K̄1,j) + C

(
h2

2 + h2
1

)
‖u‖C3(K1,j∪K2,j)

≤ C|h1 − h2| ‖u‖C2(K̄1,j) + C
(
h2

2 + h2
1 + k2

j

)
‖u‖C3(K1,j∪K2,j),

which completes the proof of (4.4).

For each (i, j) ∈ I, define

Bi,j(w) = − ε

hi
(µ̂t(wx)i,j − µ̂t(wx)i−1,j) + µ(awx + rwt + bw)i,j ,

(4.5)

for all w for which the right-hand side is defined. Then

B̂(w, p) =
M∑
j=1

N−1∑
i=1

hikj µpi,j Bi,j(w).(4.6)

For Ĩ any nonempty subset of I, let Ω̃ =
⋃

(i,j)∈Ĩ Ki,j . Set

|w|B̂(Ω̃) =

 ∑
(i,j)∈Ĩ

hikj |Bi,j(w)|2


1/2

.(4.7)
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We note that | · |B̂(Ωh) is a seminorm on L2(Ω). It can be regarded as a gen-

eralization of the seminorm | 5 ·Ih(a(·))|l2(Ωh) introduced in Morton and Stynes
[9].

Using Lemma 4.1, we get the following error bound in a local | · |B̂(Ωh) seminorm.

Theorem 4.1. Let Ω̃ =
⋃

(i,j)∈Ĩ Ki,j be arbitrary. Set

Ĩ+ =
{

(i, j) ∈ I : j = j′ and |i− i′| ≤ 1 for some (i′, j′) ∈ Ĩ
}
.

Let Ω̃+ =
⋃

(i,j)∈Ĩ+ Ki,j. Assume that u ∈ C3(Ω̃+). Then∣∣uh − uI∣∣
B̂(Ω̃)

≤ Cε
{

max
(i,j)∈Ĩ

{h−1
i |hi+1 − hi|, h−1

i |hi − hi−1|}‖u‖C2(Ω̃+)(4.8)

+ max
(i,j)∈Ĩ

{
h2
i+1h

−1
i , hi, k

2
jh
−1
i

}
‖u‖C3(Ω̃+)

}
+ Ch2|u|H3(Ω̃).

Proof. From (1.1), (2.9) and (2.11), we get

B̂
(
uh − uI , p

)
=− ε

M∑
j=1

N−1∑
i=1

kj µpi,j{ei,j − ei−1,j}

+ (aηx + rηt + bη, p), ∀p ∈ Mh,

(4.9)

where ei,j is as in (3.11).

Fix (i, j) ∈ Ĩ. Take p in (4.9) to be the characteristic function of Ki,j . From
(4.6) this yields

Bi,j
(
uh − uI

)
= −εh−1

i {ei,j − ei−1,j}+ µ(aηx + rηt + bη)i,j .

(4.10)

Applying Lemma 4.1 gives∣∣Bi,j (uh − uI)∣∣ ≤ Cεh−1
i

{
(|hi+1 − hi|+ |hi − hi−1|) ‖u‖C2(K̄i−1,j∪K̄i,j)

+
(
h2
i+1 + h2

i + h2
i−1 + k2

j

)
‖u‖C3(Ki−1,j∪Ki,j∪Ki+1,j)

}
+C(hikj)

−1/2h2|u|H3(Ki,j),

with the convention that h0 = h1. The desired inequality follows immediately from
the definition (4.7).

In what follows, we shall derive a local error bound in an energy seminorm. To
this end, we introduce a cutoff function w(x, t) defined by

ω(x, t) = g

(
x− x∗
γh

)
g(t− t∗),

where (x∗, t∗) is a fixed node, γ ≥ 1 is a constant (which we choose later to be
independent of ε and the mesh), and

g(r) =
2

1 + exp(r)
∀r ∈ (−∞,∞).
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Set

Ω0 = {(x, t) ∈ Ω : x ≤ x∗, t ≤ t∗},(4.11)

Ω+
0 =

{
(x, t) ∈ Ω : x ≤ x∗ + sγh ln

1

h
, t ≤ t∗ + sγh ln

1

h

}
,(4.12)

where s > 0 is some integer (which we choose later to be independent of ε and h).
Without loss of generality, we assume that Ω+

0 consists of cells, that is,

Ω+
0 =

j′⋃
j=1

i′⋃
i=1

Ki,j ,

for some (i′, j′) ∈ I. Set

Ω++
0 =

j′⋃
j=1

i′+1⋃
i=1

Ki,j.(4.13)

One can easily show that

ωx < 0 and ωt < 0 on Ω,(4.14)

max
Di,j

ω/min
Di,j

ω ≤ C, max
Di,j
|ωx|/min

Di,j
|ωx| ≤ C,(4.15)

where Di,j = Ki,j ∪Ki+1,j ,

|ωx| ≤ Cγ−1h−1ω,(4.16)

ω(xi′ , t) ≤ Chs for t ∈ [0, T ],(4.17)

and ω(x, t) ≥ 1 on Ω0.(4.18)

Notation. We introduce the following weighted norms:

|v|l2(Ω+
0 ),ω =


j′∑
j=1

i′∑
i=1

hikj ωi,j |µvi,j |2


1/2

,

|v|l2(∂−Ω+
0 ),ω =


i′∑
i=1

hi ωi,1|µxvi,0|2


1/2

,

|vx|l̂2(Ω+
0 ),ω =


j′∑
j=1

i′∑
i=1

hi + hi+1

2
kj ωi,j |µ̂t(vx)i,j |2

+
h1

4

j′∑
j=1

kj ω1,j |µ̂t(vx)0,j |2


1/2

,

for all v(x, t) for which the right-hand sides are defined.
Define Rω : Uh0 →Mh by

Rωv =

{
ωi,j µvi,j on Ki,j , for i = 1, . . . , i′, j = 1, . . . , j′,
0 otherwise.

Then we can prove a weighted G̊arding inequality.
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Lemma 4.2. Assume that there exists a positive constant c0, which is independent
of ε and of the mesh, such that

ε ≤ c0 hi for i = 1, . . . , i′ + 1.(4.19)

Then

B̂(v,Rωv) ≥ ε

4
|vx|2l̂2(Ω+

0 ),ω
+ b|v|2

l2(Ω+
0 ),ω

− r

2
|v|2

l2(∂−Ω+
0 ),ω
− Chsh−1

i′+1|v|2l2(Ω++
0 )

,

where | · |l2(Ω++
0 ) is defined analogously to | · |l2(Ωh).

Proof. Similarly to the derivation of (3.7), we have

(avx + rvt + bv,Rωv)

=
a

2

j′∑
j=1

i′∑
i=1

kj ωi,j (|µtvi,j |2 − |µtvi−1,j |2)

+
r

2

j′∑
j=1

i′∑
i=1

hi ωi,j (|µxvi,j |2 − |µxvi,j−1|2)

+ b

j′∑
j=1

i′∑
i=1

hikj ωi,j |µvi,j |2

=
a

2

j′∑
j=1

kj


i′∑
i=1

(ωi,j − ωi+1,j)|µtvi,j |2 + ωi′+1,j |µtvi′,j|2


+
r

2

i′∑
i=1

hi


j′∑
j=1

(ωi,j − ωi,j+1)|µxvi,j |2 + ωi,j′+1|µxvi,j′ |2 − ωi,1|µxvi,0|2


+ b

j′∑
j=1

i′∑
i=1

hikj ωi,j |µvi,j |2,

(4.20)

by summation by parts and using µtv0,j = 0.

Next, the contribution to B̂(v,Rωv) from the diffusion term is

Qε ≡ −ε
j′∑
j=1

i′∑
i=1

kj ωi,j µvi,j{µ̂t(vx)i,j − µ̂t(vx)i−1,j}

= ε

j′∑
j=1

kj

{
− ωi′,j µvi′,j µ̂t(vx)i′,j + ω1,j µv1,j µ̂t(vx)0,j(4.21)

−
i′−1∑
i=1

(ωi,j µvi,j − ωi+1,j µvi+1,j)µ̂t(vx)i,j

}
.
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Now, analogously to (3.3), we have

−µvi′,j µ̂t(vx)i′,j

≥ hi′ + hi′+1

4
|µ̂t(vx)i′,j |2 −

1

hi′ + hi′+1
|µvi′+1,j|2.

(4.22)

For i = 1, . . . , i′ − 1,

−(ωi,j µvi,j − ωi+1,j µvi+1,j)µ̂t(vx)i,j

= {ωi,j (µvi+1,j − µvi,j)− (ωi,j − ωi+1,j)µvi+1,j} µ̂t(vx)i,j

=
hi + hi+1

2
ωi,j |µ̂t(vx)i,j |2 − (ωi,j − ωi+1,j)µvi+1,j µ̂t(vx)i,j , by (2.12),

≥ hi + hi+1

4
ωi,j |µ̂t(vx)i,j |2 −

1

hi + hi+1
(ωi,j − ωi+1,j)

2ω−1
i,j |µvi+1,j |2.

(4.23)

Substituting (4.22), (3.4) and (4.23) into (4.21), we obtain

Qε ≥ε
j′∑
j=1

kj

{
hi′ + hi′+1

4
ωi′,j |µ̂t(vx)i′,j|2 −

1

hi′ + hi′+1
ωi′,j |µvi′+1,j|2

+
h1

8
ω1,j(|µ̂t(vx)0,j |2 − |µ̂t(vx)1,j |2) +

i′−1∑
i=1

hi + hi+1

4
ωi,j |µ̂t(vx)i,j |2

−
i′−1∑
i=1

1

hi + hi+1
(ωi,j − ωi+1,j)

2 ω−1
i,j |µvi+1,j |2

}

≥ε
4
|vx|2l̂2(Ω+

0 ),ω
− ε

hi′ + hi′+1

j′∑
j=1

kj ωi′,j |µvi′+1,j|2

− ε

j′∑
j=1

kj

i′−1∑
i=1

1

hi + hi+1
(ωi,j − ωi+1,j)

2 ω−1
i,j |µvi+1,j |2.

(4.24)

In (4.24), we can bound the second term by using (4.17), to get

ε

hi′ + hi′+1

j′∑
j=1

kj ωi′,j |µvi′+1,j|2

≤ C ε

hi′ + hi′+1
hs

j′∑
j=1

kj |µvi′+1,j|2(4.25)

≤ Chsh−1
i′+1|v|2l2(Ω++

0 )
,

using (4.19).
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As for the last term in (4.24), using (2.6) and (a+ b)2 ≤ 2(a2 + b2), we get

i′−1∑
i=1

1

hi + hi+1
(ωi,j − ωi+1,j)

2ω−1
i,j |µvi+1,j |2

≤ 1

2

i′−1∑
i=1

1

hi + hi+1
h2
i+1 max

Ki+1,j

|ωx|2 ω−1
i,j (|µtvi,j |2 + |µtvi+1,j |2)

≤ C
i′−1∑
i=1

h2
i+1

hi + hi+1
γ−1h−1 max

Ki+1,j

|ωx|(|µtvi,j |2 + |µtvi+1,j |2),

using (4.16) and (4.15),

≤ Cγ−1
i′−1∑
i=1

max
Ki+1,j

|ωx|(|µtvi,j |2 + |µtvi+1,j |2)

≤ Cγ−1
i′∑
i=1

(
max
Ki+1,j

|ωx|+ max
Ki,j
|ωx|

)
|µtvi,j |2

≤ Cγ−1
i′∑
i=1

(
max

Ki,j∪Ki+1,j

|ωx|
/

min
Ki+1,j

|ωx|
)

1

hi+1
(ωi,j − ωi+1,j)|µtvi,j |2,

since (4.14) implies that ωi,j − ωi+1,j > 0,

≤ Cγ−1
i′∑
i=1

1

hi+1
(ωi,j − ωi+1,j)|µtvi,j |2, using (4.15),

≤ a

2c0

i′∑
i=1

1

hi+1
(ωi,j − ωi+1,j) |µtvi,j |2,

(4.26)

on choosing γ sufficiently large, independently of ε and of the mesh used.
Thus, from (4.24) – (4.26) and (4.19), we obtain

Qε ≥
ε

4
|vx|2l̂2(Ω+

0 ),ω
− a

2

j′∑
j=1

kj

i′∑
i=1

(ωi,j − ωi+1,j)|µtvi,j |2 − Chsh−1
i′+1|v|2l2(Ω++

0 )
.

Combine this with (4.20) and use (4.14) to complete the proof.

We now prove the main result of this section.

Theorem 4.2. Assume that ε ≤ a(hN−1 + hN ) and that (4.19) holds. If u ∈
C3(Ω++

0 ), then∣∣u− uh∣∣
E(Ω0)

≤ Ch
(
‖u‖C3(Ω++

0 ) + |u0|H3(0, xi′)

)
+C

(
hsh−1

i′+1

)1/2 (‖f‖L2(Ω) +
∥∥u0
∥∥
L2(0,1)

+ |u|H3(Ω++
0 )

)
,

where Ω0 and Ω++
0 are as in (4.11) and (4.13) respectively, s is as in (4.12), and∣∣u− uh∣∣
E(Ω0)

=
{
ε
∣∣µt(ux)− µ̂t(uhx)

∣∣2
l◦2(Ω0)

+
∣∣u− uh∣∣2

l2(Ω0)

}1/2

with
∣∣µt(ux)− µ̂t(uhx)

∣∣
l◦2(Ω0)

and | · |l2(Ω0) defined similarly to (3.9) and | · |l2(Ωh).
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Proof. Applying Lemma 4.2, we obtain

ε

4
|ξx|2l̂2(Ω+

0 ),ω
+ b|ξ|2

l2(Ω+
0 ),ω

≤ B̂(ξ,Rωξ) +
r

2
|ξ|2
l2(∂−Ω+

0 ),ω
+ Chsh−1

i′+1|ξ|2l2(Ω++
0 )

.
(4.27)

Recalling (4.6), we obtain

B̂(ξ,Rωξ) =

j′∑
j=1

i′∑
i=1

hikj ωi,j µξi,jBi,j(ξ)

≤ b
2
|ξ|2
l2(Ω+

0 ),ω
+

1

2b

j′∑
j=1

i′∑
i=1

hikj ωi,j |Bi,j(ξ)|2.

(4.28)

Put this into (4.27) to get

ε

2
|ξx|2l̂2(Ω+

0 ),ω+b|ξ|2
l2(Ω

+
0 ),ω

≤ 1

b

j′∑
j=1

i′∑
i=1

hikj ωi,j |Bi,j(ξ)|2 + r|ξ|2
l2(∂−Ω+

0 ),ω
+ Chsh−1

i′+1|ξ|2l2(Ω++
0 )

≤ C
{
|ξ|2
B̂(Ω+

0 )
+ |ξ|2

l2(∂−Ω+
0 )

}
+ Chsh−1

i′+1|ξ|2l2(Ω++
0 )

,

(4.29)

since ω(x, t) ≤ 2 on Ω̄, where | · |l2(∂−Ω+
0 ) is defined similarly to | · |l2(∂−Ωh).

Appealing to Theorem 4.1, we obtain

|ξ|B̂(Ω+
0 ) ≤Cε max

1≤i≤i′
{h−1

i }
{

max
1≤i≤i′

{|hi+1 − hi|}‖u‖C2(Ω+
0 ) + h2‖u‖C3(Ω++

0 )

}
+ Ch2|u|H3(Ω+

0 )

≤Ch‖u‖C3(Ω++
0 ),

(4.30)

using (4.19).
By (2.10),

|ξ|l2(∂−Ω+
0 ) = |η|l2(∂−Ω+

0 ) ≤ Ch
2
∣∣u0
∣∣
H3(0, xi′ )

,(4.31)

by virtue of (4.2).
For the last term in (4.29), we have

|ξ|l2(Ω++
0 ) ≤

∣∣uh∣∣
l2(Ω++

0 )
+ |u|l2(Ω++

0 ) + |η|l2(Ω++
0 )

≤ C
(
|f |l2(Ωh) +

∣∣u0
∣∣
l2(∂−Ωh)

+ |u|l2(Ω++
0 )

)
+ Ch2|u|H3(Ω++

0 ),

according to Theorem 3.2 and (4.1).
Clearly, for any w ∈ L2(Ω),

|w|l2(Ω++
0 ) ≤ |w|l2(Ωh) ≤ ‖w‖L2(Ω),

by a Cauchy-Schwarz inequality. Also,

‖u‖L2(Ω) ≤ C
(
‖f‖L2(Ω) +

∥∥u0
∥∥
L2(0,1)

)
.
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Thus,

|ξ|l2(Ω++
0 ) ≤ C

(
‖f‖L2(Ω) +

∥∥u0
∥∥
L2(0,1)

)
+ Ch2|u|H3(Ω++

0 ).(4.32)

Collecting (4.30) – (4.32) into (4.29) yields{
ε|ξx|2l̂2(Ω+

0 ),ω
+ |ξ|2

l2(Ω+
0 ),ω

}1/2

≤ Ch‖u‖C3(Ω++
0 ) + Ch2|u0|H3(0, xi′)

(4.33)

+C
(
hsh−1

i′+1

)1/2 (‖f‖L2(Ω) +
∥∥u0
∥∥
L2(0,1)

+ |u|H3(Ω++
0 )

)
.

Note that by (4.18),

ε|ξx|2l̂2(Ω+
0 )

+ |ξ|2l2(Ω0) ≤ ε|ξx|2l̂2(Ω+
0 ),ω

+ |ξ|2
l2(Ω+

0 ),ω
.(4.34)

Combining (4.33) with (4.34), invoking the triangle inequality and using Lemma
4.1, we obtain the desired result.

Remark 4.1. The assumption that u ∈ C3(Ω++
0 ) in Theorem 4.2 can be guaranteed

if the data is sufficiently smooth and satisfies certain compatibility conditions at
the corner (0, 0) of Ω; see Ladyženskaja et al. [7].

Corollary 4.1. Assume that the hypotheses of Theorem 4.2 hold and

hi+1 = hi +O(h2) for i = 1, . . . , i′(4.35)

and

hi′+1 = O(hκ) for some κ > 0.(4.36)

Then∣∣u− uh∣∣
E(Ω0)

≤ Ch2
(
‖u‖C3(Ω++

0 ) + |u0|H3(0, xi′)
+ ‖f‖L2(Ω) +

∥∥u0
∥∥
L2(0,1)

)
.

Proof. By inspecting the proof of Theorem 4.2, we see (cf. (4.30)) that when (4.35)
holds, then

|ξ|B̂(Ω+
0 ) ≤ Ch

2‖u‖C3(Ω++
0 ).(4.37)

Hence from (4.29), (4.37), (4.31) and (4.32), we have{
ε|ξx|2l̂2(Ω+

0 ),ω
+ |ξ|2

l2(Ω+
0 ),ω

}1/2

≤ Ch2
(
‖u‖C3(Ω++

0 ) + |u0|H3(0, xi′ )

)
(4.38)

+C
(
hsh−1

i′+1

)1/2 (‖f‖L2(Ω) +
∥∥u0
∥∥
L2(0,1)

+ |u|H3(Ω++
0 )

)
.

Since (4.36) implies h−1
i′+1 = O(h−κ), we take s = κ+ 4 in (4.38). Now arguments

exactly the same as in the proof of Theorem 4.2 lead to the desired result.

Corollary 4.2. Assume that the hypotheses of Theorem 4.2 hold and that there
exists a positive constant c1, which is independent of ε and of the mesh, such that

ε ≤ c1h2
i for i = 1, . . . , i′ + 1.(4.39)

Then∣∣u− uh∣∣
E(Ω0)

≤ Ch2
(
‖u‖C3(Ω++

0 ) + |u0|H3(0, xi′)
+ ‖f‖L2(Ω) +

∥∥u0
∥∥
L2(0,1)

)
.
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Proof. From the proof of Lemma 4.2, we see that when (4.39) holds, one can get
(cf. (4.25)), for each v ∈ Uh0 ,

B̂(v,Rωv) ≥ ε

4
|vx|2l̂2(Ω+

0 ),ω
+ b|v|2

l2(Ω+
0 ),ω
− r

2
|v|2

l2(∂−Ω+
0 ),ω
− Chs|v|2

l2(Ω++
0 )

.

Hence, similarly to the derivation of (4.29), using (4.28), we obtain

ε

2
|ξx|2l̂2(Ω+

0 ),ω
+ b|ξ|2

l2(Ω+
0 ),ω

≤ 1

b

j′∑
j=1

i′∑
i=1

hikj ωi,j |Bi,j(ξ)|2 + r|ξ|2
l2(∂−Ω+

0 ),ω
+ Chs|ξ|2

l2(Ω++
0 )

(4.40)

≤ C
{
|ξ|2
B̂(Ω+

0 )
+ |ξ|2

l2(∂−Ω+
0 )

}
+ Chs|ξ|2

l2(Ω++
0 )

.

Also, from (4.30) we see that (4.39) implies (4.37). It then follows from (4.40),
(4.37), (4.31) and (4.32) that{

ε|ξx|2l̂2(Ω+
0 ),ω

+ |ξ|2
l2(Ω+

0 ),ω

}1/2

≤ Ch2
(
‖u‖C3(Ω++

0 ) + |u0|H3(0, xi′)

)
+Chs/2

(
‖f‖L2(Ω) +

∥∥u0
∥∥
L2(0,1)

+ |u|H3(Ω++
0 )

)
.

Choose s = 4 and follow the same argument as in the proof of Theorem 4.2 to
complete the proof.

Remark 4.2. The assumption (4.19) is reasonable, since we are interested in the
singularly perturbed case. Theorem 4.2 tells us that under this assumption, away
from any layers, the scheme (2.9) – (2.12) on an arbitrary tensor product mesh is
first-order accurate in the l2 seminorm, as one can choose s sufficiently large to
make the term Chsh−1

i′+1 negligible. Corollary 4.1 indicates that if we work with an
almost uniform mesh, then the method becomes second-order accurate in smooth
regions. Corollary 4.2 shows that when the diffusion parameter ε is relatively small,
the method is second-order accurate on any general tensor product mesh, away from
any layers. Nevertheless, this l2 seminorm is of course not strong enough to exclude
checkerboard oscillations from the computed solution.
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