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COMPUTING IRREDUCIBLE REPRESENTATIONS OF

SUPERSOLVABLE GROUPS OVER SMALL FINITE FIELDS

A. OMRANI AND A. SHOKROLLAHI

Abstract. We present an algorithm to compute a full set of irreducible rep-
resentations of a supersolvable group G over a finite field K, charK - |G|,
which is not assumed to be a splitting field of G. The main subroutines of our
algorithm are a modification of the algorithm of Baum and Clausen (Math.
Comp. 63 (1994), 351–359) to obtain information on algebraically conjugate
representations, and an effective version of Speiser’s generalization of Hilbert’s
Theorem 90 stating that H1(Gal(L/K),GL(n,L)) vanishes for all n ≥ 1.

1. Introduction and main results

Recently Baum and Clausen [1] published an efficient algorithm for computing
the absolutely irreducible representations of a supersolvable group G given in pc-
presentation. The matrix representations their algorithm computes are adapted
to a chief series T := (G = Gn > Gn−1 > · · · > G0 = {1}), i.e., any such
representation D satisfies the following conditions: (1) the restriction D ↓ Gj of
D to Gj is equal to a direct sum of irreducible matrix representations of Gj , and
(2) equivalent irreducible constituents of D ↓ Gj are equal. The algorithm traverses
the chief series T bottom-up and constructs in each step j among other data a
complete set of inequivalent absolutely irreducible representations of Gj . These
representations are almost unique: if L is a field containing a primitive eth root
of unity, e being the exponent of G, and D and ∆ are two equivalent irreducible
T -adapted representations of LG of degree d, say, then the intertwining space

Int(D,∆) := {X ∈ Ld×d | ∀ g ∈ G : XD(g) = ∆(g)X}
is generated over L by a monomial matrix (see [2, Theorem 7.4]).

Now let K be a finite field, G be a supersolvable group such that charK -
|G|, T be a chief series of G, and L be a finite extension of K which contains a
primitive eth root of unity. The Galois group Gal(L/K) acts on the irreducible
matrix representations of LG in a straightforward manner. In Section 2 we shall
modify the algorithm of Baum and Clausen by collecting at each step information
about the Gal(L/K)-orbits of the representations constructed. We then employ
the information obtained at level n to compute realizations of direct sums of these
representations over the field K. By a realization of a matrix representation D
of LG over K we mean a matrix T ∈ GL(d, L), d being the degree of D, such
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that T−1D(g)T has entries in K for all g ∈ G. Not every representation has a
realization over K. Even more, if K is a prime field, χ denotes the character of D,
and K(χ) := K(χ(g) | g ∈ G) its character field, then D cannot have a realization
over a proper subfield of K(χ). The question whether an absolutely irreducible
representation D of G has a realization over K(χ) is hard to answer in general,
i.e., for arbitrary K and arbitrary G. (This amounts to the question whether the
Schur-index of the character of D equals 1, see [3, Kapitel V, §14].) It is, however,
well known that for finite fields and arbitrary finite groups the question has an
affirmative answer [3, Kapitel V, Satz 14.10].

In theory we thus know that any irreducible matrix representation D of LG
has a realization over its character field. How can we compute such a realization?
Let M be a subfield of L of index `, and β be the Frobenius automorphism of
L/M . If D is an irreducible representation of LG of degree d, then so is Dβ , where
Dβ(g) := D(g)β for all g ∈ G. If M is the character field of D, then D is equivalent
to Dβ , hence Int(D,Dβ) is generated by an invertible matrix S. A generaliza-
tion of Hilbert’s Theorem 90 due to Speiser [7] states that the first cohomology
H1(〈β〉,GL(d, L)) is trivial. (This is a modern interpretation of Speiser’s result;
see also [6, Chapter X, §1].) Hence, for S ∈ GL(d, L) there exists T ∈ GL(d, L) such

that T−1T β = S if and only if the norm Sβ
`−1 · · ·SβS of S equals the n×n-identity

matrix In. Such a matrix T will give the desired realization of D over its character
field M . In our applications, S is a monomial matrix and this allows to compute
T from S efficiently, see Section 3.

Now we are almost done. Namely, we may suppose that D is an absolutely irre-
ducible representation ofG with character χ such that D(g) has entries inK(χ). Let
σ be the Frobenius automorphism of K(χ)/K. Then the trace of D over K defined

as TrK(D) := D⊕Dσ ⊕ · · · ⊕Dσm−1

, m := [K(χ) : K], has character field equal to
K and a realization of TrK(D) over K can be computed easily, see Section 3. Fur-
thermore, TrK(D) is an irreducible KG-representation (since any of its irreducible
constituents over K has to be invariant under σ); conversely, any irreducible KG-
representation is the trace over K of some irreducible MG-representation, where
M is a splitting field of the representation in question containing K. (For these and
related facts see [4, Chapter VII, §1].) To obtain the irreducible representations of
KG we first compute a set F ′ of representatives of Gal(L/K)-orbits of irreducible
representations of LG, and for each such representation a realization of its trace
over K. Starting from a pc-presentation of G and the chief series T induced by
that, the first two steps of our algorithm are as follows:

Step 1. We first modify the algorithm of Baum and Clausen to compute a full set
F of pairwise inequivalent irreducible monomial and T -adapted representations of
LG, where L is a field extension of K containing a primitive eth root of unity, and
a permutation γ of F such that Fα is equivalent to γF : Fα ∼ γF . Here α is the
Frobenius automorphism of L/K. We then compute a full set F ′ of representatives
of Gal(L/K)-orbits of F and for each F ∈ F the degree of the character field of F
over K.

Step 2. For each F ∈ F ′ we compute a realization TF of F over its character field
and then a realization of the trace of T−1

F FTF over K.

Similar to the algorithm of Baum and Clausen, the arithmetic we use in these
two steps consists just of symbolic computation in L×, where L is a field extension
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of K containing an eth root of unity. More precisely, we represent nonzero elements
of L as integers i with 0 ≤ i < |L| − 1, where i corresponds to the element ωi and
ω is a fixed generator of L×. This representation of L allows to solve efficiently
equations of the form N(x) = α or x(xσ)−1 = α, where α ∈ L, N is the norm of
L relative to a subfield M , and σ is the Frobenius automorphism of L/M . We
shall need solutions to these kinds of equations in the second step of our algorithm.
Moreover, as we will need primitive elements for subfields of L, this representation
of L allows us to compute in advance these generators and store them in a list Ω.

The final step of the algorithm computes the KG-representations from the al-
ready computed realizations. This step requires matrix multiplication over L, and
symbolic computation in L× does not suffice for this purpose. Strategies to solve
this problem are discussed in the last section.

Many thanks go to an anonymous referee for important comments and to Michael
Clausen for communicating to us the problem discussed in this paper and for many
stimulating discussions.

2. Irreducible LG-modules and Gal(L/K)-orbits

The first step of our algorithm takes as input a supersolvable group G in pc-
presentation and a finite extension L of K containing a primitive eth root of unity;
it outputs a list F of pairwise inequivalent irreducible representations of LG and a
permutation γ of F such that Fα ∼ γF , α being the Frobenius automorphism of
L/K.

For the rest of this section we set Ti := (Gi > Gi−1 > · · · > G0 = {1}) for
1 ≤ i ≤ n. In particular, T = Tn. We call a matrix e-monomial if it is monomial
and its nonzero entries are eth roots of unity. An LG representation F is called
e-monomial if F (g) is e-monomial for any g ∈ G.

The algorithm of Baum and Clausen in [1] computes the list F ; we modify this
algorithm to obtain additional information on the orbits of F under the action of
the Galois group of L/K; this information is encoded as the permutation γ.

Our algorithm works bottom up along T . At level i, 1 ≤ i ≤ n, it takes the
following input:

(1) F , a full set of inequivalent irreducible e-monomial representations of LGi−1

such that
⊕

F∈F F is Ti−1-adapted;
(2) For every i − 1 < j ≤ n a permutation πj of F such that F gj ∼ πjF for all

F ∈ F as well as e-monomial matrices Xj,F ∈ Int(F gj , πjF ), F ∈ F ;
(3) A permutation γ of F such that Fα ∼ γF , as well as e-monomial matrices

MF ∈ Int(Fα, γF ), F ∈ F ;

and computes the following output:

(1) D, a full set of inequivalent irreducible e-monomial representations of LGi
such that

⊕
D∈DD is Ti-adapted;

(2) For every i < j ≤ n a permutation τj of D such that Dgj ∼ τjD for all D ∈ D
as well as e-monomial matrices Yj,D ∈ Int(Dgj , τjD), D ∈ D.

(3) A permutation δ of D such that Dα ∼ δD, as well as e-monomial matrices
ND ∈ Int(Dα, δD), D ∈ D;

Outputs (1) and (2) are computed in exactly the same way as in the algorithm of
Baum and Clausen [1]. Therefore, we only discuss the computation of Output (3)
and assume that we have already performed the two phases of the algorithm in [1].
Note that during the construction at level i in Phase 1 there is built a bipartite
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graph in which F ∈ F and D ∈ D are linked if and only if F is a constituent of
D ↓ Gi−1. We will need this information to compute δ and ND. For this we proceed
in a similar way as does Phase 2 of the Baum-Clausen algorithm. Let F ∈ F and
p := [Gi : Gi−1]. We distinguish two cases.

Case 1. Suppose that πiF = F , i.e., F gi ∼ F . Since (F gi)α = (Fα)gi , we obtain

(γF )gi ∼ (Fα)gi = (F gi)α ∼ Fα ∼ γF.
We already know p extensions D0, . . . , Dp−1 of F and p extensions ∆0, . . . ,∆p−1

of γF . For 0 ≤ k < p we have

Dα
k ↓ Gi−1 = (Dk ↓ Gi−1)α = Fα ∼ γF,

hence Dα
k is equivalent to one of the representations ∆0, . . . ,∆p−1. Thus there

exists a permutation ρ of {0, . . . , p− 1} such that Dα
k ∼ ∆ρk for 0 ≤ k < p. Since

Int(Dα
k ,∆ρk) = Int(Fα, γF ), we may set NDk := MF . To determine δDk, note

that

MFD
α
0 (gi)M

−1
F = ∆`(gi) = χ`(giGi−1)∆0(gi)

for a unique integer ` with 0 ≤ ` < p, where χ is a nontrivial representation
of Gi/Gi−1. To compute `, we just need to compare a nonzero entry of both
sides of the above e-monomial matrix equation. We then set δD0 := ∆`. For
other values of k we can determine δDk by cyclic shifts: Dα

k = (χk ⊗ D0)α =
(χk)α ⊗ Dα

0 ∼ (χα)k ⊗ (χ` ⊗ ∆0). Hence δDk = ∆(kq+`)mod p, since α is the
Frobenius automorphism over K = Fq.

Case 2. Suppose that πiF 6= F , i.e., F gi 6∼ F . In Phase 1 we have already con-
structed D ∈ D such that D ↓ Gi−1 =

⊕p−1
k=0 Fk and Fk = πki F is of degree,

say, f . Since (F ↑ Gi)α = Fα ↑ Gi and Fα ∼ γF , δD is the unique representa-
tion ∆ ∈ D such that γF is an irreducible constituent of ∆ ↓ Gi−1. According

to our construction, ∆ ↓ Gi−1 =
⊕p−1

k=0 Φk with Φk = πki Φ for some Φ ∈ F .
There is a permutation ρ of {0, . . . , p − 1} such that γFk = Φρk as well as e-
monomial matrices Mk := MFk ∈ Int(Fαk ,Φρk). To compute ND ∈ Int(Dα, δD),
we consider Int(Dα ↓ Gi−1, δD ↓ Gi−1). By Schur’s Lemma there exist constants
d0, . . . , dp−1 ∈ L× such that

ND = (Pρ ⊗ If ) ·
(
p−1⊕
k=0

dkMk

)
,

where Pρ is the p×p permutation matrix whose rows have been permuted according
to ρ. We may assume that d0 = 1. To determine the other dk, we use the equation

NDD
α(gi)N

−1
D = (δD)(gi).(2.1)

According to our construction in Phase 1 there are e-monomial matrices Tk, Sk ∈
Lf×f such that

D(gi) = (Pπ ⊗ If ) ·
(
p−1⊕
k=0

Tk

)
and

(δD)(gi) = (Pπ ⊗ If ) ·
(
p−1⊕
k=0

Sk

)
,
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where π = (0, . . . , p− 1). Hence, (2.1) is equivalent to

(Pπ ⊗ If ) ·
(
p−1⊕
k=0

dπkMπk

)
·
(
p−1⊕
k=0

Tαk

)
·
(
p−1⊕
k=0

d−1
k M−1

k

)

= (Pρ−1πρ ⊗ If ) ·
(
p−1⊕
k=0

Sρk

)
.

Since d0 = 1, we can successively determine d1, . . . , dp−1 by comparing for each k

one nonzero entry of MπkT
α
k d
−1
k M−1

k and Sρk.

We now compute a set F ′ of representatives of Gal(L/K)-orbits of F and for each
F ∈ F ′ with character χF the degree of the character field dF := [K(χF ) : K] of F

as well as a matrix SF ∈ Int(Fα
dF , F ). (Note that αdF generates the Galois group

of L/K(χF ).) Notice that ` := dF is the smallest integer m such that Fα
m ∼ F ,

i.e., the smallest m such that γmF = F . Furthermore, it is easily checked that

SF := Mγ`−1FM
α
γ`−2F · · ·Mα`−1

F ∈ Int(Fα
`

, F ).

The algorithm to compute the required data is now straightforward. We take the
first representation F in F , append it to the list F ′, and set M := MF . Then we
go through all γiF , delete them from the list F , update M := MγiFM

α, and stop

as soon as γ`F equals F , deleting F from F in this last step. In this way we also
obtain dF . We repeat the whole process until the list F is empty.

3. Realization over subfields

In this step of our algorithm we take the output of the last step and compute at
first for each F ∈ F ′ a realization TF of F over K(χF ), where χF is the character
of F . We then proceed by computing a realization of the trace of TFFT

−1
F over K.

It is well known that any absolutely irreducible representation of LG has a
realization over its character field [3, Kapitel V, Satz 14.10]. We would like to give
here a proof of this fact which builds the basis of our algorithm to find such a
realization. We use the following setup: F is an irreducible representation of LG
of degree f , M is the character field of F , [L : M ] =: `, and β is a generator of
Gal(L/M). For a matrix A ∈ Lm×m, we define the norm of A by NL/M (A) :=

Aβ
`−1 · · ·A. Note that if m 6= 1, then the norm of A does not necessarily belong to

Mm×m.
The representations F and F β are equivalent since they have the same character.

Hence there exists an invertible matrix S ∈ Int(F β , F ). Suppose that there exists
T ∈ GL(f, L) such that T−1T β = S. Then, SFS−1 = F β implies that TFT−1 is
invariant under β, hence T is a realization of F over M . By Speiser’s Theorem [7]
mentioned in the introduction such a matrix T exists if and only if NL/M (S) = If .
(Speiser’s original proof works only over infinite fields; for a general proof, see [6,
page 151].) A straightforward calculation shows that NL/M(S) ∈ Int(F, F ). Hence,

Schur’s Lemma implies that NL/M (S) = cIf for some c ∈ L. But NL/M (S)β =

S−1NL/M (S)S = cIf , hence c ∈M . Since L is finite, any element in M is the norm
of an element in L, hence there exists d ∈ L such that NL/M (dS) = If . Replacing S
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by dS if necessary, we obtain the existence of T , a realization of F over its character
field. (See also [3, Kapitel V, Bemerkung 14.14].)

From the second step we know ` := [L : K]/dF and an e-monomial matrix
S = SF ∈ Int(F β , F ), β = αdF . Let S =: Pπdiag(S(1), . . . , S(f)). We first
compute some auxiliary data. Suppose that π can be written as the product of
ν disjoint cycles of lengths `1, . . . , `ν and let ρ1, . . . , ρν be a complete set of dis-
joint representatives of each cycle. We compute ν, `1, . . . , `ν and ρ1, . . . , ρν , then

a nonzero entry γ :=
∏`−1
j=0 S(πj1)β

`−1−j
of NL/M (S), and some element c of L

satisfying NL/M (c) = γ−1; we then replace S by cS. Now we have NL/M (S) = If .
As `i divides the order of π and the latter divides `, we have `i|`. Hence, we can
extract from the precomputed list Ω of primitive elements of subfields of L elements
y1, . . . , yν ∈ L such that yi has degree `i over K. The rest of the algorithm, written
in pseudo code, is now as follows (0j means 0, . . . , 0 j-times):

1 t := 0;

2 for i = 1 to ν do

3 γi :=

`i−1∏
j=0

S(πjρi)
β(`i−1−j)

;

4 Compute xi ∈ L such that γi = x−1
i xβ

`i

i ;

5 T [i] := (0t, xi, xiyi, . . . , xiy
`i−1
i , 0m−t−`i)>;

6 for j = 1 to `i − 1 do

7 T [πjρi] := S(πj−1ρi)
−1T [πj−1ρi]

β ;

8 od;

9 t := t+ `i;

10 od;

11 TF := (T [1] | T [2] | · · · | T [f ]).

It is not clear in advance that the above algorithm is executable since there might
be no element xi satisfying the equation in line 4. In the following we show that
such an xi always exists and prove that the matrix T obtained by our algorithm is
in fact a realization of F over M .

Let T ∈ Lf×f have columns T [1], . . . , T [f ]. Then TS = T β if and only if for all
1 ≤ i ≤ ν and all 1 ≤ j ≤ `i we have

T [πjρi] = S(πj−1ρi)
−1T [πj−1ρi]

β .(3.1)

This implies that T [ρi] = γ−1
i T [π`iρi]

β`i , hence T [ρi] = NL/Mi
(γi)

−1T [ρi]
β`i which

gives NL/Mi
(γi) = 1, where Mi is the fixed field of β`i . Hence, by Hilbert’s Theo-

rem 90 there exists xi satisfying the condition in line 4 and our algorithm is exe-
cutable. Line 7 guarantees that (3.1) is satisfied for all 1 ≤ i ≤ ν, 1 ≤ j < `i. To see

that it is also satisfied for j = `i, we only need to check that T [ρi] = γ−1
i T [ρi]

β`i .
But this follows from the choice of xi and the fact that yi is fixed under β`i . It
remains to show that T is invertible. This is true because the Vandermonde matrix(

(yβ
j

i )k
)

0≤j,k≤`i−1
is invertible (since yi has degree `i over K).
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At this stage of our algorithm we have a list F ′ of representatives of Gal(L/K)-
orbits of the irreducible representations of LG, for each F ∈ F ′ the degree dF of
the character field of F over K, and a realization TF of F over its character field.

We know that DF :=
⊕dF−1

i=0 Fα
i

is equivalent to an irreducible representation of
KG and that all irreducible representations of KG are obtained this way.

Let F ∈ F ′ be of degree f and F̃ := TFFT
−1
F . We extract from Ω a primitive ele-

ment γ of the character field of F over K, i.e., an element having degree d = dF over

K. Let U := V ⊗ If , where V is the Vandermonde matrix V :=
((
γi
)αj)

0≤i,j<d
.

It is easily verified that

R := U ·


TF

TαF
. . .

Tα
d−1

F


is a realization of D =

⊕d−1
i=0 F

αi over K.

4. The final step and concluding remarks

Given a finite field K, a supersolvable group G of exponent e in pc-presentation,
and a field extension L of K containing a primitive eth root of unity, the first two
steps of our algorithm have computed a set F ′ of representatives of Gal(L/K)-
orbits of the irreducibles of LG, and for each such representation a realization
of its trace over K. One possible strategy to compute the KG representations
out of these data would be to represent L as the residue class ring modulo an
irreducible polynomial, compute a primitive element ω of L×, replace each entry
of the matrices involved by their corresponding polynomial representations, and
proceed with matrix multiplication (and inversion) over L. Another strategy is
to start with a representation of L as a polynomial residue class ring, and to go
through all the steps of the algorithm using field arithmetic in L. Here we face the
difficulty of solving equations of the type xd = α, where d is a divisor of |L| − 1.
Both these strategies consume exponential time, and it seems that in practice a
correct implementation of any of these strategies is rather complicated.

Nevertheless, we have implemented our algorithm in the computer algebra sys-
tem GAP [5]. In this implementation the final step is performed by using a table
of Jacobi logarithms for L, which needs exponential space (and time). Although it
is impractical for large |L|, this strategy performs well for small sizes of L.
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