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THE DIOPHANTINE EQUATION x4 + 1 = Dy2

J. H. E. COHN

Abstract. An effective method is derived for solving the equation of the title
in positive integers x and y for given D completely, and is carried out for all
D < 100000. If D is of the form m4 + 1, then there is the solution x = m,
y = 1; in the above range, except for D = 70258 with solution x = 261,
y = 257, there are no other solutions.

Over fifty years ago, Ljunggren [2], showed that the equation of the title, where
without loss of generality D is square free, has at most one solution in positive
integers. The method was purely algebraic, but rather complicated. It is the
object of this note to provide an effective computational method of determining
whether a solution exists and of finding it when it does.

Clearly, there can be no solution unless the equation v2−Du2 = −1 has solutions,
and in particular q ≡ 1 (mod 4) for every odd prime factor q of D. Let α = a+b

√
D

be its fundamental solution, and define β = a− b
√
D, and

un =
αn − βn

2
√
D

; vn =
αn + βn

2
.(1)

Then for the equation of title we have for some odd m, x2 = vm and y = um. Since
b|um we see that for any odd prime factor q of Db, (x2 ± 1)2 ≡ ±2x2 (mod q) and
so q ≡ 1 (mod 8). Since D was assumed square free and clearly b must be odd,
we see that b ≡ 1 (mod 8). If D is odd, then D ≡ 1 (mod 8), and so 4|a whence
D ≡ 1 (mod 16). So we have two cases:

Case 1. D ≡ 1 (mod 16), every factor of D is congruent to 1 modulo 8;

Case 2. D ≡ 2 (mod 16), every odd factor of D is congruent to 1 modulo 8.

In Case 1 we find 4|a and in Case 2 a ≡ ±1 (mod 8).

Theorem 1. Let a = AB2 where A is square free. Then m = A provides the only
possible solution.

Proof. Since α+ β = 2a, αβ = −1, the sequence {vn} satisfies the recurrence

vn+2 = 2avn+1 + vn(2)

with initial values v0 = 1 and v1 = a.
For n odd, let wn = vn/a, which is also an integer. Then by (2) wn+4 −wn+2 =

2vn+3, wn+2 − wn = 2vn+1. Thus

wn+4 − 2wn+2 + wn = 2(vn+3 − vn+1) = 4avn+2 ≡ 0 (mod 4a),
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and so since w1 = 1, w3 = 3 (mod 4a), it follows that for all odd n

wn ≡ n (mod 4a).(3)

In particular, solutions are possible only if a = 22αa1 where α ≥ 0 and a1 is odd.
In this case, we have for all odd n with (a, n) = 1

(wn|a1) = (n|a1) = (a1|n)ξ = (a|n)ξ,(4)

where ξ = −1 if n ≡ a1 ≡ 3 (mod 4) and ξ = 1 otherwise.
Next we prove by induction on nN that for all odd coprime integers n,N the

Legendre-Jacobi symbol (wn|wN ) = (n|N). This holds if nN = 1; suppose it
is true for all values less than the one we consider. As n and N are supposed
coprime, n = N is impossible unless n = N = 1; without loss of generality we
may assume n > N , since by (3) quadratic reciprocity gives (wn|wN ) = (wN |wn)θ,
where θ = −1 if n ≡ N ≡ 3 (mod 4) and θ = 1 otherwise. Then it is easily found
that wn ≡ wn−2N (mod wN ), and again n−2N and N are coprime. If here n−2N
is positive, then (wn|wN ) = (wn−2N |wN ) = (n−2N |N) = (n|N) and the induction
is complete; on the other hand if n−2N is negative, then we use wn−2N = −w2N−n
and then

(wn|wN ) = (wn−2N |wN ) = (−w2N−n|wN ) = (−1|wN )((2N − n)|N) = (n|N)

in view of (3), since if N < n < 2N , then 0 < 2N − n < N .
Suppose that x2 = vm = awm; let n denote any odd integer coprime to am.

Then

1 = (awm|wn) = (a|wn)(m|n) = (a1|wn)(m|n) = (wn|a1)(m|n)ξ = (am|n),

by (3) and (4) and this implies that am must be a perfect square, since otherwise,
we may choose n to be congruent to 1 modulo 4 and also be a quadratic non-residue
modulo am. Thus Am must be a perfect square, and to complete the proof we need
to show that m cannot have any squared factor.

If m 6= 1, then m has an odd prime factor p, say m = pk, where k ≥ 1. Then
vm + um

√
D = αkp = (vk + uk

√
D)p and so

x2 = vk

1
2 (p−1)∑
r=0

(
p
2r

)
vp−2r−1
k Dru2r

k = vk

1
2 (p−1)∑
r=0

(
p
2r

)
vp−2r−1
k (v2

k + 1)r = vkV,

say, where V ≡ p (mod v2
k). Thus we must have either vk = x2

1, V = x2
2 or vk = px2

1,
V = px2

2. The former is impossible by Ljunggren’s result.
Suppose then that vk = px2

1. We show that p - k. For if k = pK, then we obtain
as above px2

1 = vpK = vKV
′, say, where now V ′ ≡ p (mod v2

K). Since p|vKV ′ it
follows that p‖V ′ and hence that vK = x2

3, again impossible by Ljunggren’s result.
This concludes the proof.

For a given D it is therefore in principle trivial to solve the equation; all that
is required is to determine a, calculate vA and test whether it is a square. Unfor-
tunately there are a number of practical difficulties occasioned by the huge values
that occur; for example, when D = 97441, a has 289 decimal digits. Since the de-
termination of A is nearly of the same order of difficulty as a complete factorisation
of a, we consider how the calculations can be reduced.

The first step in the computation for any D ≡ 1 or 2 (mod 16) is to eliminate any
that are squares or have an odd prime factor 6≡ 1 (mod 8), and then to calculate
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the continued fraction of
√
D up to the end of the first period. There is a very

efficient algorithm for doing this involving only integer arithmetic. If the period
length is even, as occurs for example for D = 34, then the equation v2−Du2 = −1
has no solutions, and so the equation of the title has none. Assuming the period
length n to be odd, if

√
D = [a0, a1, . . . , an−1, 2a0], we next calculate the convergent

a/b corresponding to [a0, a1, . . . , an−1] which provides the fundamental solution α
of v2 −Du2 = −1, as is well known. Provided multiprecision is available, this too
can be carried out very efficiently. If here b has a factor congruent to 5 modulo 8
again there will be no solution; this occurs for example with D = 193 for which
b = 126985, but it is not always feasible to use this unless b has a small such
factor; it is not worth attempting a complete factorisation of b in other cases, as
will become apparent.

As we have seen, a solution is possible only if x2 = vA, or equivalently if wA =
AX2. Often, although it is impracticable to factorise a completely, we are able to
find some of the factors of A. The following result is therefore of assistance.

Theorem 2. A solution can exist only if for every factor k of A, wk = kX2
1 , and

in Case 2, every factor of A must be congruent to ±1 (mod 8).

For if A = kl, then as above

x2 = vk

1
2 (l−1)∑
r=0

(
l

2r

)
vl−2r−1
k Dru2r

k = vk

1
2 (l−1)∑
r=0

(
l
2r

)
vl−2r−1
k (v2

k + 1)r = vkV

and again V ≡ l (mod v2
k). But now l|a|vk and so vk = lx2

1, V = lx2
2, and so since

A = kl is square free, wk = lx2
1/AB

2 = kX2
1 .

In Case 2 we have that a and so also x and vk are odd, and so modulo 8,

l ≡ V ≡ 1 + 2

(
l
2

)
+ 4

(
l
4

)
= 1 + l(l − 1) + 1

6 l(l − 1)(l − 2)(l − 3),

whence l ≡ ±1 (mod 8).

Theorem 3. There is no solution if 3|A.

For as above, this would yield with A = 3k, vk = 3x2
1, 3x2

2 = 4v2
k + 3, and then

x2
2 = 12x4

1 + 1. An easy descent argument shows that this equation is impossible,
for it would require x2 ± 1 = 2x4

3, x2 ∓ 1 = 6x4
4 whence ±1 = x4

3 − 3x4
4. Here the

lower sign is rejected modulo 3, and the upper sign requires x3 odd and x4 even.
Thus (x2

3 +1)(x2
3−1) = 48(1

2x4)
4 and since (x2

3 +1, 48) = 2, we obtain x2
3 +1 = 2x4

5,

x2
3 − 1 = 24x4

6 and so x4
5 = 12x4

6 + 1.

Theorem 4. There is no solution if 5|A.

For, it would give vk = 5x2
1, 5x2

2 = 16v4
k + 20v2

k + 5 with x1 6= 0, where A = 5k.
Thus 4x2

2 = 5(40x4
1 + 1)2 − 1, whence 2(40x4

1 + 1) = F3r, where {Fn} denotes the
Fibonacci sequence, and r is odd. To show that this cannot occur, let {Ln} denote
the Lucas sequence. Using standard identities for these sequences, we find it would
require

80x4
1 = F3r − F3 =

{
F6mL6m+3 if r = 4m+ 1 ≡ 1 (mod 4),

F6mL6m−3 if r = 4m− 1 ≡ 3 (mod 4).
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Now none of the Lucas numbers is divisible by 5, and since (F6m, L6m±3) = 4 we
see that we require L6m±3 to be a square or twice a square. By [1], this occurs only
for 6m± 3 = 3. The lower sign gives no value, and the upper gives only x1 = 0.

Theorem 5. If 3 - a, then p ≡ ±1 or ±5 (mod 24) for every factor p of A.

For if A = pk, then vk ≡ a (mod 3) and we now have

px2
2 ≡

1
2 (p−1)∑
r=0

(
p
2r

)
ap−2r−1(a2 + 1)r ≡

1
2 (p−1)∑
r=0

(
p
2r

)
(−1)r (mod 3)

=
(1 + i)p + (1− i)p

2
= 2

p
2 cos

pπ

4
,

whence the result.

Theorem 6. If 5 - a, then p ≡ ±1 (mod 5) for every factor p of A.

For now we cannot have a2 ≡ 4 (mod 5) since 5 - Db. Thus a2 ≡ 1 (mod 5)
and then A ≡ ±1 (mod 5). If A = pk we must have vk = px2

1, and then p ≡ ±2
(mod 5) would give vk ≡ ±2 (mod 5), since it is easily found that 5 - vk, and then

px2
2 =

1
2 (p−1)∑
r=0

(
p
2r

)
vp−2r−1
k (v2

k + 1)r ≡ ±1 (mod 5),

which is impossible.
We therefore tested whether a was a square; if so the problem is solved affirma-

tively. If not, then we attempt to eliminate D as simply as possible, by attempting
factorisations of a, to find A, and of b. This may be difficult, but even when
complete factorisations are impracticable, it may be possible to find enough infor-
mation, for example if b has any factor ≡ 5 (mod 8), or if A is divisible by 2 or 3
or 5, or if B is not divisible by 3 but A has a prime factor ≡ ±7 or ±11 (mod 24)
or if B is not divisible by 5 but A has a prime factor ≡ ±2 (mod 5). If this fails
to dismiss D, then we have to test for vA = x2. Even if A is known, the numbers
are often far too large for a direct demonstration, and we use congruences. Let q
denote any prime; then modulo q the sequence {vn} is periodic, and with period
z = z(q), say, not exceeding q2. Then if r ≡ A (mod z), vA could be a square only
if the congruence vr ≡ x2 (mod q) were soluble. It is usually quite easy to find a
suitable q for which this fails to hold. If A is unknown but some of its factors are,
then we use Theorem 2 instead and test for wk = kX2

1 in the same way.
To obtain a flavour of the work involved, when D = 7393, a is a number of 58

decimal digits, not divisible by 5 but having the unrepeated factor 13; thus this case
can be eliminated by Theorem 6. When D = 47858, a = 3719, b = 17 and since
3719 is prime, we must consider ν3719. We find that v3719 is not a square, since if
q = 11, z = 24 and then v3719 ≡ 10 (mod 11). Not all values of D succumbed quite
so easily.

All the solutions we have found arise from A = 1; we conjecture that this is
always the case, although we are unable to prove it. [The equation x4 − 1 = Dy2

is more amenable to treatment along these lines.] A proof would eliminate much of
the computation, for then all that would be required would be to test whether a is
a perfect square. As we have seen, if A > 1 is a solution, then wk = kX2

1 for every
factor k of A, and we know that we cannot have k = 3 or 5. We accordingly make
the stronger
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Conjecture. The equation wk = kX2
1 is satisfied for no odd k > 1 and a > 0.

For our purposes it would suffice to prove this for all odd prime k dividing A.
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