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DECAY RATE FOR PERTURBATIONS OF STATIONARY

DISCRETE SHOCKS FOR CONVEX SCALAR

CONSERVATION LAWS

HAILIANG LIU AND JINGHUA WANG

Abstract. This paper is to study the decay rate for perturbations of station-
ary discrete shocks for the Lax-Friedrichs scheme approximating the scalar
conservation laws by means of an elementary weighted energy method. If the
summation of the initial perturbation over (−∞, j) is small and decays at the
algebraic rate as |j| → ∞, then the solution approaches the stationary dis-
crete shock profiles at the corresponding rate as n → ∞. This rate seems
to be almost optimal compared with the rate in the continuous counterpart.
Proofs are given by applying the weighted energy integration method to the
integrated scheme of the original one. The selection of the time-dependent
discrete weight function plays a crucial role in this procedure.

1. Introduction

In this paper, we continue to study the asymptotic stability of the Lax-Friedrichs
(LF) scheme

un+1
j − unj +

λ

2
(f(unj+1)− f(unj−1)) =

µ

2
(unj+1 − 2unj + unj−1)(1.1)

approximating the convex scalar conservation laws

ut + f(u)x = 0, u(x, 0) = u0(x) =

{
u−, x < 0,
u+, x > 0.

(1.2)

The corresponding shock wave solution is

u(t, x) =

{
u−, x− st < 0,
u+, x− st > 0,

where the end states u± related shock speed s by the Rankine-Hugoniot condition

− s(u+ − u−) + f(u+)− f(u−) = 0,(1.3a)

and Oleinik’s shock condition

(u+ − u−)Q ≡ (u+ − u−)[f(u)− f(u±)− s(u− u±)] > 0(1.3b)
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for u ∈ (min(u−, u+),max(u−, u+)). It is noted that when s 6= f ′(u±) (1.3b)
implies the Lax shock condition

f ′(u+) < s < f ′(u−).(1.3c)

Let xj = jr and tn = nh, with r = ∆x and h = ∆t being the spatial and the
temporal grid sizes. Denote an approximation of u(xj , tn) by unj , µ is a constant

satisfying 0 < µ < 1, and the temporal and spatial grid ratio λ = ∆t
∆x satisfies the

Courant-Friedrichs-Levy (CFL) condition,

λmax |f ′| ≤ µ.(1.4)

Corresponding to the difference equation (1.1) we have the following viscous con-
servation law

ut + f(u)x = εuxx, ε > 0,(1.5)

which has a viscous shock profile solution u = U(x− st) satisfying

U(z)→ u± as z → ±∞.
For convenience, we assume that u+ < u− and s 6= f ′(u±), then U ′(z) < 0 and
|U − u±| ∼ O(1) exp(−c|z|) as z → ±∞. Hence the shock profile of (1.5) has the
following property

u(x, t+ ∆t) = u(x− s∆t, t).(1.6)

Since the solutions of the difference equation are only defined on the grid nodes,
(1.6) does not always make sense. For simplicity, we focus on the stationary discrete
shock profile solution φj of (1.1) i.e.,

λ(f(φj+1)− f(φj−1)) = µ(φj+1 − 2φj + φj−1),(1.7a)

φj → u± as j → ±∞.(1.7b)

Its existence and properties have been proved by Jennings [7] provided that (u−, u+)
satisfies (1.3a)–(1.3b).

Consider the initial value problem for (1.1) with the initial condition

u0
j → u± as j → ±∞(1.8)

and ∑
j

(1 + j2)3/2|u0
j − φj |2 ≤ c1(1.9)

for some (suitably small) positive constant c1. Under these assumptions and f being
non-convex Liu and Wang [13] successfully proved that as n→∞, the solution unj
of (1.1), (1.8) tends uniformly with respect to j ∈ Z, in maximum norm, to φj
which is uniquely determined by the relation∑

j

(u0
j − φj) = 0.(1.10)

In [13], we proved that the above discrete shocks for the L-F scheme (1.1) is asymp-
totically stable in the l2- and l∞-norm. But, as far as we know, the decay rate is
not known even in the case when f is convex. For this reason, the asymptotic
stability theory of discrete shock is not complete as yet. The main contribution
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of this article is to show the decay rate for a convex flux f under some additional
assumptions on initial data. We assume that the summation

v0
j =

j∑
−∞

(u0
j − φj) ∈ l2α(1.11)

exists for any j ∈ Z and denote |v0
j |α = [

∑
j(1 + (jr)2)α(v0

j )2]1/2.
Then our main theorem is given as follows.

Theorem 1.1. Suppose (1.3a)–(1.3c) and (1.4) (CFL condition) hold. Let φj be
a stationary discrete shock profile defined by (1.7a) connecting u+ to u−. Suppose
the initial data u0

j satisfy (1.10) and, for some α > 0,

∞∑
j=−∞

(1 + j2)κ|u0
j − φj |2 ≤ δ1 (κ >

α

2
+ 1)(1.12)

for some (suitably small) positive constant δ1, then the unique global solution unj ,

to the L-F scheme (1.1) with initial data u0
j tends in the maximum norm to the

shock profile φj at the following rate: If α is an integer, then it holds

sup
j
|unj − φj | ≤ C(1 + nh)−α/2|v0

j |α, n ≥ 0,(1.13)

while if α is not an integer, then

sup
j
|unj − φj | ≤ Cε(1 + nh)−µ/2+ε|v0

j |α, n ≥ 0,(1.14)

for any constant ε > 0 and some constant Cε such that Cε →∞ as ε→ 0.

The study of existence and stability of discrete shocks is important in under-
standing the convergence behavior of numerical shock computations. Jennings [7]
first investigated the existence and stability of discrete shocks for scalar difference
equations. But the work is only restricted to the strictly monotone schemes. Eng-
quist and Osher proved the stability of the first-order general monotone scheme for
the scalar case [3]. Smyrlis [23] proved stability of a scalar stationary discrete shock
wave for the Lax-Wendroff scheme. For scalar conservation laws, the L-F scheme
belongs to the class of monotone schemes which have been well understood, see [2],
[21], etc. Tadmor [25] studied the large time behavior for the rarefaction waves for
some monotone schemes. The earliest important works in the study of the large
time behavior for parabolic equations and monotone schemes can be seen in [5].

For the L-F scheme approximating systems, in the case that far field is a constant
state, Chern [1] proved stability of the L-F scheme using diffusion waves. Liu and
Xin [14] have proved that, for the L-F scheme, the solutions of the Riemann problem
are single or multiple shocks; and if the summation of the initial perturbations
equal zero, then the scheme solutions are asymptotically stable; they also study the
stability of stationary discrete shock in [15]. The existence of discrete shock waves
of first-order accurate finite difference methods for systems of conservation laws was
established by Majda and Ralston [16] by using the center manifold theorem.

Our stability analysis is strongly motivated by the nonlinear stability of viscous
shock profile for a viscous conservation law of the form (1.6) which is one of the hot
spots in mathematical physics and interests many mathematicians (see [6], [20], [19],
[9]). Studies on systems began with the independent works of Matsumura-Nishihara
[17] and Goodman [4]. Important progress for general initial perturbations has been
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achieved by Liu [12] and Szepessy and Xin [24]. Recently, some interesting papers
on the stability of viscous shock profiles in the case of I(f) 6= ∅, where I(f) is the
set of a reflection point of f , appeared (see [10], [8], [22], [11]).

As to the decay rate, Il′in and Oleinik [6] showed in the case of I(f) = ∅ that
if the integral of the initial disturbance over (−∞, x] decays exponentially e−α|x|

(with some α > 0) for |x| → ∞, then the solution approaches, in the maximum
norm, the viscous shock profiles at an exponential rate e−βt (for some β > 0) as
t→∞. In the particular case f = u2/2, Nishihara [18] showed further properties,
if the initial disturbance over (−∞, x] has an algebraic order O(|x|−α) (with some
α > 0) for |x| → ∞, then the solution converges, in the maximum norm, to the
shock profiles at the same algebraic rate t−α as t → ∞. He also notes that this
time decay rate is optimal in general. These detailed results are not known for
general f with convexity. However, for such f , Kawashima and Matsumura [9]
showed that if (1 + |x|2)α/2φ0 ∈ H2 (∃α > 0) is suitably small, then it holds that
supx∈R |u−U | ≤ C(1 + t)−[α]/2, where φ0 is the integral of initial disturbance over
(−∞, x] of viscous shock profile U . Recently, for I(f) 6= ∅ and s 6= f ′(u±), Jones et
al. [8] have shown supR |u−U | ≤ C(1 + t)−[α]/4 based on the spectral analysis. In
[11] we proved that supR |u− U | ≤ C(1 + t)−[α]/2 for non-convex f by introducing
a weight function to overcome the difficulty caused by non-convexity of f .

Our main task is to estimate the time decay rate. To carry out our analysis, we
use the weighted energy integration method, with regard to this method we point
especially to the works [14], [15] from which we draw ideas in the present work. The
specific choice of our time-dependent weight is made to insure that the information
can be transferred from spatial decay to temporal decay. In its general approach,
our method resembles that of [15], but there are also essential differences between
the two methods.

Our plan of this paper is as follows. After stating the notations, we reformulate
the original problem and state theorems for the reformulated one. In section 3,
we investigate the time decay rate when f is convex, due to the weighted energy
method the time-dependent weight (1 + nh)γ(1 + (jr)2)β/2 plays a central role in
this procedure.

Notations. Let us now define the following weighted l2 spaces,

l2K = {fj : ||fj ||l2K ≡ |fj|K = [
∑
j

|fj |2Kj ]
1
2 <∞},

where Kj is a discrete weight function. When Kj = 〈jr〉α = (1 + (jr)2)
α
2 , we write

l2K = l2α and | · |K = | · |α; when Kj = 〈jr〉αwj , we write l2K = l2α,w with the norm

| · |K = | · |α,w; when C−1 ≤ wj ≤ C, we note that l2 = l2w with the norm || · || ∼ | · |w
and that l2α,w = l2α with | · |α,w ∼ | · |α.

2. Reformulation of the problem

Let φj be a stationary discrete shock wave for the L-F scheme (1.1), that is , φj
satisfies (1.7a)

λ(f(φj+1)− f(φj−1)) = µ(φj+1 − 2φj + φj−1),

summing it over j from −∞ to j yields

λ(f(φj+1)− 2f(u±) + f(φj)) = µ(φj+1 − φj),
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that is

µ(φj+1 − φj) = λ(Qj+1 +Qj),(2.1)

which has a unique solution φj up to a shift satisfying φj(±∞) = u±. We have

Lemma 2.1. Suppose (1.3a)–(1.3b) and u+ < u− for s = 0, then for each ū ∈
(u+, u−) there exists a unique stationary discrete shock profile φj to (1.1), i.e.,
(1.7a)–(1.7b) holds and φj satisfies

φ0 = ū, φj > φj+1, for j ∈ Z.(2.2)

The proof of Lemma 2.1 is a consequence of the fact that a shock profile contin-
uously depends on its value at a point (see [7]), we omit it here.

To obtain the decay rate, let us rewrite the initial value problem (1.1), (1.8) by
setting

vnj =

j∑
k=−∞

(unk − φk),(2.3)

then vnj → 0 as j → ±∞. Subtracting (1.7a) from (1.1), and summing up the
resulting expression from −∞ to j, we get

vn+1
j − vnj +

λ

2
(f(unj+1)− f(φj+1)) +

λ

2
(f(unj )− f(φj))

=
µ

2
(vnj+1 − 2vnj + vnj−1).

Noting unj − φj = vnj − vnj−1, we have

vn+1
j − vnj +

λ

2
f ′(φnj+1)(vnj+1 − vnj ) +

λ

2
f ′(φnj )(vnj − vnj−1)

+
λ

2
F (φnj+1, v

n
j+1 − vnj ) +

λ

2
F (φnj , v

n
j − vnj−1) =

µ

2
(vnj+1 − 2vnj + vnj−1),

(2.4)

where

F (φ, u− φ) = f(u)− f(φ)− f ′(φ)(u− φ),(2.5a)

satisfies the estimate

|F (φ, u− φ)| ≤ O(1)|u− φ|2,(2.5b)

here O(1) is a positive constant. Using the notations

Λj = f ′(φj), θnj = F (φj , v
n
j − vnj−1),

we may rewrite the equation (2.4) as

vn+1
j − vnj +

λ

2
Λj+1(vnj+1 − vnj ) +

λ

2
Λj(v

n
j − vnj−1)

− µ

2
(vnj+1 − 2vnj + vnj−1) = enj ,

(2.6)

where

enj = −λ
2

(θnj+1 + θnj ).

Noting that (1.12) implies |v0
j |α is suitably small (which will be shown in the

next section), then the problem (2.6) with initial data v0
j can be solved globally in

time as follows.
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Theorem 2.1. Suppose v0
j ∈ l2α for some α ≥ 0 and f ′′ > 0 , then there exists a

positive constant δ2 such that if |v0
j |α < δ2, the problem (2.6) with initial data v0

j

has a unique global solution vnj satisfying, for any n ≥ 0

sup
n

(1 + nh)γ ||vnj ||2 +
∑
n

(1 + nh)γ ||vnj+1 − vnj ||2 ≤ C|v0
j |2α(2.7)

for any γ such that 0 ≤ γ ≤ α if α is an integer and that 0 ≤ γ < α if α is not an
integer.

From (2.6), vn+1
j can be expressed in terms of vnj in the explicit scheme, we can

obtain vnj step by step from the beginning of n = 0. Moreover, we can estimate the

l2-norm of vnj as follows

∑
j

(vn+1
j )2 ≤ C

∑
j

(vnj )2.(2.8)

Combining (2.8) with the following a priori estimate and a standard continuity
argument proves that Theorem 2.1 holds.

Proposition 2.2 (A priori estimate). Let n1 be a positive integer. Suppose that
the problem (2.6) with initial data v0

j has a unique solution vnj ∈ l2α for some α ≥ 0,
then vnj satisfies (2.7) for 0 ≤ n ≤ n1, provided sup0≤n≤n1

||vnj || is suitably small.

The global existence can be proved in a way similar to that in [13]; we omit the
details. For the proofs of (2.7) more estimates are necessary.

3. Time-decay estimates

We proceed with more a priori estimates of the solution vnj of the problem (2.6)

with initial data v0
j . In order to estimate the time-decay rate, we introduce a time-

dependent discrete weight function Kn
j , then multiplying (2.6) by 2vnjK

n
j and

summing over j, we obtain

∑
j

2(vn+1
j − vnj )vnj K

n
j + λ{

∑
j

Λj+1v
n
jK

n
j (vnj+1 − vnj ) +

∑
j

Λjv
n
jK

n
j (vnj − vnj−1)}

+ µ
∑
j

vnj K
n
j (2vnj − vnj+1 − vnj−1) = 2

∑
j

vnjK
n
j e

n
j .

(3.1)
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We now estimate each term denoted by Ii (i = 1, 2, 3) in the sequel on the left-hand
side of (3.1), we have

I1 =
∑
j

{(vn+1
j )2 − (vn+1

j − vnj )2 − (vnj )2}Kn
j

=
∑
j

(vn+1
j )2Kn+1

j −
∑
j

(vnj )2Kn
j

−
∑
j

(vn+1
j − vnj )2Kn

j −
∑
j

(vn+1
j )2(Kn+1

j −Kn
j ),

I2 = λ{
∑
j

Λj+1K
n
j v

n
j v

n
j+1 −

∑
j

Λj+1K
n
j (vnj )2

+
∑
j

ΛjK
n
j (vnj )2 −

∑
j

ΛjK
n
j v

n
j v

n
j−1}

= λ{−
∑
j

(Λj+1K
n
j+1 − ΛjK

n
j )(vnj )2

+
∑
j

Λj+1(Kn
j −Kn

j+1)vnj (vnj+1 − vnj )},

I3 = µ{
∑
j

vnj K
n
j (vnj − vnj+1)−

∑
j

vnj K
n
j (vnj−1 − vnj )}

= µ{
∑
j

Kn
j

2
[(vnj − vnj+1)2 + (vnj )2 − (vnj+1)2]

+
∑
j

Kn
j+1

2
[(vnj − vj+1)2 + (vnj+1)2 − (vnj )2]}

= µ{
∑
j

(vnj − vnj+1)2
Kn
j +Kn

j+1

2

+
∑
j

(Kn
j+1 −Kn

j )
vnj+1 + vnj

2
(vnj+1 − vnj )}.

Then we have

∑
j

(vn+1
j )2Kn+1

j −
∑
j

(vnj )2Kn
j +

∑
j

Anj (vnj )2 + µ
∑
j

Kn
j +Kn

j+1

2
|vnj+1 − vnj |2

=
∑
j

(vn+1
j − vnj )2Kn

j −
∑
j

Bnj +
∑
j

(Kn+1
j −Kn

j )(vn+1
j )2 + 2

∑
j

vnj K
n
j e

n
j ,

(3.2)
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where

Anj = −λ(Λj+1K
n
j+1 − ΛjK

n
j ),

Bnj = (−λΛj+1v
n
j + µ

vnj+1+vnj
2 )(Kn

j −Kn
j+1)(vnj+1 − vnj ).

(3.3)

Now setting

Kn
j = (1 + nh)γ〈jr〉β(3.4)

and denoting |vnj |2β =
∑
j〈jr〉β |vnj |2. Then

Kn
j +Kn

j+1

2
= (1 + nh)γ

〈jr〉β + 〈(j + 1)r〉β
2

≥ (1 + nh)γ〈jr〉β ,(3.5)

and

Kn+1
j −Kn

j = 〈jr〉β((1 + (n+ 1)h)γ − (1 + nh)γ)

= 〈jr〉β(γ(1 + nh)γ−1h+ γ(γ−1)(1+ñh)γ−2

2 h2)

= γ(1 +O(h))〈jr〉β(1 + nh)γ−1h, (n < ñ < n+ 1),

which leads to

∑
j

(Kn+1
j −Kn

j )(vn+1
j )2 ≤ 2γ(1 +O(h)){(1 + nh)γ−1

∑
j

〈jr〉β(vnj )2h

+
h

1 + nh
((1 + nh)γ

∑
j

〈jr〉β(vn+1
j − vnj )2}

≤ Cγ(1 + nh)γ−1|vnj |2βh+O(1)h(1 + nh)γ |vn+1
j − vnj |2β ,

(3.6)

where we have used

(vn+1
j )2 = (vn+1

j − vnj + vnj )2 ≤ 2(vn+1
j − vnj )2 + 2(vnj )2.

Collecting (3.2), (3.5) and (3.6) we have

(1 + (n+ 1)h)γ |vn+1
j |2β − (1 + nh)γ |vnj |2β

+ α(1 + nh)γ |vnj+1 − vnj |2β +
∑
j

Anj (vnj )2

≤ (1 +O(1)h)(1 + nh)γ |vn+1
j − vnj |2β +

∑
j

|Bnj |

+ C1γ(1 + nh)γ−1h|vnj |2β + 2
∑
j

vnjK
n
j e

n
j .

(3.7)

Next we estimate the terms on the right-hand side of (3.7), we set

N(n1) = sup
n≤n1

(
∑
j

|vnj |2)1/2,(3.8)

and assume that N(n1) is small. Obviously, we have

sup
n≤n1,j

|vnj | ≤ N(n1).(3.9)
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It follows from equation (2.6) that

vn+1
j − vnj = {µ

2
− λ

2
Λj+1}(vnj+1 − vnj )− {µ

2
+
λ

2
Λj}(vnj − vnj−1) + enj ,

then we have

|vn+1
j − vnj |2 ≤

1

2
{(µ− λΛj+1)2|vnj+1 − vnj |2 + (µ+ λΛj)

2|vnj − vnj−1|2}

+O(1)N(n1){|vnj+1 − vnj |2 + |vnj − vnj−1|2},

(3.10)

where we have used (2.5b) and (3.9). Consequently, we have

∑
j

〈jr〉β |vn+1
j − vnj |2 ≤ ((µ+ λmax |f ′|)2 +O(1)N(n1))× |vnj+1 − vnj |2β.

(3.11)

Next using (2.5b) and (3.9), we get

2
∑
j

|vnj Kn
j e

n
j | ≤ CN(n1)(1 + nh)γ

∑
j

〈jr〉β |vnj+1 − vnj |2.(3.12)

To get the desired estimate, we must estimate
∑
j A

n
j (vnj )2 and

∑
j B

n
j .

Step 1. We estimate
∑
j A

n
j (vnj )2. For the estimate, we need some properties of the

stationary discrete shock wave. Let u∗ be the unique state determined by

0 =
f(u+)− f(u−)

u+ − u−
= f ′(u∗)

since the discrete shock profile continuously depends on its value at a point and φj is
strictly decreasing in j ∈ Z. On the other hand, the uniqueness of the shock profile
is understood modulo translation; without loss of generality, we assume φ0 = u∗.
Thus Λ0 = Q′(φ0) = 0 and Q′(φ−1) > 0 > Q′(φ1) due to Q′′(u) > 0.

With respect to Anj we have the following lemma.

Lemma 3.1. For any β ∈ [0, α], there is a positive constant c0 independent of β
such that

Anj ≥ c0β(1 + nh)γ〈jr〉β−1h,(3.13)

for any j ∈ Z, provided that λ is suitably small.

Proof. By the Taylor expression formula we have

〈(j + 1)r〉β = 〈jr〉β + βjr〈jr〉β−2r

+ β〈j̃r〉β−4(〈j̃r〉2 + (β − 2)(j̃r)2)r2/2
(3.14)

and

Λj+1 = Q′(φj+1) = Q′(φj) +Q′′(φ̄j)(φj+1 − φj).(3.15)
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Together with (3.14) and (3.15), we have

Anj = −λ(1 + nh)γ [〈(j + 1)r〉βΛj+1 − 〈jr〉βΛj ]

= −λ(1 + nh)γ [βjr〈jr〉β−2Q′(φj)r

+Q′′(φ̄j)〈jr〉β(φj+1 − φj) + 〈jr〉β−1O(1)r2]

= (1 + nh)γ〈jr〉β−1h[−β jr
〈jr〉Q

′(φj)− 〈jr〉Q′′(φ̄j)φj+1−φj
r +O(r)],

(3.16)

where we have used |φj+1 − φj | = |φj+1−φj
r |r ≤ O(1)r and λr = h.

Due to (3.15), we have Q′(φj+1)−Q′(φj) < 0, by virtue of f ′(u+) < 0 < f ′(u−),

so − jr
〈jr〉Q

′(φj)→ ∓Q′(u±) = ∓f ′(u±) > 0, as j → ±∞, so

− jr

〈jr〉Q
′(φj) ≥ c, j 6= 0,(3.17)

for some c > 0. On the other hand,

− 〈jr〉Q′′(φ̄j)
φj+1 − φj

r
=
φ0 − φ1

r
Q′′(φ̄0) = c1 > 0, j = 0.(3.18)

Combining (3.17) with (3.18), we obtain (3.13), where c0 > min{c, c1α }, provided λ
is suitably small.

Step 2. We estimate
∑
j |Bnj |.

First we compute

Kn
j+1 −Kn

j = (1 + nh)γ(〈(j + 1)r〉β − 〈jr〉β)

= (1 + nh)γβj̃r〈j̃r〉β−2r

≤ β(1 + nh)γ〈j̃r〉β−1r

≤ βcr(1 + nh)γ〈jr〉β−1r,

(3.19)

where cr = cr,β = supj
〈j̃r〉β−1

〈jr〉β−1 (j < j̃ < j + 1),

[−λΛj+1v
n
j + µ

vnj + vnj+1

2
](vnj+1 − vnj )

= [(µ− λΛj+1)vnj +
µ

2
(vnj+1 − vnj )](vnj+1 − vnj )

≤ (µ+ λmax |f ′|)2

4ε
|vnj |2 + (ε+

µ

2
)|vnj+1 − vnj |2

(3.20)
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for any ε > 0. Combining (3.3), (3.19) with (3.20), we obtain

∑
j

|Bnj | ≤ crβ(1 + nh)γ
∑
j

〈jr〉β−1

×
[

(µ+ λmax |f ′|)2

4ε
|vnj |2 + (ε+

µ

2
)|vnj+1 − vnj |2

]
r

≤ β(1 + nh)γ
[
cr(µ+ λmax |f ′|)2

4ε
r|vnj |2β−1

+ cr(ε+
µ

2
)|vnj+1 − vnj |2β−1r

]
.

(3.21)

But

|vnj+1 − vnj |2β−1 =
∑
|j|≤J
〈jr〉β−1|vnj+1 − vnj |2 +

∑
|j|≥J

〈jr〉β
〈jr〉 |v

n
j+1 − vnj |2

≤ C(J)
∑
j

|vnj+1 − vnj |2 +
1

Jr

∑
j

〈jr〉β |vnj+1 − vnj |2

≤ C(J)||vnj+1 − vnj ||2 +
1

Jr
|vnj+1 − vnj |2β

for some large fixed number J > 0, we have

∑
j

|Bnj | ≤ β(1 + nh)γ [ c0h2 |vnj |2β−1

+C(J)cr(ε+ µ
2 )r||vnj+1 − vnj ||2 + cr(2ε+µ)

2J |vnj+1 − vnj |2β ]

≤ c0βh
2 (1 + nh)γ |vnj |2β−1 + Cβ(1 + nh)γ ||vnj+1 − vnj ||2

+βcr(2ε+µ)
2J (1 + nh)γ |vnj+1 − vnj |2β ,

(3.22)

here we have chosen

ε ≥ cr(µ+ λmax |f ′|)2

2c0λ
,

and C ≥ max{C(J)cr(ε+ α
2 )r, C1}.

Assuming Lemma 3.1, we obtain the following basic a priori estimate:

Proposition 3.2. Let vnj be a solution of (2.6) for n ≤ n1. Then there exists a
positive constant C independent of n1 such that for all n ≤ n1

(1 + nh)γ |vnj |2β + β
∑
i<n

(1 + ih)γ |vij |2β−1h+
∑
i<n

(1 + ih)γ |vij+1 − vij |2β

≤ C{|v0
j |2β + γ

∑
i<n

(1 + ih)γ−1|vij |2βh+ β
∑
i<n

(1 + ih)γ ||vij+1 − vij ||2},

(3.23)

provided λ and N(n1) are suitably small.
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Proof. By Lemma 3.1, we collect (3.7), (3.11)–(3.13) and (3.22) to obtain

(1 + (n+ 1)h)γ |vn+1
j |2β − (1 + nh)γ |vnj |2β

+ {µ− (1 +O(h))[(µ + λmax |f ′|)2 +O(1)N(n1)]− CN(n1)

− βcr(2ε+ µ)

2J
}(1 + nh)γ |vnj+1 − vnj |2β +

c0βh

2
(1 + nh)γ |vnj |2β−1

≤ C{β(1 + nh)γ ||vnj+1 − vnj ||2 + γ(1 + nh)γ−1h|vnj |2β},

(3.24)

here we have used Anj ≥ c0βh(1 + nh)γ〈jr〉β−1. On one hand, since µ < 1, we take
suitably small λ and take J suitably large, then

µ− (1 +O(h))[(µ + λmax |f ′|)2 −O(1)N(n1)]

− CN(n1)− βcr(2ε+ µ)

2J
> ν,

(3.25)

here 0 < ν < µ, provided N(n1) is suitably small. Finally, summing the two sides
of (3.24) from 0 to n− 1 with respect to n, by virtue of (3.25), we have

(1 + nh)γ |vnj |2β + ν
∑
i<n

(1 + ih)γ |vij+1 − vij |2β +
c0β

2

∑
i<n

(1 + ih)γ |vij |2β−1h

≤ C{|v0
j |2β + β

∑
i<n

(1 + ih)γ ||vij+1 − vij ||2 + γ
∑
i<n

(1 + ih)γ−1|vij |2βh},

(3.26)

then (3.23) follows immediately.

We proceed to estimate the solution of the problem (2.6). First, taking β = γ = 0
in (3.23), it is easy to obtain the following lemma:

Lemma 3.3. There is a positive constant C independent of n1, it holds for n ∈
[0, n1] that

||vnj ||2 +
∑
i<n

||vij+1 − vij ||2 ≤ C||v0
j ||2,(3.27)

provided N(n1) and λ are suitably small.

Applying the induction to (3.23) we have

Lemma 3.4. Let γ ∈ [0, α] be an integer. Then it holds for n ∈ [0, n1] that

(1 + nh)γ |vnj |2α−γ + (α− γ)
∑
i<n

(1 + ih)γ |vij |2α−γ−1h

+
∑
i<n

(1 + ih)γ |vij+1 − vij |2α−γ ≤ C|v0
j |2α.

(3.28)

Consequently, if α is an integer, then the following estimate holds for 0 ≤ γ ≤ α

(1 + nh)γ ||vnj ||2 +
∑
i<n

(1 + ih)γ ||vij+1 − vij ||2 ≤ C|v0
j |2α.(3.29)

Similar to the argument in continuous counterpart in [16], we prove this lemma
as follows.
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Proof. Step 1. We take 0 ≤ α < 1, letting β = α and γ = 0 in (3.23), we have

|vnj |2α + α
∑
i<n

|vij |2α−1h+
∑
i<n

|vij+1 − vij |2α

≤ C{|v0
j |2α + α

∑
i<n

||vij+1 − vij ||2}.
(3.30)

Due to (3.27), ∑
i<n

||vij+1 − vij ||2 ≤ C||v0
j ||2 ≤ C|v0

j |2α, for α ≥ 0;

combining this with (3.30) we obtain (3.28) with γ = 0. Therefore Lemma 3.4 is
proved for 0 ≤ α < 1.

Step 2. we take 1 ≤ α < 2. First, letting β = 0 and γ = 1 in (3.23), we have

(1 + nh)|vnj |20 +
∑
i<n

(1 + ih)|vij+1 − vij |20 ≤ C{|v0
j |20 +

∑
i<n

|vij |20h},

and with (3.28) (γ = 0) to obtain (3.29) with γ = 1, where we have used |vnj |20 ≤
|v0
j |2α−1 ≤ |v0

j |2α for 1 ≤ α < 2. Secondly, letting β = α− 1 and γ = 1 in (3.23), we
have

(1 + nh)|vnj |2α−1 + (α− 1)
∑
i<n

(1 + ih)|vij |2α−1−1h+
∑
i<n

(1 + ih)|vij+1 − vij |2α−1

≤ C{|v0
j |2α−1 +

∑
i<n

|vij |2α−1h+ (α− 1)
∑
i<n

(1 + ih)||vij+1 − vij ||2},

together with (3.29) with γ = 1 and (3.28) (γ = 0) to obtain (3.28) with γ = 1.
Therefore the proof is completed for α < 2.

Step 3. We repeat the same procedure as in Step 2. The estimate (3.23) (with
β = 0, γ = 2) together with (3.28) (γ = 1) yields (3.29) (with γ = 2), where α ≥ 2
is assumed. Also, (3.23) (with β = α − 2, γ = 2) together with (3.28) (γ = 1) and
(3.29) (with γ = 2) yields (3.28) (with γ = 2), which proves the lemma for α < 3.

Repeating the same procedure, we can get the desired estimate (3.28) for any
α ≥ 0. This completes the proof of Lemma 3.4.

Further we show sharper estimate. Let α be not an integer and γ be [α] < γ < α.
Taking β = 0 in (3.23) we have

(1 + nh)γ |vnj |20 +
∑
i<n

(1 + ih)γ |vij+1 − vij |20

≤ C{|v0
j |20 + γ

∑
i<n

(1 + ih)γ−1|vij |20h}.
(3.31)

Using (3.28) with γ = [α],

(1 + nh)[α]|vnj |2α−[α] + (α− [α])
∑
i<n

(1 + ih)[α]|vij |2α−[α]−1h

+
∑
i<n

(1 + ih)[α]|vij+1 − vij |2α−[α] ≤ C|v0
j |2α,

(3.32)
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we estimate the final term in (3.31):∑
i<n

(1 + ih)γ−1|vij |20h

=
∑
i<n

(1 + ih)γ−1
∑
j

〈jr〉(α−[α])([α]+1−α)−(α−[α])([α]+1−α)(|vij |2)([α]+1−α)+(α−[α])h

≤
∑
i<n

(1 + ih)γ−1(
∑
j

〈jr〉α−[α]|vij |2)
[α]+1−α

(
∑
j

〈jr〉−([α]+1−α)|vij |2)α−[α]h

=
∑
i<n

(1+ih)−([α]+1−γ)((1+ih)[α]|vij |2α−[α])
[α]+1−α((1+ih)[α]|vij |2α−[α]−1)α−[α]h,

where we have used the Hölder inequality∑
ab ≤ (

∑
ap)1/p(

∑
bp
′
)1/p′ ,

1

p
+

1

p′
= 1.

Here p = 1
[α]+1−α and p′ = 1

α−[α] . Further, using this Hölder inequality and (3.32)

we obtain∑
i<n

(1 + ih)γ−1|vij |20h

≤C|v0
j |

2([α]+1−α)
α

∑
i<n

(1 + ih)−([α]+1−γ)((1 + ih)[α]|vij |2α−[α]−1)α−[α]h

≤C|v0
j |

2([α]+1−α)
α [

∑
i<n

(1+ih)−
[α]+1−γ
[α]+1−α ][α]+1−α[

∑
i<n

(1+ih)[α]|vij |2α−[α]−1)]α−[α]h

≤C|v0
j |2αh,

where [α] < γ < α implies [α]+1−γ
[α]+1−α > 1. Thus we have the following from (3.31).

Lemma 3.5. If α is not an integer, then it holds for any γ < α

(1 + nh)γ ||vnj ||2 +
∑
i<n

(1 + ih)γ ||vij+1 − vij ||2 ≤ C|v0
j |2α.(3.33)

Combining the latter part of Lemma 3.4 with Lemma 3.5, we complete the proof
of Proposition 2.2.

Thus, assuming that N(0) is suitably small, by a standard continuity argument,
the problem (2.7) with the initial value v0

j has a unique global solution vnj satisfying

(2.8) for any n ≥ 0. Since N(0) = |v0
j | ≤ |v0

j |α for α > 0, Theorem 2.1 follows.
We now turn to prove our main Theorem 1.1.

Proof of Theorem 1.1. First we prove that the condition (1.12) on initial data im-
plies |v0

j |α is small. Here we give a proof under the condition

∞∑
j=−∞

(1 + j2)κ|u0
j − φj |2 ≤ δ
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for any given constant κ > α
2 + 1 and δ is a suitably small constant. Applying the

Hölder inequality to

v0
j =

j∑
k=−∞

(u0
k − φk),

we have

|v0
j |2 ≤

j∑
k=−∞

(1 + k2)κ|u0
k − φk|2

j∑
k=−∞

(1 + k2)−κ

≤ δ
j∑

k=−∞
(1 + k2)−κ.

Therefore,

|v0
j |2α ≤

∑
j

〈j〉α|v0
j |2 ≤ δ

∑
j

(1 + j2)
α
2

j∑
k=−∞

(1 + k2)−κ

≤ δ
∫ +∞

−∞
(1 + x2)

α
2

∫ x

−∞
(1 + y2)−κdydx

≤ δ

κ− α
2 − 1

O(1),

so

N(0) ≤ |v0
j |α ≤ O(1)

√
δ.(3.34)

Thus the hypothesis in Theorem 2.1 is fulfilled under the condition (1.12). It follows
from Theorem 2.1 that there exists a unique global solution, unj , to the L-F scheme
(1.1) due to the relation

unj = φj + vnj − vnj−1,

which follows from (2.3). Next we study the asymptotic behavior of the solution
unj to (1.1). It follows from (2.7) that

∞∑
n=0

(1 + nh)γ ||vnj − vnj+1||2 < C|v0
j |2α,(3.35)

which implies

lim
n→∞

(1 + nh)γ
∑
j

|unj − φj |2 = lim
n→∞

(1 + nh)γ
∑
j

|vnj − vnj−1|2 = 0,

and

||vnj+1 − vnj || ≤ C(1 + nh)−
γ
2 |v0

j |α.(3.36)

Moreover, by virtue of (3.36),

|unj − φj | = |vnj − vnj−1| ≤ ||vnj+1 − vnj ||.
Combining these facts, we obtain

sup
j
|unj − φj | ≤ C(1 + nh)−

γ
2 |v0

j |α,

which proves Theorem 1.1.
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