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A NUMERICAL SCHEME BASED ON

MEAN VALUE SOLUTIONS FOR

THE HELMHOLTZ EQUATION

ON TRIANGULAR GRIDS

M. G. ANDRADE AND J. B. R. DO VAL

Abstract. A numerical treatment for the Dirichlet boundary value problem
on regular triangular grids for homogeneous Helmholtz equations is presented,
which also applies to the convection-diffusion problems. The main charac-
teristic of the method is that an accuracy estimate is provided in analytical
form with a better evaluation than that obtained with the usual finite differ-
ence method. Besides, this classical method can be seen as a truncated series
approximation to the proposed method. The method is developed from the
analytical solutions for the Dirichlet problem on a ball together with an error
evaluation of an integral on the corresponding circle, yielding O(h4) accuracy.

Some numerical examples are discussed and the results are compared with
other methods, with a consistent advantage to the solution obtained here.

1. Introduction

In this paper we consider numerical solutions on triangular mesh grids for the
Helmholtz equation ∆u − λ2u = 0, with the use of a method that we should call
henceforth the Mean Value Scheme (MVS). The method is based on the same
central ideas of the method in [14] for square mesh grids; here, it is adapted for
the triangular mesh grids, with an improvement in the accuracy. The point of view
adopted is that of an approximation for the integral on the circle, associated to the
solution for the Helmholtz equation on the interior of this special domain, instead
of the usual discretization of the differential operator. This type of analytical result
can be seen as an extension to the Helmholtz equation, of the mean value theorem
for harmonic functions, which explain the allusion in the given name. The proposed
method can also be applied in a straightforward manner to the convection-diffusion
equations−∆u+α·∇u+qu = 0, with α a constant vector in R2 and q a nonnegative
scalar.

In the present setting, we consider circles that are centered on each mesh point
and contain the six neighboring points in the triangular mesh grid; a partial covering
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for the domain composed of an intertwined set of balls is defined by this construc-
tion. The six points on the circle provide an approximation to a line integral on the
circle associated with the “mean value” calculus for the Helmholtz equation. An
improvement in the precision is obtained here, when compared with the evaluation
presented in [14], since the number of points employed increased from four to six.

The standard finite difference method for Helmholtz equations with triangular
mesh grids can be traced from [10], and we shall refer to it as the Finite Difference
Scheme (FDS). In an analytical comparison presented in section 3, it is shown
that the FDS in fact stands as an approximation to the MVS. This conclusion is
straightforward since the modified Bessel function of zero order, which arises in
the proposed method, possesses the first three terms in its series representation
identical to the three terms appearing in the standard FDS. The precision error for
the MVS and the FDS is of order O(h4) (h is the mesh grid step size), however, we
can show that a tighter upper bound for the precision error holds for the MVS.

The precision error of the proposed method is compared numerically with other
difference schemes: the Single Cell High Order Scheme (SCHOS), defined on a
single square cell of size 2h over a 9-point stencil, according to [11]; the Discrete
Weighted Mean Approximation (DWMA), developed in [4] for a specific class of
problems and the Quadratic Influence Scheme (QIS), defined for a 9-point stencil,
as in [13]. Notice that the MVS is a 7-point scheme which naturally yields simpler
matrices than that obtained in a 9-point scheme, thus requiring less effort. The
largest precision that can be attained in regular grids with a 9-point scheme for
the Helmholtz equation is O(h6), see [11] and [1], which lead us to believe that the
precision error of order O(h4) is probably the precision error limit for the equation
studied in triangular mesh grids. In [1], the authors concentrate on finite difference
schemes for the Helmholtz equation, and they remark that they can see no natural
way to derive any equally good 9-point stencil from variational principles, which
somehow explains the permanence of finite difference methods even with a plethora
of finite element methods. The comparisons of the MVS with the three above-
mentioned methods are presented in section 6 for some examples studied in [8], [9]
and [4] with a consistent advantage to the MVS.

It is mentioned in different contexts that when the product λ × h is large the
methods generally provide poor results, e.g. [8], [9], [4], [13]. We also verify here
this general behavior for the FDS and the MVS in some numerical experiments,
but the results show that the MVS presents a good precision in a range of λ × h
that is not attained by any of the methods known by the authors, see section 6.
This suggests a wide application of the MVS to the so-called convection-diffusion
problem.

The paper is organized as follows. In section 2 the preliminary definitions are
given and in section 3 the main result (Theorem 3.1 and Corollary 3.1) is presented.
An analytical comparison with the FDS is developed and the advantage of the MVS
method is inferred from a favorable comparison between the precision error upper
bound for both methods. In section 4 the arguments in preparation for the proofs
are devised: the covering of the given domain with a set of two-dimensional balls,
and the error evaluation for the numerical approximation for the integral arising
from the mean value theorem for the Helmholtz equation. In Section 5 the proof of
the main results is developed from the previous results and from the construction
of the matrices involved. Section 6 presents numerical examples and comparisons
that underline the improvement in the accuracy obtained by the MVS method.
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Analytical solutions are employed for the comparisons among the MVS, the FDS,
the SCHOS and the DWMA methods, and the maximum relative and absolute
errors are exhibited. Some numerical estimates for the order of the discretization
errors are also presented.

2. Problem formulation and basic definitions

Let Ω be an open and limited subset of the Euclidean two-dimensional space,
with boundary denoted by ∂Ω and Ω̄ = Ω∪∂Ω, the closure of Ω. The pair (x, y) will
denote a point in Ω̄. Let u : Ω̄ 7→ R be a real function defined on Ω̄, and denote by
C0(Ω) (or C0(∂Ω)) the class of bounded and continuous functions on Ω (or ∂Ω) and
by Ck(Ω) the class of functions that is continuous and possesses continuous partial
derivatives in Ω of order k. Let us consider a function u(x, y) ∈ C6(Ω) ∩ C0(Ω̄)
satisfying the following standard Dirichlet problem:

Problem (Σ) :

{
∆u(x, y)− λ2u(x, y) = 0, (x, y) ∈ Ω;

u(x, y) = Ψ(x, y), (x, y) ∈ ∂Ω.

We assume that the basic conditions for the existence of a unique solution is
satisfied, e.g., [5].

In order to solve the problem numerically for a general domain Ω, it is necessary
to introduce a discrete grid on Ω̄ and evaluate u approximately at each point (node).
We adopt the uniform triangular grid as follows.

Definition 2.1. Let Gh denote a uniform triangular grid with step h covering the
region Ω̄ such that for some N and M

Gh := {(xi, yj) ∈ Ω̄, i = 0, 1, 2, · · · , N, j = 0, 1, 2, · · · ,M
| xi = x0 + ih+ ph cos(π/3), yj = y0 + jh sin(π/3)},

where p := (jmod 2)− 1. A node in this grid is denoted by zi,j = (xi, yj), and we

can associate to any function φ : Ω̄ 7→ R a discrete function φ̂ : Sh 7→ R called

grid function, such that φ̂i,j = φ(zi,j). A node zi,j of Gh is internal if the distance

from zi,j to ∂Ω is larger than h
√

3/2 in the y-coordinate direction and larger than
h in the x-coordinate direction. The total number of interior points is denoted by
N0M0 with N0 = N − 1 and M0 = M − 1.

For v ∈ Rn and A ∈ Rn×n, vi and ai,j denote respectively a generic element
of v and A. We adopt in what follows the usual sup norm for v and A [6]. For a
function u ∈ Ck(Ω) let Dk denote an upper bound for the k-th order differentials
of u, namely

Dk := max

{
sup

{∣∣∣∣∂ku(x, y)

∂xk−jyj

∣∣∣∣ : (x, y) ∈ Ω

}
: 0 ≤ j ≤ k

}
.(2.1)

Also, we denote by I0 : R 7→ R+ the modified Bessel function of zero order, repre-
sented by the series

I0(x) =
∞∑
k=0

x2k

22k(k!)2
; x ∈ R.
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3. Main results

Theorem 3.1. Let u(x, y) ∈ C6(Ω), be the solution for the boundary value problem
Σ, and let Gh be the triangular grid, given in Definition 2.1, and ui,j be the cor-
respondent grid function. Let {Ui,j} be a grid function that satisfies the following
difference equation for i = 0, 1, 2, · · · , N0, j = 0, 1, 2, · · · , M0,

Ui,j =
1

6I0(λh)
(Ui−1,j−1 + Ui+1,j−1 + Ui−2,j + Ui+2,j + Ui−1,j+1 + Ui+1,j+1).

(3.1)

It follows that

‖u− U‖∞ ≤
1

I0(λh)− 1

(
h6D6

6!
+O(h7)

)
.(3.2)

Corollary 3.1. Let u(x, y) ∈ C6(Ω) be the solution for the boundary value problem
Σ, and Gh be the triangular grid, according to Definition 2.1. If U = {Ui,j} is a
grid function satisfying (3.1), then

‖u− U‖∞ = O(h4).(3.3)

Remark 3.1. The difference equation in Theorem 1 can be compared to the stan-
dard difference equation obtained for the Helmholtz equation when the grid Gh is
adopted, e.g. [10]. Using the Taylor series, equation (3.1) has a standard similar
counterpart given by

Ui,j =
1

6T1(λh)
(Ui−1,j−1 + Ui+1,j−1 + Ui−2,j + Ui+2,j + Ui−1,j+1 + Ui+1,j+1),

(3.4)

where

T1(λh) = 1 +
(λh)2

4
+

(λh)4

64
.

The truncation error for (3.4) is obtained by direct development of the Taylor series
for u(x, y) in a point in Gh, and by substituting the basic relation ∆u = λ2u and
∆2u = ∆(∆u) = λ4u into the sum of the six series involving the six neighboring
points. Denoting by τ{ui,j} the truncation error, we obtain

τ{ui,j} = ui−1,j−1 + ui+1,j−1 + ui−2,j + ui+2,j + ui−1,j+1 + ui+1,j+1 − 6T1(λh)ui,j

and the analysis in [10] yields the following bound, which is justified for a function
u ∈ C6(Ω) :

τ{ui,j} =
6h6

16× 6!

(
33
∂6ui,j
∂x6

i

+ 45
∂6ui,j
∂x4

i ∂y
2
j

+ 135
∂6ui,j
∂x2

i ∂y
4
j

+ 27
∂6ui,j
∂y6

j

)
+O(h7)

≤15h6

6!
D6 +O(h7).(3.5)

The precision error can now be evaluated using the following upper bound devel-
oped in this work, see Lemma 3.1 in the sequel
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‖u− U‖∞ ≤
1

6T1(λh)− 6
‖τ{u}‖∞.(3.6)

From (3.5), we now have that

‖u− U‖∞ ≤
1

6T1(λh) − 6

(
15h6

6!
D6 +O(h8)

)
.(3.7)

Lemma 3.1. Suppose that the finite difference schemes in (3.1) and (3.4) yield,
respectively, the following matrix representation:

AI0U = b, AT1U = b

with b ∈ RN0M0 and AI0 and AT1 of dimension N0M0 ×N0M0. Then

‖AI0v‖∞ ≥ 6(I0(λh) − 1) ‖v‖∞, ‖AT1v‖∞ ≥ 6(T1(λh)− 1) ‖v‖∞, ∀v ∈ RN0M0 .

The proof of Lemma 3.1 is postponed to section 5.

Remark 3.2. The basic distinction between expressions (3.1) and (3.4) is the mod-
ified Bessel function in the denominator in (3.1), and the polynomial T1(λh) ap-
pearing in the denominator in (3.4). Distinct evaluations for the precision error are
obtained by comparing (3.2) and (3.7), with an advantage for the MVS method,
presented in Theorem 3.1. This can be verified first from a factor of 15/6 in the
right-hand side of (3.7); also notice that the denominator of (3.2) presents the in-
finite series I0(λh) in place of the polynomial T1(λh) arising in the standard finite
difference method. In addition, the function T1(λh) corresponds to the first three
terms of the series represented by I0(λh) which clearly shows the consistency of the
two schemes, and demonstrates that the Taylor series development represents an
approximation for the method proposed here. The ratio between the two coefficients
appearing in (3.2) and (3.7) yields the following expression:

R :=

(
15

6T1(λh) − 6

)(
1

I0(λh)− 1

)−1

=
15

6

[
1 +

1

T1(λh) − 1

( ∞∑
k=3

(λh)2k

22k(k!)2

)]
.

Fig. 1 shows a plot for ratio R, picturing the improvement in the error bound
associated with the proposed method for different values of parameter λ and grid
size h. The justification behind the result in Theorem 3.1 relies on the solution
of the Dirichlet problem defined locally on an intertwined set of balls covering the
domain. This procedure leads to the solution of problem Σ as assured by the
Alternating Method of Schwarz, e.g. [2, chap. VII], [12], applied to the set of balls.
The Dirichlet problem for the Helmholtz equation defined on the interior of one ball
possesses an analytical form, see Lemma 4.1. A numerical approximation to the
line integral on the circle is proposed and the numerical error is evaluated. These
steps are developed in the next section. With these elements, the adequate scenario
for the proof of Theorem 3.1 is settled, and section 5 is devoted to the proof of the
main results.
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Figure 1. A plot for 15
6
I0(λh)−1
T1(λh)−1

4. Covering Ω with balls and numerical evaluation in a ball

Definition 4.1. Let Bi = Bh(zi), i = 1, 2, · · · , n, be open balls with radius h
centered at points zi = (x, y) ∈ Ω, such that zi ∈ Gh and B̄i ⊂ Ω̄ ∀i = 1, 2, · · · , n.
Moreover, for any index i and j with i 6= j:

Bi ∩ Bj 6= ∅ ⇒ zi ∈ ∂Bj and zj ∈ ∂Bi.

Definition 4.1 provides a partial covering for Ω̄ denoted by W such that W =⋃
i Bi, as shown in Fig. 2. We suppose that the function Ψ defined on ∂Ω for

problem Σ can be extended to ∂W (the boundary for W ) in a suitable form, as it
is usually done when a regular grid is introduced in a given domain. This extension
can be made arbitrarily precise if one is prepared to decrease the step h of Gh (the
radius h of Bh(·)). With these considerations, we can replace the original problem
Σ by a similar boundary value problem involving the domain W :

Problem (ΣW ):

{
∆u(x, y)− λ2u(x, y) = 0, (x, y) ∈W,
u(x, y) = Ψ(x, y), (x, y) ∈ ∂W.

Now, let us depart from the original problem for a moment, and take advantage
of the simple geometry of the Dirichlet problem defined in the interior of a ball. We
first quote a result that establishes an analytical solution for the Dirichlet problem
for the Helmholtz equation in a ball, and later in this section we announce and
prove a result on the numerical evaluation for an integral on a circle, associated
with the solution of the Helmholtz equation at a ball.

Lemma 4.1 [7]. Let B = Bh(z) be a ball with finite radius h, centered at a point
z ∈ Ω, and let ∂B be the correspondent circle or the boundary for B. Let Ψ(x, y) be
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Figure 2. The regular covering W for Ω

such that on the circle ∂B θ 7→ Ψ(h, θ) ∈ Lp2π for some 1 ≤ p < ∞, where Lp2π is
the class of 2π-periodic functions with the norm 1

2π

+π∫
−π

|f(θ)|p dθ


1
p

.

Consider the following boundary value problem:{
∆u(x, y)− λ2u(x, y) = 0, (x, y) ∈ B,
u(x, y) = Ψ(x, y), (x, y) ∈ ∂B.

(4.1)

The solution for (4.1) is given by:

u(r, θ) =
a0

2

I0(λr)

I0(λh)
+
∞∑
n=1

In(λr)

In(λh)
(an cosnθ + bn sinnθ), 0 ≤ r < h,(4.2)

where {an}, n = 0, 1, 2, . . . , and {bn}, n = 1, 2, . . . , denote the Fourier coefficients
of the function Ψ.

For our purposes, the interest is in the evaluation of u at the center point z,
thus r = 0 in (4.2). Since In(0) = 0 ∀n 6= 0, and I0(0) = 1, it follows that we can
express

ui,j =
1

2πI0(λh)

2π∫
0

u(h, θ)dθ(4.3)

by applying the result in Lemma 4.1 to a ball Bh(z) with center at a point z =
(xi, yj) belonging to the grid Gh. Thus, the grid function ui,j can be evaluated at
point z, provided that the solution for (Σ) on the circle ∂B is know. Recognizing
that the value of u(x, y) is only known in some (six) points on the circle ∂B, we
ought to use these point values for solving the integral in (4.3) numerically. It is
possible to make an evaluation for the integral in (4.3) using the trapezoidal method
for points regularly spaced as obtained with Gh. It attains great precision thanks
to the fact that θ 7→ u(h, θ) is a periodical function [3]. The expression in (4.3) can
be seen as an extension of the mean value theorem for the Helmholtz equation [2,
chap. VII].
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Theorem 4.1. Let u be a function of class C6 in a neighborhood of the circle
∂Bh(z). The following evaluation holds.∣∣∣∣∣∣ 1

2π

2π∫
0

u(h, θ)dθ − 1

6

6∑
k=1

u

(
h,
kπ

3

)∣∣∣∣∣∣ ≤ h6D6

6!
+O(h7).(4.4)

Proof. For the evaluation in (4.4), we pick up a point z = (xi, yi) ∈ Ω, that may

or may not belong to Gh. Let us denote by (xi±1, yj±1) := (xi ± h/2, yj ± h
√

3/2)
and (xi±2, yj) := (xi ± h, yj) six equally spaced neighboring points at a distance h
from the point (xi, yj). We also denote by uz and ui±1,j±1 or ui±2,j the value of
function u at point z and at the six neighboring points, respectively, and we use
the same notation for the derivatives. Expanding the representation for u(x, y) by
using the first (n− 1)th derivatives, it follows that

u(xi+α, yj+β) = uz+α
∂uz
∂xi

+β
∂uz
∂yi

+
1

2!

(
α2 ∂

2uz
∂x2

i

+ 2αβ
∂2uz
∂xi∂yj

+ β2 ∂
2uz
∂y2

j

)
+· · ·

+
1

n− 1!

{
αn−1 ∂

n−1uz

∂xn−1
i

+

(
n−1

1

)
αn−2β

∂n−1uz

∂xn−2
i ∂yj

+ · · ·

+

(
n−1

n−2

)
αβn−2 ∂n−1uz

∂xi∂y
n−2
j

+ βn−1 ∂
n−1uz

∂yn−1
i

}
+Rn

where Rn stands for the remainder of this representation. Denoting(
α
∂

∂xi
+ β

∂

∂yi

)n
uz =

1

n!

{
αn

∂nuz
∂xni

+

(
n

1

)
αn−1β

∂n−1uz

∂xn−1
i ∂yj

+ · · ·

+

(
n

n−1

)
αβn−1 ∂n−1uz

∂xi∂y
n−1
j

+ βn
∂nuz
∂yni

we can write equivalently

u(xi + α, yj + β) = uz +
n−1∑
k=1

1

k!

(
α
∂

∂x
+ β

∂

∂y

)k
uz +Rn.(4.5)

In the present situation n = 7 and R7 ≈ O(h7), and adopting α = ±h and β = 0,
or α = ±h/2 and β = ±h

√
3/2, it follows that (xi + α, yj + β) represents the six

equally spaced neighboring points of (xi, yj) at a distance h. For sake of notational
simplicity, let

∑
ub denote the sum of u at the six neighboring points to point z.

We have with a proper reference for the angle parameter θ that∑
ub =

6∑
k=1

u

(
h,
kπ

3

)
(4.6)

and from (4.5) ∑
ub = 6uz +

3h2

2!
∆u|z +

3h4

32
∆2u|z + τ{uz}.(4.7)

The truncation error τ{uz} can be found in [10] to be

τ{uz} =
h6

16× 6!

(
33
∂6uz
∂x6

i

+ 45
∂6uz
∂x4

i ∂y
2
j

+ 135
∂6uz
∂x2

i ∂y
4
j

+ 27
∂6u

∂y6
j

)
+O(h7);
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using the definition of D6 in (2.1), we can write

|τ{uz}| ≤
15h6

6!
D6 +O(h7).(4.8)

Now, we concentrate on the numerical solution of (4.3). Employing the trape-
zoidal method for solving the integral, one can write

1

2π

2π∫
0

u(h, θ)dθ =
1

6

6∑
k=1

u

(
h,
kπ

3

)
+ τt{u},(4.9)

where τt{u} stands for the approximation error incurred by the trapezoidal method.
We should also employ (4.6) to write (4.3) as:

6 I0(λh)uz =
∑

ub + 6 τt{u}.

Now, using the expression for
∑
ub in (4.7) and substituting in the relation above,

we have that

6τt{u} = 6 I0(λh)uz − 6

(
uz +

h2∆u

4
+
h4∆2u

64

)
− h6

16× 6!

(
33
∂6uz
∂x6

i

+ 45
∂6uz
∂x4

i ∂y
2
j

+ 135
∂6uz
∂x2

i ∂y
4
j

+ 27
∂6u

∂y6
j

)
+O(h7).

One can use the fact that ∆u = λ2u and ∆2u = λ4u and the series representation
for I0(λh) to write

6τt{u} =
6h6∆3u

26(3!)2
− h6

16× 6!

(
33
∂6uz
∂x6

i

+ 45
∂6uz
∂x4

i ∂y
2
j

+ 135
∂6uz
∂x2

i ∂y
4
j

+ 27
∂6u

∂y6
j

)
+O(h7);

also, introducing the form of ∆3u, we finally have that

6τt{u} =
3h6

16× 6!

(
−∂

6uz
∂x6

i

− 15
∂6uz
∂x4

i ∂y
2
j

+ 15
∂6uz
∂x2

i ∂y
4
j

+
∂6uz
∂y6

j

)
+O(h7);

using the notation in (2.1),

|τt{u}| ≤
h6D6

6!
+O(h7)

and the result is therefore proven.

5. Proof of Theorem 3.1 and corollary

Let us consider the problem Σ or, alternatively, ΣW with no loss, as mentioned
in section 4. For the proof we now pick up a point z = (xi, yj) ∈ Ω that belongs
to Gh and is an interior point with respect to ∂W, and consider a ball Bh(z). We

denote by (xi±1, yj±1) := (xi ± h/2, yj ± h
√

3/2) and (xi±2, yj) := (xi ± h, yj) the
six points on the circle ∂Bh(z) that are also points of Gh at a distance h from the
point (xi, yj). We also denote by uz, ui±2,j and ui±1,j±1 the value of function u
at point z and at the six neighboring points, respectively, and we use the same
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notation for the derivatives. Using polar coordinates with an appropriate reference
for the angular variable, we can also identify

u

(
h,
kπ

3

)
for k = 1, 2, 3, 4, 5, 6.(5.1)

with each one of the neighboring points (xi±1, yj±1) and (xi±2, yj). Using (4.3) and
the trapezoidal rule for the numerical evaluation of the integral, we can write

I0(λh)ui,j =
1

2π

2π∫
0

u(h, θ)dθ =
1

6

6∑
k=1

u

(
h,
kπ

2

)
+ τt{u},(5.2)

where, as in (4.9), τt{u} stands for the approximation error incurred by the trape-
zoidal rule, with an error evaluation given by Theorem 4.1. Thus,∣∣∣∣∣6I0(λh)ui,j −

6∑
k=1

u

(
h,
kπ

3

)∣∣∣∣∣ ≤ |6τt{u}| ≤ 6h6D6

6!
+O(h7).(5.3)

Let us denote by Ui,j the grid function defined on Gh that is the approximation
for function ui,j obtained by the proposed method. It is such that Ui,j = ui,j at
each point of the boundary ∂W and at interior points Ui,j satisfies the equation in
Theorem 3.1, namely

6I0(λh)Ui,j = Ui−2,j + Ui+2,j + Ui+1,j−1 + Ui+1,j+1 + Ui−1,j−1 + Ui−1,j+1.(5.4)

Similarly, using (5.1) and (5.2), we can write a difference equation for the grid
function ui,j as follows:

6I0(λh)ui,j = ui−2,j + ui+2,j+ui+1,j−1(5.5)

+ ui+1,j+1 + ui−1,j−1 + ui−1,j+1 + 6τt{u}.

Following this definition, we denote by u and U the vectors of appropriate di-
mension, each of them containing the values ui,j and Ui,j respectively, at each point
of Gh whenever (xi, yj) is also an interior point of W . Suppose that one can find
N0 ·M0 interior points in Gh, or equivalently, the same number of balls centered in
the interior points of W in Gh. We write for a proper ordering of these points:

u :=[u1,1, · · · , uN0,1;u1,2, · · · , uN0,2; · · · ;u1,M0 , · · · , uN0,M0 ]T ,

U :=[U1,1, · · · , UN0,1;U1,2, · · · , UN0,2; · · · ;U1,M0 , · · · , UN0,M0 ]T .

Also, let us define the error vector made up of the corresponding terms in (5.5) as:

τ̃t{u} := [τ1,1, · · · , τN0,1; τ1,2, · · · , τN0,2; · · · ; τ1,M0 , · · · , τN0,M0 ]T .

From (5.4) and (5.5) we can form the following linear system of equations:

Au = b+ 6 τ̃t{u},(5.6)

AU = b,(5.7)

where b is a vector formed by the elements ui,j associated to points at the boundary
∂W whenever they are involved in the right-hand side of (5.4) and (5.5). Otherwise,
when no boundary point is involved, the correspondent element of b is null.
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When the domain is sufficiently regular, the matrix A will have the following
structure, after a proper definition and ordering:

A =



B1 −JN0 0 0 · · · 0
−JTN0

B2 −JTN0
0 · · · 0

0 −JN0 B3 −JN0 · · · 0
...

...
. . .

...
0 · · · 0 −JTN0

BM0−1 −JTN0

0 · · · 0 0 −JN0 BM0


(5.8)

with dimension N0M0 ×N0M0. Matrices Bi are defined by:

Bi = 6 I0(λh) IN0 − CN0 for i = 1, 2, · · · ,M0,(5.9)

where IN0 is the identity matrix with dimension N0 × N0. The matrices JN0 and
CN0 are defined by

JN0 =


1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
...

0 · · · 0 1 1
0 · · · 0 0 1


N0×N0

, CN0 =


0 1 0 · · · 0
1 0 1 · · · 0
...

. . .
...

0 · · · 1 0 1
0 · · · 0 1 0


N0×N0

.(5.10)

Before the proof of Theorem 3.1 we pause to prove the result in Lemma 3.1.

Proof of Lemma 3.1. Notice first that the standard finite difference method applied
to the same triangular mesh grid would provide similar matrices as in (5.8)–(5.10),
with the exception that the sub-matrices Bi would have the following form:

Bi = 6T1(λh) IN0 − CN0 for i = 1, 2, · · · ,M0.

In addition, for a matrix A = {aij} generated by any of the two methods, one can
verify that

aij = 0 or aij = −1, for i 6= j,

moreover,

−6 ≤
∑
j 6=i

aij ≤ 0, for any i = 0, 1, . . . , N0M0.

Notice that this structure of matrix AI0 or AT1 is invariant, even if the domain is
not strictly rectangular or triangular. With Σ = I0 or Σ = T1, the norm definition
yields

‖AΣ v‖∞ = sup
i=1,... ,N0M0

| 6Σ(λh) vi −
∑
j 6=i

aij vj |


and supposing that ‖v‖∞ = vi0 for some i0, we evaluate

‖AΣ v‖∞ ≥| 6Σ(λh) vi0 −
∑
j 6=i0

aij vj |

≥6(Σ(λh)− 1)vi0(5.11)
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Similarly, let us suppose that ‖v‖∞ = −vi0 for some i0, and evaluate

‖AΣ v‖∞ ≥− 6Σ(λh) vi0 +
∑
j 6=i0

aij vj

≥− 6(Σ(λh)− 1) vi0 ;(5.12)

from (5.11) and (5.12) the result in Lemma 3.1 is proven.

Proof of Theorem 3.1. The proof of Theorem 3.1 now follows in a straightforward
manner by subtracting (5.7) from (5.6):

A(u− U) = 6 τ̃t{u}(5.13)

and taking the identity

‖A(u− U)‖∞ = 6‖τ̃t{u}‖∞.

The result follows from Lemma 3.1.

Proof of Corollary 3.1. The proof is immediate from Theorem 3.1, since it is enough
to verify that

I0(λh)− 1 =
∞∑
k=1

(λh)2k

22k(k!)2
= O(h2);

thus, in view of (3.2) it follows that

‖u− U‖∞ ≤
1

O(h2)
‖τt{u}‖∞ = O(h4),

proving the result.

6. Numerical experiments

The examples in this section are drawn from convection-diffusion problems of
the form ∆u+ α · ∇u = 0. They are transformed to the standard Helmholtz form
∆w − λ2w = 0 with the simple transformation

w = u exp(
1

2
α · p), with p = (x, y)T and λ2 =

1

4
α · αT .(6.1)

The comparisons however are presented in terms of the original function u.

Test Problem 6.1. Consider the boundary value problem with dominated con-
vection term

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂u

∂x
= 0, 0 ≤ x, y ≤ 1;

u(x, 0) = 0, u(x, 1) = 0, 0 ≤ x ≤ 1;

u(0, y) = sinπy, u(1, y) = 2 sinπy, 0 ≤ y ≤ 1.

(6.2)

The Problem 6.1 was specially considered by Gartland in [4], in which a specific dif-
ference method for the five-point rectangular mesh grids called Discrete Weighted
Mean Approximation (DWMA), was proposed involving the modified Bessel func-
tion. This problem is also studied by Gupta et al. in [8] using the SCHOS method,
with advantage to the former method. Using the variable transformation in (6.1),
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the equation (6.2) is posed in the Helmholtz canonical form; the exact solution of
(6.2) is given by

u(x, y) =
eλx [ 2 e−λ sinhσx + sinh σ(1− x) ] sinπy

sinhσ
, σ2 = π2 + λ2,

with λ = 1/2ε. For comparison purposes, we present in Table 1 the evaluations for
the relative error obtained from the numerical experiments carried out for the FDS
and the MVS on triangular mesh grids, together with the results using the SCHOS
presented in [8]. Table 1 shows that the accuracy is clearly in favor of the MVS.

Table 1. Test Problem 1.

Maximum relative error h = 1/32

λ FDS SCHO[8] MVS
5 0.1028(−5)∗ 0.6011(−4) 0.8634(−6)

10 0.2651(−4) 0.1399(−3) 0.7184(−5)
20 0.9842(−3) 0.1511(−2) 0.1283(−3)
50 0.1040 0.3517(−1) 0.9542(−2)
*0.1028(−5) = 0.1028 × 10−5

The maximum absolute error for different values of mesh grid size h for the MVS
is presented in Table 2, with numerical estimates for the precision error order, by
considering two successive error evaluations.

Table 2. Test Problem 1 with MVS.

Maximum absolute error and

the estimated error order

λ h = 1/8 Order h = 1/16 Order h = 1/32
5 0.2961(−3) 3.85 0.2055(−4) 3.57 0.1725(−5)

10 0.2692(−2) 3.76 0.1983(−3) 3.79 0.1436(−4)
20 0.3922(−1) 3.46 0.3557(−2) 3.79 0.2563(−3)
50 1.1056 2.51 0.1945 3.35 0.1907(−1)

We observed from the experiments with the FDS and the MVS that when λh ' 2
(λ = 30, h = 1/16) the FDS yields poor results with relative errors larger than 10%,
whereas the MVS presents an error of 1.1%. The error level about 10% (9.8%) is
only attained by the MVS when λ = 50 and h = 1/16. When the product λh > 2
is adopted (λ = 40, h = 1/16 or λ = 75, h = 1/32) the error increases to values as
large as 49%, indicating that the FDS method is incapable of handling problems
when λh > 2, whereas the MVS yields an error of 3.8% and 6.11% for λ = 40,
h = 1/16 and λ = 75, h = 1/32, respectively. Thus, trying with larger values for
the product λh with the MVS, numerical experiments show that large errors will
only appear when λh > 4 (λ = 64, h = 1/16 or λ = 128, h = 1/32), with relative
error values as large as 27%.
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In Table 3, a comparison among the FDS, SCHOS, DWMA and the MVS is
presented by means of the maximum absolute error and numerical estimates for
the precision error order, using successive error evaluations. When λ = 50 the
FDS method yields large errors; we omit the results and use instead the results
for the maximum absolute error presented in [9] for the DWMA and SCHOS for
comparison purposes.

Table 3. Test Problem 6.1

Compared maximum absolute

error and estimated error order

λ h−1 FDS Order SCHOS[8] Order MVS
20 8 0.3289 0.1256 0.3922(−1)

16 0.2739(−1) 3.58 0.2009(−1) 2.65 0.3557(−2) 3.46
32 0.1967(−2) 3.79 0.1712(−2) 3.55 0.2563(−3) 3.79

λ h−1 DWMA[9] Order SCHOS[9] Order MVS Order
50 8 0.3685(−1) 0.4249 1.1056

16 0.5812(−1) — 0.1670 1.35 0.1945 2.51
32 0.4993(−1) 0.22 0.3365(−1) 2.31 0.1907(−1) 3.35

One may observe from Table 3 that the solution with the DWMA is more precise
than that yielded by the MVS when the mesh is crude. When the grid is refined
the solution with the MVS shows a fast convergence of O(h3.35).

Test Problem 6.2 (Borrowed from [8] and [13]). Consider the boundary value
problem 

∂2u

∂x2
+
∂2u

∂y2
= P cos θ

∂u

∂x
+ P sin θ

∂u

∂y
, 0 ≤ x, y ≤ 1;

u(x, 0) = 0, u(x, 1) = 0, 0 ≤ x ≤ 1;

u(0, y) = 4y(1− y), u(1, y) = 0, 0 ≤ y ≤ 1.

(6.3)

Problem 6.2 represents the convection of temperature or concentration in a fluid
moving with a uniform velocity at an angle θ with respect to the x-axis. Using the
variable transformation in (6.1) with α = (−P cos θ −P sin θ)T , equation (6.3) is
posed in the Helmholtz canonical form. The exact solution of (6.3) is given by [8]

u(x, y) = eP (x cos θ+y sin θ)/2
∞∑
n=1

An sinh [σn(1− x)] sin(nπy)

where

An =
8

sinh σn

1∫
0

t(1− t) e−(P sin θ)t sin(nπt) dt, σ2
n = n2π2 + P 2/4.
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In Table 4 we transcribe the maximum absolute error presented in [8] for the
SCHOS method and compare them with the numerical results obtained with the
FDS and the MVS method for P = 40, h = 1/8, 1/16, 1/32 and θ = 0◦, π/8, π/4.
Notice the consistent good behavior of the MVS method, presenting an error that
is 3.7 smaller in its minimum and 17 times smaller in its best comparison with the
FDS method; the same comparison with the SCHOS method ranges from 1.6 to
7.2 times smaller. Notice that the performance of the MVS is not affected by the
variation of θ, as it may occur with other methods, see [13].

Table 4. Test Problem 2.

Compared maximum absolute error

and estimated error order (P = 40)

θ h−1 FDS Order SCHOS[8] Order MVS Order
0◦ 8 0.3356 0.8280(−1) 0.3912(−1)

16 0.2796(−1) 3.58 0.1323(−1) 2.65 0.3554(−2) 3.46
32 0.2003(−2) 3.80 0.1123(−2) 3.55 0.2549(−3) 3.80

π/8 8 0.2993 0.6931(−1) 0.1770(−1)
16 0.2048(−1) 3.87 0.1019(−1) 2.77 0.1630(−2) 3.44
32 0.1546(−2) 3.72 0.8128(−3) 3.64 0.1124(−3) 3.86

π/4 84 0.1214 0.4932(−1) 0.2321(−1)
16 0.1110(−1) 3.45 0.5977(−2) 3.04 0.2889(−2) 3.00
32 0.9515(−3) 3.54 0.4066(−3) 3.88 0.2551(−3) 3.50

In a final comparison, we employ the numerical results obtained with the FDS
and the MVS for the test Problem 6.2 with P = 80 and θ = π/8. In Fig. 3 (a)
the exact solution is presented, in Fig. 3 (b) the solution obtained by the MVS
is pictured, in Figs. 3 (c) and 3 (d) the error values for the MVS and the FDS
are displayed, respectively. The maximum absolute error in the FDS is 0.5362(-1)
and for the MVS it reaches 0.3759(-2), thus more than ten times smaller than the
error yielded by the former. The same problem was also solved in [13] using a
9-point scheme called QIS. For the same values of P and h, the QIS seems to be
more precise when the grid is crude, although both methods MVS and QIS yield
comparable error values when the grid is refined.
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Figure 3. Numerical solutions for test Problem 6.2: (a) - Exact
solution; (b) - MVS solution; (c) - Error yielded by the MVS; (d)
- Error yielded by the FDS
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7. Concluding remarks

In each of the numerical examples that were implemented by the authors, the
MVS provides solutions that are consistently better than those obtained by other
methods with respect to the maximum relative and maximum absolute error, in-
cluding methods with stencils involving more than 7 points. The exception to this
rule was only encountered in the comparison with the QIS method for some param-
eter values in the test Problem 6.2. It is important to mention that the comparison
with the FDS has always yielded better results in the examples than those antici-
pated by the analysis in section 3, in the comparison of the ratio between the error
upper bounds for both methods, as pictured in Fig. 1.
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