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COMPUTATION OF GALOIS GROUPS

OVER FUNCTION FIELDS

THOMAS MATTMAN AND JOHN MCKAY

Abstract. Symmetric function theory provides a basis for computing Galois
groups which is largely independent of the coefficient ring. An exact algorithm
has been implemented over Q(t1, t2, . . . , tm) in Maple for degree up to 8. A
table of polynomials realizing each transitive permutation group of degree 8
as a Galois group over the rationals is included.

Introduction

There are currently three techniques used for computing the Galois group,
GalQ(f), of an irreducible polynomial f over the rationals. First there is the method
of Stauduhar [22, 12], described in his thesis [21] for polynomials of degree up to 8,
which uses approximations to the roots of f . He forms resolvent polynomials with
roots which are polynomial invariants of potential Galois groups, working down the
upper semi-lattice of transitive subgroups of the symmetric group. The resolvent
roots are evaluated on permutations of roots of the original polynomial given by
some coset transversal. The resolvents are computed from approximate values of
the roots of f , and factors (often linear) sought.

This method appears in Cohen [4] and has been used by Olivier [15] for degree
up to 11. It is generally fast but has exponential complexity in groups such as
PSL(2, q) in its natural representation, see McKay [12]. It has the disadvantage
of needing a complicated data structure for traversing the upper semi-lattice of
transitive groups of a given degree, and requires storing (or generating) many coset
transversals and polynomial invariants; careful control of rounding errors is needed
for the result to constitute a proof.

Second is the method of Darmon and Ford [7] in which they prove directly from p-
adic approximations to the roots that the value of a polynomial invariant evaluated
on the roots of f is a rational integer.

The third method, which we use, is the method of symmetric functions. This is
a refinement of that described for Galois groups over Q of degree up to 7 in Soicher
and McKay [19], with which we assume familiarity. It is exact and, unlike the first
two methods, has the advantage of being largely independent of the coefficient ring
which may, for example, be a number field, K, a function field, K(t1, t2, . . . , tm),
or a p-adic field extension. Here we compute GalK(f), K = Q(t1, t2, . . . , tm) for
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f ∈ K[x]. In Mattman [10] (supervised by the second author), this is implemented
in Maple for polynomials of degree up to 8.

The method

As an example of our method we discuss the degree 8 case in detail. Let f be an
irreducible polynomial of degree δf in K[x] where K = Q(t1, . . . , tm). The Galois
group GalK(f) is realisable as the group of permutations of the roots of f induced
by the automorphisms of the splitting field spl(f) of f . Since we require f to be
irreducible, GalK(f) is one of the 50 transitive groups, T1, T2, . . . , T50, of degree 8
in Butler and McKay [1]. (In our tables these names are correlated with the more
informative inherently meaningful names of [5].) It is determined up to relabelling
of the roots, that is, up to conjugacy in the symmetric group, S8. Our aim is to
determine sufficient properties to identify GalK(f) among these candidates.

By multiplication, if necessary, we may assume that f ∈ Z[t1, . . . , tm][x] so that
we can construct cycle types of GalK(f) by factoring f modulo maximal ideals p of
Z[t1, . . . , tm]. If f has no repeated roots in an algebraic closure of Z[t1, . . . , tm]/p,
the partition of δf formed by the degrees of the irreducible factors of f mod p is
the shape (cycle type) of a permutation in GalK(f) (see [24]). After factoring f
modulo various maximal ideals, we may eliminate those candidate groups lacking
elements of the shapes found.

When K = Q, the algorithm of Casperson and McKay [3] can be used to con-
struct non-trivial decompositions f(x) | g(h(x)). Such a decomposition exists
whenever GalK(f) has a block system with δg blocks of imprimitivity. Once a
decomposition is found, we may eliminate all groups which do not admit such a
block system.

Neither shapes nor decompositions are required to determine GalK(f); both
are useful to reduce the list of candidate Galois groups but these methods do not
usually suffice to specify the group. Degree 8 is the smallest degree for which there
are pairs of groups,

[22]4 = 〈(1, 3, 5, 7)(2, 4, 6, 8), (1, 6)(2, 5)(3, 7)(4, 8)〉 and

Q8 : 2 = 〈(1, 6, 2, 5)(3, 7, 4, 8), (1, 5)(2, 6)(3, 7)(4, 8), (1, 3)(2, 4)(5, 8)(6, 7)〉
of order 16, [23]A(4) & [1

3A(4)2]2 (order 96) and [23]S(4) & 1
2 [24]S(4) (order 192),

with the same frequency of elements of each shape and thus Čebotarev’s density
theorem cannot be used to separate the groups within these pairs.

Resolvent polynomials

We adopt the notation for resolvents in [19]. The action of GalK(f) on r-sets
(sets of r roots) may be realised in terms of polynomials with roots which are sums
or products of r-sets of the roots of f . Casperson and McKay [2] discuss efficient
methods for constructing such polynomials. To construct the 2-sequence resolvent

R = R(x1 + cx2, f), c 6= 0, 1,

of degree n2 − n, n = δf , we make use of the relation (compare [23]):

Pk(R) =
k∑
i=0

ci
(
k

i

)
(Pi(f)Pk−i(f)−Pk(f)), k ≥ 1,

between the power-sum symmetric functions of f and R.
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Table 1. These groups (see [1, 5]) are distinguished by test-
ing the underlined factors of the resolvents; ‘+/–’ indicates re-

ducible/irreducible over K(
√

∆)

Group T16- T27- T21- T31- T46- T47-
1
2 [24]4 [24]4 1

2 [24]E(4) [24]E(4) 1
2 [S(4)2]2 [S(4)2]2

2-set +4, 8, 16 −4, 8, 16 +4, 83 −4, 83 +12, 16 −12, 16

Group T26-1
2 [24]eD(4) T28-1

2 [24]dD(4) T30-1
2 [24]cD(4) T35-[24]D(4)

2-set −4, 8,+16 +4, 8,−16 −4, 8,−16 −4, 8,−16
3-set 8,+16, 32 8,+16, 32 8,+16, 32 8,−16, 32

We define a Tschirnhaus transformation (over K) on a polynomial f to be an
invertible map: x 7→ N(x)/D(x) ≡ P (x) mod f , P (x) ∈ K[x]. If K is omitted, it
is assumed that K = Q.

The orbit-length partition of the action of GalK(f) on FS8 (the orbit of F under
S8, see [19]) is given by the factorization of the resolvent R(F, f), provided it has no
repeated roots. Although polynomials with repeated roots are theoretically rare,
being a set of measure zero, they may occur when simple polynomials are chosen for
f . To eliminate repeated roots, we apply a Tschirnhaus transformation to f . It is
not simple to program choices for an appropriate Tschirnhaus transformation. We
need to ensure that the coefficients do not become unwieldy. One suggestion is to
generate them using x 7→ x+ 1 and x 7→ −1/x which generate the modular group;
it may be better to let the user choose a Tschirnhaus transformation interactively.

The discriminant and orbit-length partitions (see [13]) of the r-set and 2-sequence
resolvent polynomials suffice to identify twenty-four of the fifty transitive groups of
degree 8. Of the remaining thirteen groups with non-square discriminant, ∆, ten
may be distinguished by testing whether factors of the resolvents are reducible over
K(
√

∆) (see Table 1). As noted in [19], the reducibility of resolvent factors is an
invariant of the Galois group.

The remaining sixteen groups are identified by calculating the Galois group of
a factor h of a resolvent polynomial as indicated in the last column of Tables 2
and 3 by resolvent type over the degree of h. That these groups are invariants of
GalK(f) is an immediate consequence of the fundamental theorem of Galois theory.
For δh ≤ 8 we can use either the techniques of [19] or those presented here to find
GalK(h); however, to distinguish between [A(4)2]2 and [1

2S(4)2]2 we make use of a
factor h of degree 12. In this case, we define two degree 12 groups G288 and G576

isomorphic to the degree 8 groups [A(4)2]2 and [1
2S(4)2]2 respectively. They may

be represented as

G288 = 〈(1, 5, 4)(2, 6, 3)(9, 10)(11, 12), (1, 8)(2, 7)(3, 11, 4, 12)(5, 9, 6, 10)〉

and

G576 = 〈(1, 9, 5, 7, 3, 12)(2, 10, 6, 8, 4, 11), (1, 11, 4, 10, 5, 8)(2, 12, 3, 9, 6, 7)〉.

As indicated in Table 3, G288 and G576 (and consequently [A(4)2]2 and [1
2S(4)2]2)

are distinguished by the Galois group of the degree 6 factor of the 2-set resolvent;
they have the same orbit-length partition for the 2-set resolvent.
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Table 2. Distinguishing Galois groups for G 6⊆ A8

Group Orbit-Length Partition Factorization Galois Group of

(G 6⊆ A8) 2 3 4 2 over K(
√

∆) deg. 8 factor of
(see [1, 5]) set set set seq (see Table 1) 4-diff resolvent

T1-C8 87

T6-D(8) 4, 83 83162

T7- 1
2

[23]4 83162

T8-2D8(8) 4, 8, 16 83162 8, 163

T15-[ 1
4
cD(4)2]2 8, 163

T16- 1
2

[24]4 +4, 8, 16 8332 Needed

T17-[42]2 8332

T21- 1
2

[24]E(4) +4, 83 8332 Needed

T23-GL(2, 3) 4, 24 8, 242

T26- 1
2

[24]eD(4) −4, 8,+16 8,+16, 32 8, 16, 32 Needed

T27-[24]4 −4, 8, 16 8332 Needed

T28- 1
2

[24]dD(4) +4, 8,−16 8,+16, 32 8, 16, 32 Needed

T30- 1
2

[24]cD(4) −4, 8,−16 8,+16, 32 8, 16, 32 Needed

T31-[24]E(4) −4, 83 8332 Needed
T35-[24]D(4) −4, 8,−16 8,−16, 32 8, 16, 32 Needed

T38-[24]A(4) 24, 32 T33-[ 1
3
A(4)2]2

T40- 1
2

[24]S(4) 24, 32 T34-E(4)2:D6

T43-PGL(2, 7) 28, 42
T44-[24]S(4) 24, 32 T41-E(4)2:D12

T46- 1
2

[S(4)2]2 +12, 16 Needed

T47-[S(4)2]2 −12, 16 Needed
T50-S8 70

The ‘4-diff’ resolvent of Tables 3 and 2 is R(F 2, f) where

F = x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8.

As shown in [19], the existence of σ ∈ S8 such that Fσ = −F implies that
R(F, f)(x) = R(F 2, f)(x2). When the sum of the roots of f(x) is zero we have
R(F, f) = R(2(x1 + x2 + x3 + x4), f) and so the 4-diff resolvent may be derived
from the 4-set resolvent after applying an appropriate linear Tschirnhaus transfor-
mation to f .

Tables 2 and 3 summarize how to distinguish the fifty transitive groups of degree
8. Where factorization over K(

√
∆) is needed, certain factors of the resolvents

are underlined in Table 2. A ‘+/–’ means the factor is reducible/irreducible over

K(
√

∆).
For each group G, we indicate orbit-length partitions for a set S of resolvent

polynomials. If G and H are groups of the same parity having the same orbit-
length partition for each resolvent in S, then G and H have the same partition
for the remaining r-set (r = 2, 3, 4) and 2-sequence resolvents. With the exception
of four groups in Table 2, S is chosen such that no proper subset of S has this
property.

The groups 1
2 [24]eD(4), 1

2 [24]dD(4), 1
2 [24]cD(4) and [24]D(4) are distinguished

amongst themselves by testing if factors of the 2- and 3-set resolvents are reducible
over K(

√
∆), so the 2-set orbit-length partition is included in the table even though

it is unnecessary to include it in S.
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Table 3. Distinguishing Galois groups for G ⊆ A8

Group Orbit-Length Partition Galois Groups of
(G ⊆ A8) 2 3 4 2 Resolvent Factors
(see [1, 5]) set set set seq

T2-4[×]2 4382 87

T3-E(8) 47

T4-D8(8) 458
T5-Q8(8) 4, 83 87

T9-D(4)[×]2 4382 83162

T10-[22]4 4316 83162

T11-Q8:2 4, 83 83162

T12-SL(2, 3) 4, 24 8, 242

T13-A(4)[×]2 2, 628, 242 Gal(2-set/4) = A4

T14-S(4)[1
2 ]2 2, 628, 12224

T18-[22]D(4) 8332
T19-E(8):4 8, 16, 32 Gal(2-set/8) =

T21-1
2 [24]E(4)

T20-[23]4 4, 8, 16 8332
T22-[23]22 4, 83 8332
T24-S(4)[×]2 2, 628, 242 Gal(2-set/4) = S4

T25-E(8):7 14, 56 Gal(4-diff/7) = C7

T29-[23]D(4) 8, 16, 32 Gal(2-set/8) =
T31-[24]E(4)

T32-[23]A(4) 8, 48 Gal(2-set/4) = A4

T33-[1
3A(4)2]2 2, 12, 24, 32 Gal(4-diff/6) = A4

T34-E(4)2:D6 2, 12332
T36-E(8):F21 14, 56 Gal(4-diff/7) = C7.C3

T37-PSL(2, 7) 14242
T39-[23]S(4) 8, 48 Gal(2-set/4) = S4

T41-E(4)2:D12 2, 12, 24, 32 Gal(4-diff/6) = S4/V4

T42-[A(4)2]2 2, 32, 36 Gal(2-set/12) = G288

(For G288: Gal(2-set/6) = C3.S3)
T45-[1

2S(4)2]2 2, 32, 36 Gal(2-set/12) = G576

(For G576: Gal(2-set/6) = 32.22)
T48-E(8):L7 14, 56 Gal(4-diff/7) =

PSL(3, 2)
T49-A8 70

Polynomials with given Galois groups

For each transitive group G of degree 8, Tables 4 and 5 contain a representative
polynomial f ∈ Q[x] such that GalQ(f) = G. In the tables, ζk denotes a primitive
kth root of unity.

Many of these polynomials were suggested to us in earlier work by Darmon [6].
Examples for SL(2, 3), PSL(2, 7) and PGL(2, 7) are drawn from [8] and [11].

In [18], Soicher constructs a polynomial for E(8):L7 and mentions that the same
method may be used for E(8):7 and E(8):F21. For [1

3A(4)2]2 and E(4)2:D6, we use
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Table 4. Rational polynomials with Galois groups for G 6⊆ A8

Group f(x) Remarks
(G 6⊆ A8)

T1-C8 x8 − 68x6 + 918x4 spl(f) = Q(ζ17 + ζ−1
17 ) [6]

−612x2 + 17

T6-D(8) x8 − 8x4 − 2 f = (x4 − (21/4 + 23/4)2)×
(x4 + (21/4 − 23/4)2) [6]

T7- 1
2

[23]4 x8 − 20x6 + 100x4 f =
∏
σ∈C4

(x2 − σ(α +
√

2α+
√

2β))

−160x2 + 80 α = 5 +
√

5, β = 5−
√

5 [6]

T8-2D8(8) x8 − 2 [6]

T15-[ 1
4
cD(4)2]2 x8 − 16x4 − 98 f = (x4 − (21/4 + 2(2)3/4)2)×

(x4 + (21/4 − 2(2)3/4)2) [6]

T16- 1
2

[24]4 x8 − 5x4 + 5 Gal(x4 − 5x2 + 5) = C4 [6]

T17-[42]2 x8 + 2x4 + 2

T21- 1
2

[24]E(4) x8 + 8x6 + 31x4 + 60x2 + 45 f = (x2 + 2)4 + 7(x2 + 2)2 + 4 [6]

T23-GL(2, 3) x8 − 44x2 − 44

T26- 1
2

[24]eD(4) x8 + x4 + 2 Gal(x4 + x2 + 2) = D4 [6]

T27-[24]4 x8 + 4x6 + 10x4 + 12x2 + 7 Gal(x4 + 4x3 + 10x2 + 12x+ 7) = C4 [6]

T28- 1
2

[24]dD(4) x8 + 4x6 + 8x4 + 8x2 + 2 Gal(x4 + 4x3 + 8x2 + 8x+ 2) = D4 [6]

T30- 1
2

[24]cD(4) x8 − 4x6 + 4x4 − 2

T31-[24]E(4) x8 + 4x6 + 7x4 + 6x2 + 6 Gal(x4 + 4x3 + 7x2 + 6x+ 6) = V4 [6]

T35-[24]D(4) x8 + 4x6 + 7x4 + 6x2 + 5 Gal(x4 + 4x3 + 7x2 + 6x+ 5) = D4 [6]

T38-[24]A(4) x8 + 8x2 + 12

T40- 1
2

[24]S(4) x8 + 12x2 − 9

T43-PGL(2, 7) x8 + x7 + 7x6 + x+ 1 [11]

T44-[24]S(4) x8 + x2 + 2

T46- 1
2

[S(4)2]2 x8 − 4x6 + x4 − 4x3

+2x2 + 4x+ 2

T47-[S(4)2]2 x8 + 4x5 + 8

T50-S8 x8 + x+ 2

a method derived from Soicher’s: let H be a subgroup of index s in G1 such that
G2
∼= G1/(

⋂
σ∈G1

σ−1Hσ) and suppose h is a polynomial with roots γ = γ1, . . . , γr
such that Gal(h) = G1; then we may construct F ∈ K[x1, . . . , xr] with stabG1(F ) =
H (see [22] for example). Using the notation of [19], FG1 = {F1, . . . , Fs} where
the Fi are distinct functions. Provided it has no repeated roots, the polynomial
RF =

∏s
i=1(x − Fi(γ)) ∈ K[x] is of degree s with Gal(RF ) = G2. To remove

repeated roots, we apply a Tschirnhaus transformation to h. In this way we arrive
at polynomials for [1

3A(4)2]2 (a quotient of G1 = [24]A(4)) and E(4)2:D6 (G1 =

[23]S(4)).
The remaining polynomials are found by computer searching. We were guided in

our searches by Soicher [17, pp.85-87]. In particular, we use his ideas for generating
polynomials with square discriminant.
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Table 5. Rational polynomials with Galois groups for G ⊆ A8

Group f(x) Remarks
(G ⊆ A8)

T2-4[×]2 x8 + 2x6 + 4x4 + 8x2 + 16 spl(f) = Q(ζ5,
√

2) [6]

T3-E(8) x8 − 12x6 + 23x4 − 12x2 + 1 spl(f) = Q(
√

2,
√

3,
√

5) [6]

T4-D8(8) x8 + 4x6 + 8x4 + 4x2 + 1 spl(f) = spl(x4 − 2) [6]

T5-Q8(8) x8 − 24x6 + 144x4 − 288x2 + 144 spl(f) =

Q(
√

2,
√

3,
√

(2 +
√

2)(3 +
√

3)) [6]

T9-D(4)[×]2 x8 − 10x4 + 1 f =
∏

(x±
√
±
√

2±
√

3) [6]

T10-[22]4 x8 − 3x6 + 9x4 − 12x2 + 16 f =
∏i=4
i=1(x2 − ζi5x− 2) [6]

T11-Q8:2 x8 − 18x4 + 9 spl(f) = normal closure of

Q(
√

12 + 7
√

6 + 12
√

2 + 7
√

3) [6]

T12-SL(2, 3) x8 + 9x6 + 23x4 + 14x2 + 1 [8]

T13-A(4)[×]2 x8 + 24x4 + 64x2 + 144 spl(f) = Q(spl(x4 + 8x+ 12), i)

T14-S(4)[ 1
2

]2 x8 + 150x4 − 500x2 + 5625 spl(f) = spl(x4 + 2x+ 3)

T18-[22]D(4) x8 + 8x2 + 9

T19-E(8):4 x8 − 4x6 + 12x4 − 8x2 + 4 [6]

T20-[23]4 x8 + 4x6 + x4 − 6x2 + 1 f = (x2 + 1)4 − 5(x2 + 1)2 + 5 [6]

T22-[23]22 x8 − 28x4 + 100 f =
∏

(x2 − (±2
√

3±
√

2)) [6]

T24-S(4)[×]2 x8 − 4x2 + 4

T25-E(8):7 x8 − x7 + 2x6 + 2x5 + 7x4 See accompanying text

+3x3 + 4x2 + 3x+ 5

T29-[23]D(4) x8 + 4x6 + 7x4 + 6x2 + 4 Gal(x4 + 4x3 + 7x2 + 6x+ 4) = D4 [6]

T32-[23]A(4) x8 − x6 − 3x2 + 4

T33-[ 1
3
A(4)2]2 x8 − 4x7 − 8x6 + 24x5 + 36x4 See text

−24x3 − 48x2 + 48x− 12

T34-E(4)2:D6 x8 − 6x6 − 4x5 + 24x4 − 28x2 + 18 See text

T36-E(8):F21 x8 + 2x7 + 28x6 + 84x5 + 224x4 See text

+392x3 − 336x+ 112

T37-PSL(2, 7) x8 + 2x7 + 28x6 + 1728x+ 3456 [11]

T39-[23]S(4) x8 + x2 + 1

T41-E(4)2:D12 x8 + 16x4 + 16x3 + 8

T42-[A(4)2]2 x8 + 7x4 + 8x3 + 9

T45-[ 1
2
S(4)2]2 x8 − 8x6 − 8x5 + 8

T48-E(8):L7 x8 + 14x5 + 7x4 − 14x3 + 4x+ 14 [18]

T49-A8 x8 + 8x3 + 10

Note that GalK(f) has a system of imprimitivity consisting of blocks of size two
if f is even, and conversely, given f such that Gal(f) is imprimitive with blocks of

size two, we may construct an even f̃ as follows:
From degree considerations, f(x) with roots {αi}, has a quadratic factor φ in

Q(β)[x] where f(x) | g(h(x)), β a root of g. The discriminant of φ, ∆φ, lies in Q(β)



830 THOMAS MATTMAN AND JOHN MCKAY

so by eliminating β we obtain

f̃ = resultant(x2 −∆φ, g(β), β).

Indexing the roots so that

{α1, α2 : α3, α4 : . . . : αn−1, αn}

partitions them into blocks of size two, we find the roots of f̃ are

{α1 − α2, α2 − α1, . . . , αn−1 − αn, αn − αn−1},

so that Gal(f̃) = Gal(f) (provided f̃ has no repeated roots).
For each group in Tables 4 and 5 with such a system of imprimitivity, we give

the associated polynomial in x2.
Gene Smith [20] has provided test polynomials over Q(t) for all Galois groups of

degree ≤ 8.

Remark

We have described techniques which, together, are designed to reduce the po-
tential Galois groups to a single group, Gal(f). These techniques, when combined
with an ad hoc approach to a small proportion of intransigent groups, are practi-
cable and adequate up to degree 8 and, no doubt, further. For example, Hulpke [9]
has recently completed an enumeration of permutation groups up to degree 31.
However this may be a bound to the degree of f for which we can, in practice,
find Gal(f). In higher degrees there exist pairs of groups [16] which are likely to
be extremely hard to separate, having identical irreducible representations and iso-
morphic proper subgroup structure. The smallest such groups appear to be of order
256 but they have a minimal transitive faithful permutation degree of 32. One such
pair is indexed (3678,3679) in O’Brien’s [14] 2-group list accessible in GAP and
elsewhere. It is true, however, that as a last resort the polynomial invariants of a
group identify it uniquely even though they may be unwieldy to work with.
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