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THE PRACTICAL COMPUTATION OF AREAS ASSOCIATED

WITH BINARY QUARTIC FORMS

MICHAEL A. BEAN

Abstract. We derive formulas for practically computing the area of the region
|F (x, y)| ≤ 1 defined by a binary quartic form F (X, Y ) ∈ R[X,Y ]. These
formulas, which involve a particular hypergeometric function, are useful when
estimating the number of lattice points in certain regions of the type |F (x, y)| ≤
h and will likely find application in many contexts. We also show that for forms
F of arbitrary degree, the maximal size of the area of the region |F (x, y)| ≤ 1,
normalized with respect to the discriminant of F and taken with respect to
the number of conjugate pairs of F (x, 1), increases as the number of conjugate
pairs decreases; and we give explicit numerical values for these normalized
maxima when F is a quartic form.

1. Introduction

Let F (X,Y ) = a0X
n + a1X

n−1Y + · · · + anY
n be a binary form with real

coefficients and let AF denote the area of the region |F (x, y)| ≤ 1. (That |F (x, y)| ≤
1 defines a region with area is clear from the polar form r ≤ |F (cos θ, sin θ)|−1/nof
this inequality.) Let DF denote the discriminant of F . If F has the factorization∏n

i=1(αiX−βiY ) with αi, βi ∈ C (every binary form has such a factorization), then
DF =

∏
i<j(αiβj − αjβi)

2. Let B(x, y) denote the Beta function with arguments
x and y.

In [2], we showed that if F has degree n ≥ 4 and discriminant DF 6= 0, then

|DF |1/n(n−1)AF ≤ 27/6B

(
1

4
,
1

2

)
≈ 11.77;(1)

moreover, we showed that the bound 27/6B(1/4, 1/2) is attained, for example, when
F (X,Y ) = XY (X2 − Y 2). This result improved an earlier estimate for AF given
in [3]. There we showed that if F has degree n ≥ 3, then |DF |1/n(n−1)AF ≤
3B (1/3, 1/3) ≈ 15.90, with equality holding when F (X,Y ) = XY (X −Y ); in fact,
we showed that the sequence {Mn} defined by Mn = max |DF |1/n(n−1)AF (the
maximum being taken with respect to forms of degree n) is a decreasing sequence,
but we did not determine the values of Mn for n ≥ 4. 1
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1The results quoted in this paragraph actually hold in the more general context of forms with

complex coefficients; the reason for this is that the quantity |DF |1/n(n−1)AF , when considered
over the class of forms of degree n with complex coefficients, is always maximized by a form
with real coefficients (see [3]). However, many of the results stated in subsequent paragraphs do
not hold in this more general setting; consequently, the reader should assume throughout that
F (X,Y ) ∈ R [X,Y ] unless otherwise indicated.

c©1997 American Mathematical Society
1269



1270 MICHAEL A. BEAN

The quantity |DF |1/n(n−1)AF actually has only two possible values when F has
degree three or two. To be precise, if F has degree three, then

|DF |1/6AF =


3B

(
1

3
,
1

3

)
if DF > 0,

√
3B

(
1

3
,
1

3

)
if DF < 0,

(2)

while if F has degree two

|DF |1/2AF =

{
∞ if DF > 0,

2π if DF < 0.
(3)

(See §6 of [3] for the derivation of |DF |1/6AF when DF > 0; the other derivations
are entirely analogous.) This stands in marked contrast to the situation in general.
Indeed, if n ≥ 4, then |DF |1/n(n−1)AF assumes all real values between 0 and Mn

as F runs over the forms of degree n (see [5]).
Equations (2) and (3) enable us to calculate the value of AF in a direct and ele-

mentary manner when F is a cubic or a quadratic form with non-zero discriminant.
It is natural to ask whether there are elementary formulas (necessarily dependent
on quantities besides DF ) which give the exact value of AF in general. Such for-
mulas would likely find application in many contexts since the regions |F (x, y)| ≤ h
are among the most basic and natural that one could consider in two dimensions.

Our primary motivation for seeking formulas for AF actually arises from a par-
ticular theorem of Mahler concerning lattice points in certain regions of the type
|F (x, y)| ≤ h. Mahler [8] showed that if F has integer coefficients, degree n ≥ 3,
and is irreducible over Q, then the number NF (h) of lattice points in the region
|F (x, y)| ≤ h and the area AFh

2/n of this region are connected by the relationship

|NF (h)−AFh
2/n| ≤ cFh

1/(n−1)

where cF is a number depending only on F . 2 From this relationship, it is clear
that a general formula for AF would be very useful in the study of NF (h).

In this paper, we will derive formulas for calculating AF when F is a quartic
form. The formulas which we give will involve a particular hypergeometric function
and will be practical for computation. Our analysis will divide into three cases
according to the number of pairs of complex conjugate roots possessed by F (x, 1).
For quartic forms with real coefficients, the number of such pairs is zero, one, or
two.

This division of cases is quite natural to consider since the number of pairs of
complex conjugate roots of F (x, 1) determines (and is determined by) the number
of singularities in the polar integral representation of AF . To be precise, if F (x, 1)
has k pairs of complex conjugate roots, then the graph of |F (x, y)| = 1 (in the real
affine plane) has n − 2k asymptotes (each one arising from a different real linear

2Mahler’s result does not hold for all forms with real coefficients; indeed, if even one of the
roots of F (x, 1) is a Liouville number, then NF (h) is infinite while AF remains finite. On the
other hand, the stated conditions are stronger than necessary to ensure the finiteness of NF (h)
and can likely be relaxed.
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Figure 1. Sample graphs for the three types of quartics

factor of F (X,Y )), and so the calculation of AF involves the treatment of 2(n−2k)
singularities. 3 Figure 1 provides an illustration of these cases when n = 4.

A similar division of cases was implicitly used in the derivation of equations
(2) and (3); indeed, for cubic and quadratic forms F , the sign of DF indicates
the presence (or absence) of a conjugate pair. In general, we should expect the
calculation of AF for forms of degree n to involve [n2 ] + 1 cases (as determined by
the number of conjugate pairs of F (x, 1)). Hence, the task of finding elementary
formulas for forms of higher degree could become increasingly more complicated.

Although we are unable to derive formulas for AF in all4 the [n2 ] + 1 cases de-
scribed above, we can still prove an important relationship among these cases.
In particular, we will show that for forms of degree n, the maximal value of
|DF |1/n(n−1)AF taken with respect to the number of conjugate pairs decreases as
the number of conjugate pairs increases. A brief glance at equations (2) and (3)

3Since F has real coefficients, the number of asymptotes of |F (x, y)| = 1 must be n − 2k for
some k (the number of pairs of complex conjugate roots). For forms with complex coefficients,
this need not be true since the non-real roots of F (x, 1) need not come in conjugate pairs.

4Formulas for AF when F has a complete factorization over R were given in [2].
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indicates that this result is clearly true for cubics and quadratics; however, its truth
in general is not at all obvious since |DF |1/n(n−1)AF assumes all real values between
0 and Mn. We will prove this result by appealing to the maximum principle for
plurisubharmonic functions from the theory of several complex variables.

With this general result in hand, we will then return to the special class of quartic
forms to compute explicit numerical values for the maxima of |DF |1/n(n−1)AF (in
each of the three cases determined by the number of conjugate pairs of F ). We will
conclude with two minor results which show that the computed maxima are in fact
the true maxima.

2. Statement of results

Let F (X,Y ) = a0X
4 + a1X

3Y + a2X
2Y 2 + a3XY 3 + a4Y

4 be a binary quartic
form with real coefficients and non-zero discriminant, and let k be the number of
pairs of complex conjugate roots of the polynomial F (x, 1). Note that k is the
number of definite quadratic factors in the factorization of F (X,Y ) over R and has
the value zero, one, or two.

Suppose that F (X,Y ) has the factorization
∏4

i=1(αiX−βiY ) with the fractions
αi/βi arranged such that

α1

β1
<

α2

β2
<

α3

β3
<

α4

β4
if k = 0,

α1

β1
<

α2

β2
,

α3

β3
=

α4

β4

if k = 1,

α1

β1
=

α2

β2

,
α3

β3
=

α4

β4

if k = 2.

(4)

(Here α denotes the complex conjugate of α.) Put

ρF =
(α4β1 − α1β4)(α3β2 − α2β3)

(α4β2 − α2β4)(α3β1 − α1β3)
(5)

and define σF ∈ (0, 1) by

σF = σ
(k)
F =



ρF if k = 0,

1

2

(
1 +

√
1 + <ρF

2

)
if k = 1,

(√
ρF − 1√
ρF + 1

)2

if k = 2.

(6)

(The notation σ
(k)
F , while logically redundant, emphasizes the dependence of σF

on k and will be particularly useful when considering collections of forms with a
given k value. Note that the arrangement of the fractions αi/βi assumed in (4)
is not uniquely determined by F ; in particular, this arrangement is not invariant
under complex conjugation. However, all arrangements of type (4) associated with
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a specific F give rise to the same value of σF ; 5 moreover, the assumptions of (4)
guarantee that σF ∈ (0, 1).)

Let I be the function

I(x) =

∫ 1

0

dz

z1/2(1− z)1/2(1− xz)1/2
, x ∈ (0, 1),(7)

and define functions J0, J1, J2 by

J0(x) = 2x1/6(1− x)1/6 (I(x) + I(1− x)) ,(8a)

J1(x) = 21/3x1/12(1 − x)1/12 (I(x) + I(1 − x)) ,(8b)

J2(x) = 21/3x1/12(1 − x)1/3I(1− x)(8c)

for x ∈ (0, 1).
We will derive the following representation for AF in §3.

Theorem 1. Let F (X,Y ) be a binary quartic form with real coefficients and non-
zero discriminant DF , and let k be the number of pairs of complex conjugate roots
of the polynomial F (x, 1). Then, with the notation above, we have

AF =



J0(σ
(0)
F )

|DF |1/12 if k = 0,

J1(σ
(1)
F )

|DF |1/12 if k = 1,

J2(σ
(2)
F )

|DF |1/12 if k = 2.

(9)

(The absolute value operation on the discriminant is unnecessary in the cases k = 0
and k = 2, but is included for consistency.)

This representation has several desirable properties:

(I) It is practical for computation (as we will soon explain).
(II) It expresses the quantity |DF |1/12AF in each of the cases k = 0, 1, 2 as a

function of a single parameter σF which itself has the following desirable
properties:
(a) σF is invariant under GL2(R) (in the sense to be defined in §3);
(b) σF ∈ (0, 1), so that |DF |1/12AF (when considered as a function of σF ) is

defined on a fixed bounded interval;
(c) σF is invariant with respect to interchanging any single pair of complex

conjugate roots αi/βi, αi/βi (so we need not be concerned with an a
priori arrangement of the non-real roots).

(III) It is “straightforward” to derive using real linear fractional transformations
and real quadratic transformations.

By contrast, the “standard” representation

AF =
1

2

∫ 2π

0

dθ

|F (cos θ, sin θ)|2/n(10)

5This is not true of ρF which is only unique up to conjugation.
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(which follows directly from the polar form r = |F (cos θ, sin θ)|−1/n of the curve
|F (x, y)| = 1) is not practical for computation and does not describe AF in a
meaningful way. It is quite conceivable that there are many other representations
of AF which have the properties (I), (II), (III). However, for our present purposes,
the representation given in Theorem 1 is certainly satisfactory.

An alternative representation which we will find particularly useful in our dis-
cussion below is the representation given by

AF =



J0(σ
(0)
F )

|DF |1/12 if k = 0,

J1(σ
(1)
F )

|DF |1/12 if k = 1,

Ĵ2(σ̂
(2)
F )

|DF |1/12 if k = 2,

(11)

where Ĵ2 and σ̂
(2)
F are defined by

Ĵ2(x) = 2x1/6(1− x)1/6I(x), x ∈ (0, 1),(12)

σ̂
(2)
F =

1

ρF
∈ (0, 1)(13)

and where it is assumed that the αi/βi are arranged to satisfy (4) and the additional
condition (

=α1

β1

)(
=α3

β3

)
> 0

in the case k = 2 (so that σ̂
(2)
F ∈ (0, 1)). Note that this representation differs from

the representation of Theorem 1 only in the case k = 2, but is “less desirable” since
it fails to satisfy property (IIc) (in that case). We will not prove the correctness of

the formula AF = Ĵ2(σ̂
(2)
F )/|DF |1/12 in the case k = 2 since this formula is not used

in the demonstration of any of our results. However, it can be derived without too
much difficulty using complex integration techniques and complex fractional linear
transformations.

We will now explain why the representation of Theorem 1 is practical for compu-
tation and how it can be implemented in practice. It is clear that this representation
reduces the calculation of AF to the following basic computations:

(i) the algebraic computation of DF and σF ;
(ii) the numeric computation of z1/12 for z > 0 and of Jk(x) for x ∈ (0, 1).

We claim that each of these basic computations can be easily performed using
standard mathematical software.

Consider first the algebraic computation of DF and σF . If a factorization∏4
i=1 (αiX − βiY ) of F (X,Y ) is given, then we can compute DF and σF directly

from their definitions using elementary algebraic operations. On the other hand,
if a factorization of F (X,Y ) is not given, we can always (effectively) obtain one
from the coefficients of F (X,Y ) — using the formula for solving quartic polynomial
equations if necessary to first find the roots of F (x, 1) — and then calculate DF
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and σF as before. In the latter case, i.e., the case where

F (X,Y ) = a0X
4 + a1X

3Y + a2X
2Y 2 + a3XY 3 + a4Y

4,

it is usually better to compute the discriminant DF using the well known formula6

DF = −80a0a1a
2
2a3a4 + 144a2

0a2a
2
3a4 − 6a0a

2
1a

2
3a4 + 18a0a1a2a

3
3

− 192a2
0a1a3a

2
4 + 144a0a

2
1a2a

2
4 − 128a2

0a
2
2a

2
4 − 27a2

0a
4
3

+ 16a0a
4
2a4 − 4a0a

3
2a

2
3 + 18a3

1a2a3a4 − 27a4
2a

2
4

− 4a2
1a

3
2a4 − 4a3

1a
3
3 + a2

1a
2
2a

2
3 + 256a3

0a
3
4

(14)

since this avoids the complexity of factoring F (X,Y ). In principle, it should also
be possible to express σF in terms of the coefficients of F . However, it is not
clear that the resulting expression would involve any fewer computational steps
than the routine of factoring F (X,Y ), computing ρF , and then computing σF
with (6). Indeed, it is not at all clear to us that ρF (and hence σF ) could even be
effectively computed (using only elementary algebraic operations) if there were no
formula for solving quartic polynomial equations. This suggests that there may be
significant complications in the calculation of AF for forms of higher degree (see [2,
Theorem 3]).

Now consider the numeric computation of z1/12 and Jk(x). Clearly the only
potential difficulty here lies with the evaluation of the integrals I(x). A glance
at (7) reveals that each of the integrals I(x) has singularities at the endpoints
z = 0, z = 1 of the integration interval, but is otherwise well suited for numerical
evaluation. We can easily remove the singularities of I(x) by splitting the integral
into two parts at the point z = 1/2 and applying the respective substitutions z = w2

and z = 1− w2. After doing this, we obtain the expression

I(x) = 2

∫ 1/
√

2

0

dw

(1 − w2)1/2(1− xw2)1/2

+ 2

∫ 1/
√

2

0

dw

(1 − w2)1/2(1 − x+ xw2)1/2

(15)

which can be readily evaluated using a standard numerical integration package.
Combining these observations with the earlier ones concerning the calculation of
DF and σF , it is then a straightforward matter to construct an algorithm for
computing AF in practice.

It is worth mentioning that the function I(x) is actually a scalar multiple of a
complete elliptic integral of the first kind, and is the integral representation of a
particular hypergeometric function. To be precise,

I(x) = 2K(x) = π 2F1

(
1

2
,
1

2
; 1;x

)
(16)

where K(m) =
∫ π/2
0

(1−m sin2 θ)−1/2 dθ is the complete elliptic integral of the first
kind with parameter m and 2F1(a, b; c;x) is the ordinary hypergeometric function
with coefficients a, b, and c (see [1, p. 591]). Many commercially available software
packages contain built-in elliptic integrals and hypergeometric functions. Hence
(16) provides an alternative way to evaluate I(x) in practice. It has been our
experience, however, that these built-in functions sometimes fail to converge for

6This formula can be easily obtained using a computer algebra software package [6].
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values of x close to 1. In such cases, (15) can still be numerically integrated to
obtain a value for I(x).

While the representation of Theorem 1 is satisfactory for most purposes, it does
have a couple of drawbacks. The most obvious drawback is the omission of the case
DF = 0. However, this is not too serious since for such forms F , the area AF is
infinite unless F (X,Y ) = Q(X,Y )2 for some definite quadratic form Q in which
case AF = 2π/|DQ|1/2. The other drawback, which may be unavoidable, is the use
of three separate formulas to describe AF . It would be very satisfactory to have
one 7 formula for AF which covered all cases and exhibited properties similar to
the properties (I), (II), (III) stated above. In light of equations (2) and (3) from
§1, we suspect that this is not possible for the collection of quartic forms with real
coefficients; however, it may be possible for the collection of quartic forms with
complex coefficients.

Now let us consider the quantity |DF |1/12AF in greater detail. We already know
from equation (1) of the Introduction that the maximum value of |DF |1/12AF over
the class of quartic forms is 27/6B(1

4 ,
1
2 ) and that |DF |1/12AF assumes all values

between zero and its maximum. In light of equations (2) and (3), it is natural to
ask how the maximum varies with the number of conjugate pairs of F (x, 1). To
facilitate this discussion, we introduce the following notation. Put

M∗
n,k = max |DF |1/n(n−1)AF

where the maximum is taken over all binary forms F of degree n with real coeffi-
cients, non-zero discriminant, and with the property that the polynomial F (x, 1)
has exactly k pairs of complex conjugate roots.

From the representations (9) and (11) of AF , it is clear that in the case n = 4
we have

M∗
4,2 < M∗

4,1 and M∗
4,2 < M∗

4,0

since it is certainly true from the definitions of (8) and (12) of the functions J0, J1,

J2, Ĵ2 that

J2(x) < J1(x) and Ĵ2(x) < J0(x)

for all x ∈ (0, 1). Together with equations (2) and (3) of the Introduction, this
suggests that

M∗
4,2 < M∗

4,1 < M∗
4,0.

In fact, we will prove a much stronger result in §4.

Theorem 2. Put

Mn,k = max |DF |1/n(n−1)AF

where the maximum is taken over all binary forms F (X,Y ) of degree n with com-
plex coefficients, non-zero discriminant, and with the property that the polynomial
F (x, 1) has exactly k pairs of complex conjugate roots. Then for each n ≥ 2,

Mn,0 > Mn,1 > · · · > Mn,[n2 ].

Moreover, for each k = 0, 1, . . . , [n2 ], Mn,k is attained by a form of degree n with
precisely n−2k real linear factors, the greatest number possible. In particular, Mn,k

is attained by a form with real coefficients.

7Such a formula need not contain DF explicitly.
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Since the Mn,k are attained by forms with real coefficients, Theorem 2 remains
true if we restrict our attention to this class of forms:

Corollary 1. Put

M∗
n,k = max |DF |1/n(n−1)AF

where the maximum is taken over all binary forms F (X,Y ) of degree n with real
coefficients, non-zero discriminant, and with the property that F (X,Y ) has exactly
k definite quadratic factors in its factorization over R. Then for all n and k,

M∗
n,k = Mn,k.

Consequently, for each n ≥ 2,

M∗
n,0 > M∗

n,1 > · · · > M∗
n,[n2 ].

In particular,

M∗
4,2 < M∗

4,1 < M∗
4,0.

Theorem 2 also has the following consequence, which is essentially a restatement
of Theorem 3 from [3]:

Corollary 2. The maximal value Mn of the quantity |DF |1/n(n−1)AF over the class
of forms of degree n with complex coefficients and non-zero discriminant is attained
by a form F with real coefficients for which the polynomial F (x, 1) has n distinct
real roots. That is,

Mn = M∗
n,0

for all n.

Consequently, Theorem 2 can be viewed as a generalization of this earlier result.
Theorem 2 raises several interesting questions regarding the nature of the se-

quences {Mn,k}[
n
2 ]

k=0:

• What are the values of Mn,k?
• Are there canonical classes of forms Fn,k for which

Mn,k = |DFn,k |1/n(n−1)AFn,k?

• Is there a relationship among the sequences {Mn,k}[
n
2 ]

k=0?
• What is the “limiting behavior” of the Mn,k as n becomes large?

While we are unable to give complete answers to these questions at this time, we
can give an indication of what the answers might be.

From equations (1), (2), and (3) of the Introduction, we clearly have 8

M2,0 = ∞,

M2,1 = 2π ≈ 6.28318,

M3,0 = 3B

(
1

3
,
1

3

)
≈ 15.89974,

M3,1 =
√

3B

(
1

3
,
1

3

)
≈ 9.17972,

M4,0 = 27/6B

(
1

4
,
1

2

)
≈ 11.77264;

8Numerical approximations are chopped, not rounded.



1278 MICHAEL A. BEAN

moreover, we have a complete characterization of the forms Fn,k for which these
values of Mn,k occur. We will show in §5 that

M4,1 ≈ 9.10746,(17)

M4,2 ≈ 7.00758,(18)

using the formulas for |DF |1/12AF given in Theorem 1 and properties of the hyper-
geometric function. Unfortunately, we have not been able to determine canonical
forms F4,1, F4,2 which give rise to these values. Consequently, the given values of
M4,1 and M4,2 are numerical approximations only.9

When n ≥ 5, we do not even have numerical approximations for the Mn,k.
However, we do have some indication of what the values might be when k = 0.
From Theorem 2 and the fact that {Mn} is decreasing, it is clear that the sequence
{Mn,0} is also decreasing. On the basis of this fact and a correspondence between
forms and equiangular polygons, we conjectured in [2] that

Mn,0 = |DF∗
n
|1/n(n−1)AF∗

n
, n ≥ 5,

where

F ∗n (X,Y ) =
n∏

j=1

(
X sin

(
jπ

n

)
− Y cos

(
jπ

n

))
.

We also conjectured that limn→∞Mn,0 = 2π. If these conjectures were true, then
the sequence {Mn,0} would have a very natural characterization.

Unfortunately, there are no obvious candidates for Mn,k when k 6= 0. Indeed,
our analysis of the situation for quartic forms indicates that determining the values
of Mn,k in general could be quite difficult. It would appear from the known values
of Mn,k that {Mn,0} is the only sequence among those defined by fixing a value of
k which is decreasing.

It is not clear whether knowledge of the values of Mn,k for k 6= 0 would have
any immediate application. Nevertheless, it would be interesting to know the
values of the sequence {Mn,[n2 ]}∞n=2, if only to compare them with the sequence

{Mn,0}∞n=2. It is clear that limn→∞Mn,[n2 ] 6= 0; in fact, an examination of the
forms Xn + Y n indicates that limn→∞Mn,[n2 ] ≥ 4. One is tempted to conjecture
that limn→∞Mn,[n2 ] = 2π, although at present there is not enough evidence to
confidently predict that this is so. If one could show that limn→∞Mn,0 = 2π and
limn→∞Mn,[n2 ] = 2π, then it would necessarily follow that limn→∞Mn,kn = 2π for

every sequence of integers kn satisfying 0 ≤ kn ≤ [n2 ].

3. Formulas for calculating AF

In this section, we will derive the formulas given in the statement of Theorem 1
for calculating AF when F is a quartic form. The practical implementation of these
formulas was discussed in §2.

We begin by recalling some notation and some elementary facts from [3]. The
facts stated below are actually true in the more general context of forms of degree
n with complex coefficients, and will be used in the proofs of both Theorem 1 and
Theorem 2. (The proof of Theorem 2 will be given in the next section.)

9Nevertheless, the methods presented in §5 allow us (in principle) to determine the values of
M4,1 and M4,2 to any desired accuracy.
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Let GL2(R) denote the group of 2 × 2 real invertible matrices. For any form

F (X,Y ) ∈ C[X,Y ] and any T =

(
a b
c d

)
∈ GL2(R), let FT denote the form given

by FT (X,Y ) = F (aX + bY, cX + dY ). We will say that two forms F and G are
equivalent under GL2(R) if G = FT for some T ∈ GL2(R).

In [3], we showed that the quantity |DF |1/n(n−1)AF is invariant under transfor-
mations in GL2(R), i.e. |DFT |1/n(n−1)AFT = |DF |1/n(n−1)AF for all T ∈ GL2(R),
and is invariant with respect to replacing F by γF for any complex number γ. 10

We also showed that AF has the integral representation

AF =

∫ ∞

−∞

du

|F (u, 1)|2/n =

∫ ∞

−∞

dv

|F (1, v)|2/n .(19)

Moreover, we made the observation that a GL2(R) transformation can be specified
(up to multiplication) by indicating its action on any three independent linear
factors of a form F (X,Y ). Indeed, we noted that a GL2(R) transformation applied
to any form F (X,Y ) induces a real fractional linear transformation of the roots of
the polynomial F (1, y), and that any real fractional linear transformation may be
defined by the rule

(w − w1)(w3 − w2)

(w − w2)(w3 − w1)
=

(z − z1)(z3 − z2)

(z − z2)(z3 − z1)

where the z’s and w’s are real numbers such that z1, z2, z3 are mapped to w1, w2,
w3 respectively. From these three facts, we concluded that a formula for calculating
AF can be obtained by simply specifying three of the roots of FT (1, y), using (19)
to calculate AFT , and then multiplying the result by |DFT /DF |1/n(n−1).

Now suppose that F (X,Y ) =
∏4

i=1(αiX − βiX) is a binary quartic form with
real coefficients and non-zero discriminant, and let k be the number of pairs of
complex conjugate roots of the polynomial F (x, 1). (k is also the number of pairs
of complex conjugate roots of F (1, y).) Suppose further that the fractions αi/βi

are arranged according to (4) in §2, and let the quantities ρF and σ
(k)
F be defined

by (5) and (6) respectively. Let the functions I and Jk be defined by (7) and (8)
respectively. We will derive the representations for AF stated in Theorem 1 by
separately considering the cases k = 0, k = 1, and k = 2.

In each of these three cases, our strategy will be the same. First, we will use
a suitable transformation from GL2(R) to reduce the calculation of |DF |1/12AF in
general to its calculation over a class of “canonical” forms F (t) which depends on
a single real parameter t. Then, we will use the integral representation given in
(19) above to obtain an explicit formula for |DF (t) |1/12AF (t) . Finally, we will use
a suitable quadratic or linear fractional transformation to transform the resulting
integrals into integrals of hypergeometric type. In each case, the initial GL2(R)
transformation will be chosen to ensure that the subsequent calculations lead to
the desired representation of AF .

Case 1: k = 0. In this case, the polynomial F (x, 1) has four real roots (counting
any root at infinity).

10Note that |DF |1/n(n−1)AF is not invariant with respect to GL2(C). See, for example,
equation (2) of §1.
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There is a real fractional linear transformation of the roots such that
α1

β1
7→ −∞,

α2

β2
7→ 0,

α3

β3
7→ t,

α4

β4
7→ 1, t ∈ (0, 1)

and so every form F in this class is equivalent under GL2(R) to a form of the type

F (t)(X,Y ) = ±XY (Y −X)(Y − tX), t ∈ (0, 1).

(Note that the statement t ∈ (0, 1) is actually a consequence of our assignment of
α1/β1, α2/β2, α4/β4 since real fractional linear transformations preserve or reverse
the cyclic order of the real numbers.) Under such a transformation

ρF = t.(20)

Using the representation (19), we find that

AF (t) =

∫ 0

−∞

dv

(−v)1/2(1− v)1/2(1− tv)1/2
+

∫ 1

0

dv

v1/2(1− v)1/2(1− tv)1/2

+

∫ 1/t

1

dv

v1/2(v − 1)1/2(1− tv)1/2
+

∫ ∞

1/t

dv

v1/2(v − 1)1/2(tv − 1)1/2

= 2

∫ 1

0

dw

w1/2(1− w)1/2(1− tw)1/2
+ 2

∫ 1

0

dw

w1/2(1− w)1/2(1− (1− t)w)1/2
.

(The latter integrals follow from the former by applying the respective substitutions
v = −w/(1− w), v = w, v = (1 − (1− t)w)/t, v = 1/(tw).) Hence

|DF (t) |1/12AF (t) = 2 t1/6(1− t)1/6 (I(t) + I(1− t)) .

Now from (20) and the definition of σ
(0)
F , we have σ

(0)
F = t. Consequently, if F is

any form in the class k = 0, then

|DF |1/12AF = J0(σ
(0)
F )

where

J0(x) = 2x1/6(1− x)1/6 (I(x) + I(1− x)) .

(This formula is actually a special case of Theorem 3 from [2]. The derivation is
presented here for completeness.)

Case 2: k = 1. In this case, the polynomial F (x, 1) has two real roots and one
pair of complex conjugate roots.

There is a real fractional linear transformation of the roots such that
α1

β1
7→ −1,

α2

β2
7→ 1,

α3

β3
7→ it,

α4

β4
7→ −it, t > 0,

and so every form F in this class is equivalent under GL2(R) to a form of the type

F (t)(X,Y ) = (Y 2 −X2)(Y 2 + t2X2), t > 0.

Under such a transformation,

ρF =

(
1− it

1 + it

)2

.(21)
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By the symmetry of F (t), and using the representation (19), we have

AF (t) = 2

∫ 1

0

dv

(1− v2)1/2(v2 + t2)1/2
+ 2

∫ ∞

1

dv

(v2 − 1)1/2(v2 + t2)1/2
.

Further

∫ 1

0

dv

(1− v2)1/2(v2 + t2)1/2
=

1

2(1 + t2)1/2

∫ 1

0

dw

w1/2(1− w)1/2(1− 1

1 + t2
w)1/2

(using the substitution v =
√

1− w) and

∫ ∞

1

dv

(v2 − 1)1/2(v2 + t2)1/2
=

1

2(1 + t2)1/2

∫ 1

0

dw

w1/2(1− w)1/2(1 − t2

1 + t2
w)1/2

(using the substitution v = 1/
√

1− w). Hence

|DF (t) |1/12AF (t) =
21/3t1/6

(1 + t2)1/6

{
I

(
1

1 + t2

)
+ I

(
t2

1 + t2

)}

= 21/3s1/12(1− s)1/12 (I(s) + I(1− s))

where s = 1/(1 + t2).

We claim that s = 1
2 (1±√(1 + <ρF )/2). From (21) we have ρF = eiζ for some

ζ ∈ (−π, π) and so (1− it)/(1+ it) = ±eiζ/2. Suppose that (1− it)/(1+ it) = eiζ/2.

Then t = −i(1− eiζ/2)/(1 + eiζ/2) = −(sin ζ
2 )/(1 + cos ζ

2 ) and so s = 1/(1 + t2) =

(1+cos ζ
2 )/2. On the other hand, if (1−it)/(1+it) = −eiζ/2, then s = (1−cos ζ

2 )/2.

Now cos ζ
2 =

√
(1 + cos ζ)/2. Consequently, s = 1

2 (1±√(1 + <ρF )/2) as claimed.

Now s = 1
2 (1 ±√(1 + <ρF )/2) if and only if 1 − s = 1

2 (1 ∓√(1 + <ρF )/2).

Hence σ
(1)
F , which is defined to be 1

2 (1 +
√

(1 + <ρF )/2), is either s or 1− s. Since

|DF (t) |1/12AF (t) is invariant with respect to interchanging s and 1 − s, it follows
that

|DF (t) |1/12AF (t) = 21/3(σ
(1)
F )1/12(1 − σ

(1)
F )1/12

(
I(σ

(1)
F ) + I(1− σ

(1)
F )
)
.

Consequently, if F is any form in the class k = 1, then

|DF |1/12AF = J1(σ
(1)
F )

where

J1(x) = 21/3x1/12(1− x)1/12 (I(x) + I(1 − x)) .

Case 3: k = 2. In this case, the polynomial F (x, 1) has two pairs of complex
conjugate roots.

There is a real fractional linear transformation of the roots such that
α1

β1
7→ −i, α2

β2
7→ i,

α3

β3
7→ −it, α4

β4
7→ it, t ∈ (0, 1),

and so every form F in this class is equivalent under GL2(R) to a form of the type

F (t)(X,Y ) = ±(Y 2 +X2)(Y 2 + t2X2) t ∈ (0, 1).
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Under such a transformation,

ρF =

(
1 + t

1− t

)2

> 1.(22)

By the symmetry of F (t), and using the representation (19), we have

AF (t) = 2

∫ ∞

0

dv

(v2 + 1)1/2(v2 + t2)1/2

=

∫ 1

0

dw

w1/2(1− w)1/2(1 − (1− t2)w)1/2
.

(The latter integral follows from the former using the substitution v =
√

1/w − 1.)
Hence

|DF (t) |1/12AF (t) = 21/3t1/6(1 − t2)1/3I(1− t2).

From (22) and the definition of σ
(2)
F , it is straightforward to show that

t2 =

(√
ρF − 1√
ρF + 1

)2

= σ
(2)
F .

Consequently, if F is any form in the class k = 2, then

|DF |1/12AF = J2(σ
(2)
F )

where

J2(x) = 21/3x1/12(1− x)1/3I(1− x).

This completes the proof of Theorem 1.

4. The nature of the sequences {Mn,k}
Put

Mn,k = max |DF |1/n(n−1)AF

where the maximum is taken over all binary forms F of degree n with complex coef-
ficients, non-zero discriminant, and with the property that the polynomial F (x, 1)
has exactly k pairs of complex conjugate roots. In this section, we will show that
for each n ≥ 2,

Mn,0 > Mn,1 > · · · > Mn,[n2 ].

We will also show that for each k = 0, 1, . . . , [n2 ], Mn,k is attained by a form of
degree n with precisely n − 2k real linear factors, the greatest number possible.
Theorem 2 and its corollaries will then follow.

We remarked in the previous section that the quantity |DF |1/n(n−1)AF is in-
variant with respect to GL2(R) and with respect to replacing F by γF for any
complex number γ. Hence, when analyzing |DF |1/n(n−1)AF , we need only consider
the quantity

Q(γ1, . . . , γn) =
∏
i<j

|γj − γi|2/n(n−1)

∫ ∞

−∞

dv

|(v − γ1) · · · (v − γn)|2/n



AREAS ASSOCIATED WITH BINARY QUARTIC FORMS 1283

over all n-tuples (γ1, . . . , γn) of distinct complex numbers. We will adopt the
convention that if one of these γ’s is infinite, say γn, then

Q(γ1, . . . , γn) =
∏

1≤i<j≤n−1

|γj − γi|2/n(n−1)

∫ ∞

−∞

dv

|(v − γ1) · · · (v − γn−1)|2/n .

To simplify the discussion which follows, we introduce the following notation.
Let Cn,k be the collection of n-tuples (γ1, . . . , γn) of complex numbers with the
following properties:

(i) the numbers γ1, . . . , γn are all distinct;
(ii) there are exactly k complex conjugate pairs among the numbers γ1, . . . , γn.

Further, let C∗n,k be the subset of Cn,k whose elements (γ1, . . . , γn) satisfy the fol-
lowing additional property:

(iii) any component η of (γ1, . . . , γn) whose complex conjugate is not one of the
other components of (γ1, . . . , γn) must be a real number.

Then

Mn,k = max
(γ1,... ,γn)∈Cn,k

Q(γ1, . . . , γn)

and

M∗
n,k = max

(γ1,... ,γn)∈C∗n,k
Q(γ1, . . . , γn).

(Recall that M∗
n,k was defined in §2 to be the maximum value of |DF |1/n(n−1)AF

over all binary forms F of degree n with real coefficients, non-zero discriminant, and
for which the polynomial F (x, 1) has exactly k pairs of complex conjugate roots.)
We will show that

(γ1, . . . , γn) ∈ Cn,k+1 =⇒ Q(γ1, . . . , γn) < Mn,k(23)

and that

(γ1, . . . , γn) ∈ Cn,k \ C∗n,k =⇒ Q(γ1, . . . , γn) < M∗
n,k(24)

and Theorem 2 will follow.
Before discussing the details of the proof, let us recall the following terminology

from the theory of complex functions. A continuous real-valued function u of a sin-
gle complex variable z = x+ iy is harmonic if it has continuous partial derivatives
of the second order and satisfies Laplace’s equation ∂2u/∂x2 + ∂2u/∂y2 = 0. A
continuous real-valued function v of a single complex variable is said to be subhar-
monic if, in any region of the complex plane, v is less than or equal to the harmonic
function u which coincides with v on the boundary of the region. A subharmonic
function need not be continuous; however, this assumption allows one to simplify
the definition to some extent.

An important property of subharmonic functions is that they satisfy a maxi-
mum principle. The maximum principle for subharmonic functions states that a
non-constant subharmonic function has no maximum in its region of definition.
Consequently, the maximum of a subharmonic function on a closed bounded set is
attained on the boundary of the set.

The generalizations of these concepts to functions of several complex variables are
respectively the notions of pluriharmonicity and plurisubharmonicity. A continuous
real-valued function of several complex variables is said to be plurisubharmonic if
its restriction to any complex line is subharmonic on that line. The function is
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pluriharmonic if its restriction to any complex line is harmonic on that line. (A
complex line in Cn is a set of the form {a+ bζ : ζ ∈ C} where a, b ∈ C n.) There is
also a maximum principle for plurisubharmonic functions analogous to the one for
subharmonic functions. (For details, see [7].)

Now consider the quantity Q(γ1, . . . , γn). In [3], we showed that Q(γ1, . . . , γn)
is plurisubharmonic on the region

R = Cn \
n⋃
i=1

{(γ1, . . . , γn) ∈ Cn : γi ∈ R} .

We will prove (23) and (24) by successively applying the maximum principle for
plurisubharmonic functions.

First suppose that (γ1, . . . , γn) ∈ Cn,k+1. To distinguish between the γi’s which
belong to a conjugate pair and those which do not, we will write α1, α1, . . . , αk+1,
αk+1 for the conjugate pairs and β1, . . . , βn−2(k+1) for the rest; if we wish to em-
phasize that a number (such as a βj) is real, we will write rj . By re-arranging the
γi’s, if necessary, we may assume that

(γ1, . . . , γn) = (α1, α1, . . . , αk, αk, αk+1, αk+1, β1, . . . , βn−2(k+1))

(since Q(γ1, . . . , γn) is invariant under all permutations of γ1, . . . , γn).
Suppose that we fix α1, . . . , αk, β1, . . . , βn−2(k+1) and consider the quantity

Q(α1, α1, . . . , αk, αk, γ, δ, β1, . . . , βn−2(k+1)) over all γ, δ ∈ C distinct from the
αi, βj . (Note that γ, δ need not be a conjugate pair here.) Then by the maxi-
mum principle for plurisubharmonic functions,

Q(α1, α1, . . . , αk, αk, γ, δ, β1, . . . , βn−2(k+1))

≤ Q(α1, α1, . . . , αk, αk, r1, r2, β1, . . . , βn−2(k+1))

for some real numbers r1, r2; moreover, the inequality is strict if at least one of γ,
δ is non-real. Consequently,

Q(α1, α1, . . . , αk, αk, αk+1, αk+1, β1, . . . , βn−2(k+1))

< Q(α1, α1, . . . , αk, αk, r1, r2, β1, . . . , βn−2(k+1))

≤Mn,k.

Hence, if (γ1, . . . , γn) ∈ Cn,k+1, then Q(γ1, . . . , γn) < Mn,k as claimed in (23).
Now suppose that (γ1, . . . , γn) ∈ Cn,k \ C∗n,k. As in the previous paragraph, we

can assume that (γ1, . . . , γn) = (α1, α1, . . . , αk, αk, β1, . . . , βn−2k) where the αi
are all non-real and the βj do not have conjugates among the other components.
Suppose that we fix all the αi, βj except for β1. Then by the maximum principle
for subharmonic functions,

Q(α1, α1, . . . , αk, αk, β1, . . . , βn−2k) < Q(α1, α1, . . . , αk, αk, r1, β2, . . . , βn−2k)

for some real number r1. Continuing in this way, we find that

Q(α1, α1, . . . , αk, αk, β1, . . . , βn−2k) < Q(α1, α1, . . . , αk, αk, r1, . . . , rn−2k)

≤M∗
n,k

(for some real numbers r1, . . . , rn−2k). Consequently, if (γ1, . . . , γn) ∈ Cn,k \ C∗n,k,
then Q(γ1, . . . , γn) < M∗

n,k as claimed in (24).

Now from (23), it follows, by induction on k, that

Mn,0 > Mn,1 > · · · > Mn,[n2 ];
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and from (24), it follows that each Mn,k is attained by a form F of degree n with
real coefficients for which the polynomial F (x, 1) has precisely n − 2k real roots
(counting any root at infinity).

This completes the proof of Theorem 2. Corollary 1 and Corollary 2 follow
immediately.

5. Numerical values for {M4,k}
We conclude this paper by giving numerical values for {M4,k}2k=0. In particular,

we will show that

M4,1 ≈ 9.10746

and

M4,2 ≈ 7.00758.

(The value of M4,0 was previously determined in [2] to be 27/6B(1
4 ,

1
2 ) ≈ 11.77264.)

Unfortunately, we have not been able to determine canonical quartic forms F4,1,
F4,2 which give rise to these values. Hence, the values of M4,1 and M4,2 given are
numerical approximations only. Nevertheless, we will see that M4,1 and M4,2 can
be determined (in principle) to any desired accuracy.

In view of Theorem 1, we have

M4,k = max
x∈(0,1)

Jk(x)

where

J0(x) = 2x1/6(1− x)1/6 (I(x) + I(1− x)) ,

J1(x) = 21/3x1/12(1 − x)1/12 (I(x) + I(1 − x)) ,

J2(x) = 21/3x1/12(1 − x)1/3I(1− x),

and where

I(x) =

∫ 1

0

dz

z1/2(1− z)1/2(1− xz)1/2
.

Hence, to determine the values of M4,k, we need only analyze the functions Jk(x).
Now the simplest way to get a sense of the behavior of the Jk is to plot their

graphs. Initial plots of J1 and J2 suggest that the maxima occur near one (or
both) of the endpoints of the interval (0, 1); magnifications of J1 and J2 near x = 0
confirm that this is indeed the case. (See Figures 2 and 3.)

From the graphs of J1 and J2, we surmise that J1 and J2 have the following
properties:

(i) Jk(x) → 0 as x→ 0 or 1;
(ii) J1 has exactly three critical points: one local minimum at x = 1

2 and two
global maxima (one near each endpoint); moreover, J1 is symmetric about
x = 1

2 ;
(iii) J2 has exactly one critical point — a global maximum near the endpoint

x = 0.
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Figure 2. Graphs of J1

Figure 3. Graphs of J2

Table 1. Numerical values of J1 near its maximum

x J1(x)
.002365 9.107465779
.002366 9.107465839
.002367 9.107465888
.002368 9.107465926
.002369 9.107465953
.002370 9.107465970
.002371 9.107465975
.002372 9.107465970
.002373 9.107465953
.002374 9.107465926
.002375 9.107465888

Assuming these properties are true, we can determine the values of M4,1 and M4,2

to any desired accuracy by computing values of J1(x) and J2(x) on either side of
their respective maximum points. 11 The results of such computations are given in
Table 1 and Table 2.

11Of course, when numerically evaluating I(x), we will use the form of I(x) given by (15) or
(16) in §2.
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Table 2. Numerical values of J2 near its maximum

x J2(x)
.0000975 7.007579498
.0000976 7.007579794
.0000977 7.007580038
.0000978 7.007580231
.0000979 7.007580372
.0000980 7.007580463
.0000981 7.007580503
.0000982 7.007580493
.0000983 7.007580432
.0000984 7.007580320
.0000985 7.007580159

From these tables, it appears that

M4,1 ≈ 9.10746,

M4,2 ≈ 7.00758,

as earlier claimed.
Before we can say with certainty that these values are correct to the given number

of decimal places, we must show that properties (i), (ii), (iii) of J1 and J2 stated
above actually hold. In particular, we must show that the graphs in Figures 2 and 3
are accurate representations of the functions J1, J2 near x = 0, i.e., we must show
that the software used to generate the graphs has not inadvertently concealed some
singularity. The only way to do this is to give an analytic proof of properties (i),
(ii), and (iii).

It is convenient to prove properties (i), (ii), (iii) for a slightly more general class
of functions.

Lemma 1. Consider the family of functions Sr, for r > 0, defined by

Sr(x) = xr(1− x)r (I(x) + I(1− x)) , x ∈ (0, 1).

The behavior of Sr(x) depends on whether r ≥ 1
8 or r < 1

8 . If r ≥ 1
8 , then Sr(x) is

increasing for x ∈ (0, 1
2 ) and decreasing for x ∈ (1

2 , 1); hence Sr(x) has exactly one

critical point — a global maximum point at x = 1
2 . On the other hand, if r < 1

8 ,

then Sr(x) has exactly three critical points and x = 1
2 is a local minimum point.

In either case, Sr(x) approaches zero as x approaches the endpoints of the interval
(0, 1).

Lemma 2. Consider the family of functions Tr,s, for r > 0 and s > 0, defined by

Tr,s(x) = xr(1− x)sI(x), x ∈ (0, 1).

If 3r+4s > 1, then Tr,s(x) has exactly one critical point which is a global maximum
point. Moreover, Tr,s(x) approaches zero as x approaches either endpoint of the
interval (0, 1).

Remark. It may be possible to weaken the condition 3r + 4s > 1 in Lemma 2.
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Figure 4. Graphs of Sr for r = 1/6, r = 1/8, and r = 1/12

Now properties (i), (ii), (iii) of J1 and J2 follow immediately from Lemma 1 and
Lemma 2 since J1(x) = S1/12(x) and J2(x) = T1/3,1/12(x). Notice that J0(x) =
S1/6(x). Hence, using Lemma 1 and the observation that

I

(
1

2

)
=

∫ 1

0

dt

t1/2(1 − t)1/2(1 − 1
2 t)

1/2

=

(
1

2

)1/2 ∫ 1

0

ds

s3/4(1 − s)1/2
(t = 1−√s)

=

(
1

2

)1/2

B

(
1

4
,
1

2

)
,

we have M4,0 = 27/6B(1
4 ,

1
2 ) as shown previously in [2].

Before giving the proofs of Lemma 1 and Lemma 2, we would like to make two
remarks. First of all, the function S1/8 has the “flattest” graph among the functions
Sr, as a comparison of S1/6, S1/8, S1/12 in Figure 4 clearly illustrates; indeed, it is
so flat that

I(x) + I(1 − x) ≈
21/4B

(
1

4
,
1

2

)
x1/8(1− x)1/8

for x ∈ (1
4 ,

3
4 ). Secondly, the local minimum of J1(x) (= S1/12(x)) at x = 1

2 actually

corresponds to the form XY (X2 +Y 2) whose graph could be considered the “most
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symmetric” among quartic forms F (X,Y ) in the class k = 1; hence, unlike the
class k = 0, the “natural” candidate XY (X2 +Y 2) does not maximize the quantity
|DF |1/12AF when k = 1.

We now proceed to prove Lemmas 1 and 2. As might be expected, both proofs
make essential use of properties of the hypergeometric function.

Proof of Lemma 1. For each r > 0, put

Pr(x) = xr(1− x)r , x ∈ (0, 1).

Then

Sr(x) = Pr(x)I(x) + Pr(1− x)I(1 − x), x ∈ (0, 1).(25)

We first show that Sr(x) approaches zero as x approaches the endpoints of the
interval (0, 1). For this purpose, put ε = min(r/2, 1/2) > 0. Then, using the
estimates 1− x ≤ 1− xt and 1− t ≤ 1− xt, we have

Pr(x)I(x) ≤ xr(1− x)r−ε
∫ 1

0

(1− xt)ε dt

t1/2(1− t)1/2(1− xt)1/2

≤ xr(1− x)r−ε
∫ 1

0

dt

t1/2(1− t)1−ε

= xr(1− x)r−εB (1/2, ε)

and so Pr(x)I(x) → 0 as x → 1. Similarly, Pr(x)I(x) → 0 as x → 0. Hence
Sr(x) → 0 as x→ 0 or 1 as claimed.

Now put

Vr(x) =
x(1 − x)

rPr(x)Pr(1− x)
S′r(x), x ∈ (0, 1).

We will show that Sr behaves as asserted in the statement of Lemma 1 by examining
the signs of Vr and V ′r . Our argument will make essential use of the following
differential equations for Pr and I:

x(1 − x)P ′r(x)− r(1 − 2x)Pr(x) = 0,(26)

x(1 − x)I ′′(x) + (1− 2x)I ′(x) − 1

4
I(x) = 0.(27)

(The first of these is easily verified; the second is a special case of the hypergeometric
equation (see [1, p. 562]).) Notice that the signs of Vr and S′r are identical for
x ∈ (0, 1) and that Vr(

1
2 ) = S′r(

1
2 ) = 0.

From (25) we have

S′r(x) = P ′r(x)I(x) + Pr(x)I ′(x)− P ′r(1− x)I(1 − x) − Pr(1− x)I ′(1− x)

and so, using the equation (26) for Pr, we can write

Vr(x) = (1− 2x)

{
I(x)

Pr(1 − x)
+
I(1− x)

Pr(x)

}
+

x(1− x)

r

{
I ′(x)

Pr(1 − x)
− I ′(1− x)

Pr(x)

}
.
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Differentiating the two expressions on the right-hand side of this equation and using
the equation for Pr again, we have

d

dx
(1− 2x)

{
I(x)

Pr(1− x)
+
I(1− x)

Pr(x)

}
= −2

{
I(x)

Pr(1− x)
+
I(1 − x)

Pr(x)

}
+ (1− 2x)

{
I ′(x)

Pr(1− x)
− I ′(1 − x)

Pr(x)

}
− r(1 − 2x)2

x(1− x)

{
I(x)

Pr(1− x)
+
I(1− x)

Pr(x)

}
and

d

dx

x(1 − x)

r

{
I ′(x)

Pr(1− x)
− I ′(1 − x)

Pr(x)

}
=

1− 2x

r

{
I ′(x)

Pr(1− x)
− I ′(1 − x)

Pr(x)

}
+

x(1− x)

r

{
I ′′(x)

Pr(1 − x)
+
I ′′(1− x)

Pr(x)

}
− (1− 2x)

{
I ′(x)

Pr(1− x)
− I ′(1 − x)

Pr(x)

}
.

Further, using the equation (27) for I(x) we have

x(1− x)

r

{
I ′′(x)

Pr(1− x)
+
I ′′(1− x)

Pr(x)

}
+

1− 2x

r

{
I ′(x)

Pr(1− x)
− I ′(1 − x)

Pr(x)

}
=

1

4r

{
I(x)

Pr(1− x)
+
I(1 − x)

Pr(x)

}
.

Hence, combining these three equations we find that

V ′r (x) = Qr(x)

{
I(x)

Pr(1 − x)
+
I(1− x)

Pr(x)

}
where

Qr(x) =
1

4r
− 2− r(1 − 2x)2

x(1− x)
.

Notice that the signs of V ′r and Qr are identical.
Now suppose that r ≥ 1/8. Then Qr(x) < 0 for all x (except possibly x = 1

2 ),

and so V ′r (x) < 0 for all such x, as well. Hence Vr is decreasing. Since Vr(
1
2 ) = 0,

it follows that Vr(x) > 0 if x ∈ (0, 1
2 ) and Vr(x) < 0 if x ∈ (1

2 , 1). Consequently,{
S′r(x) > 0 if x ∈ (0, 1

2 ),

S′r(x) < 0 if x ∈ (1
2 , 1),

since Vr and S′r have the same signs, and it follows that x = 1
2 is the global maximum

point for Sr. In fact, the point x = 1
2 is the only critical point in this case.

On the other hand, suppose that r < 1/8. Then Qr(
1
2 ) > 0 and so V ′r (

1
2 ) > 0.

Hence S′′r (1
2 ) > 0 and it follows that the point x = 1

2 is a local minimum point for
Sr. Since Sr tends to zero at the endpoints of the interval (0, 1), the function Sr
must therefore have at least three critical points in (0, 1). We claim that there are
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exactly three critical points. Notice that the sign of Qr(x) is the same as the sign
of the quadratic (

1

4r
− 2

)
· x(1 − x)− r(1 − 2x)2

for x ∈ (0, 1) since x(1−x) > 0, and that this quadratic has two roots in the interval
(0, 1) which are symmetrically located with respect to the midpoint 1

2 . Letting x0

denote the smaller root, we have
Qr(x) < 0 if x ∈ (0, x0),

Qr(x) > 0 if x ∈ (x0, 1− x0),

Qr(x) < 0 if x ∈ (1− x0, 1).

Now, arguing as in the previous case, we find that the function Sr has exactly
one critical point in the interval (x0, 1− x0). In fact,{

S′r(x) < 0 if x ∈ (x0,
1
2 ),

S′r(x) > 0 if x ∈ (1
2 , 1− x0).

Hence, let us consider the interval (0, x0). Notice that Vr is decreasing on this
interval since Qr(x) < 0 — and consequently V ′r (x) < 0 also — for x < x0. Notice
further that

Vr(x) = r−1x1−2r(1− x)1−2rS′r(x)

and that the quantity r−1x1−2r(1 − x)1−2r is increasing for x ∈ (0, 1
2 ). Thus S′r

is decreasing on the interval (0, x0) and it follows that Sr can have at most one
critical point in this interval. Since Sr tends to zero as x approaches zero, we see
that there is exactly one critical point. By symmetry, there is exactly one critical
point in the interval (1 − x0, 1). Therefore, we conclude that if r < 1/8, then the
function Sr has exactly three critical points in the interval (0, 1) and, moreover, the
point x = 1

2 is a local minimum point.
This completes the proof of Lemma 1.

Proof of Lemma 2. The proof of Lemma 2 is similar to the proof of Lemma 1.
However, here we will use the series expansion for I(x) in addition to the differential
equation (27). In particular, we will use the fact that

I(x) = π
∞∑
n=0


(

1

2

)
n

n!


2

xn

where (
1

2

)
n

=

(
1

2

)(
3

2

)(
5

2

)
· · ·
(

2n− 1

2

)
.

(This follows from the definition of a hypergeometric function and its series repre-
sentation [1], and can be derived directly from (7) of §2 by expanding (1 − xz)1/2

in a Taylor series and integrating term-by-term.)
To begin, note that Tr,s(x) approaches zero as x approaches either endpoint of

the interval (0, 1). Indeed, arguing as in the proof of Lemma 1, we have

xr(1− x)sI(x) ≤ xr(1− x)s−εB (1/2, ε)
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which tends to zero as x→ 0 or 1 (provided that 0 < ε < min(s, 1/2)). Hence Tr,s
has at least one maximum point in (0, 1). We will show that Tr,s has at most one
critical point in this interval, and Lemma 2 will follow.

Put

Vr,s(x) = x1−r(1− x)1−sT ′r,s(x).(28)

Then from the definition of Tr,s,

Vr,s(x) = r(1 − x)I(x) − sxI(x) + x(1 − x)I ′(x).

Differentiating Vr,s and using the fact that

d

dx
(x(1 − x)I ′(x)) =

1

4
I(x)

(just another way to write the hypergeometric differential equation (27)), we find
that

V ′r,s(x) =

(
1

4
− r − s

)
I(x) + (r − x(r + s))I ′(x).

Hence V ′r,s(x) < 0 if and only if

(r − x(r + s))I ′(x) <

(
r + s− 1

4

)
I(x).(29)

From the series definition of I(x), we have

I ′(x) = π

∞∑
n=0

(n+ 1)


(

1

2

)
n+1

(n+ 1)!


2

xn

from which it follows (after some calculation) that

(r − x(r + s))I ′(x) = π · r
4

+ π

∞∑
n=1


(

1

2

)
n

n!


2(

r

n+ 1

(
2n+ 1

2

)2

− (r + s)n

)
xn.

Similarly,

(
r + s− 1

4

)
I(x) = π

(
r + s− 1

4

)
+ π

∞∑
n=1


(

1

2

)
n

n!


2(

r + s− 1

4

)
xn.

Hence (29) will hold if each term in the latter series dominates the corresponding
term in the former series, i.e.,

r

4
< r + s− 1

4

and

r

n+ 1

(
2n+ 1

2

)2

− (r + s)n < r + s− 1

4
, for n = 1, 2, . . . .
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Both of these conditions are satisfied if 3r + 4s > 1 (the assumed condition of
Lemma 2). Consequently, V ′r,s(x) < 0 for all x ∈ (0, 1).

Now V ′r,s(x) < 0 means that Vr,s(x) is strictly decreasing; consequently, Vr,s(x) =
0 for at most one x ∈ (0, 1). Since Vr,s(x) and T ′r,s(x) have the same sign on (0, 1)
(see (28)), it follows that Tr,s has at most one critical point. However, Tr,s has at
least one maximum point since Tr,s(x) > 0 for x ∈ (0, 1) and since Tr,s(x) tends
to zero at the endpoints. Therefore, Tr,s has exactly one critical point — a global
maximum point — in the interval (0, 1).

This completes the proof of Lemma 2.
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