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COMPUTING STARK UNITS FOR TOTALLY REAL

CUBIC FIELDS

DAVID S. DUMMIT, JONATHAN W. SANDS, AND BRETT A. TANGEDAL

Abstract. A method for computing provably accurate values of partial zeta
functions is used to numerically confirm the rank one abelian Stark Conjecture
for some totally real cubic fields of discriminant less than 50000. The results
of these computations are used to provide explicit Hilbert class fields and some
ray class fields for the cubic extensions.

1. Introduction

Let K/k be an abelian extension of number fields with Galois group G =
Gal(K/k) and let S be a finite set of places of k that includes the Archimedean
places of k and all the places of k ramified in K/k. For any σ ∈ G the partial zeta
function ζS(s, σ) is defined for Re(s) > 1 by

ζS(s, σ) =
∑

A integral
(A,S)=1
σA=σ

1

NAs

where the sum extends over all integral ideals A of k whose Frobenius symbol σA

for the abelian extension K/k is the given element σ of G.
For a character χ of G define LS(s, χ) to be the L-series for χ with the Euler

factors at S removed, which for Re(s) > 1 is given by the usual convergent Euler
product:

LS(s, χ) =
∏

(p,S)=1

(
1− χ(p)

Nps

)−1

where χ(p) = χ(σp) and the product is taken over all primes p of k not in the set
S.

Both ζS(s, σ) and LS(s, χ) have meromorphic continuations to the entire s-plane.
The order r(χ) of the zero of LS(s, χ) at s = 0 is one less than the number of places
in S, |S| − 1, if χ = 1 is the trivial character; and r(χ) is the number of places v in
S for which χ is trivial on the decomposition group of v for the extension K/k if χ
is not trivial.

In particular, suppose S contains at least two places, including one place v that
splits completely in K. Then every LS(s, χ) has a zero of order at least one at s = 0
and it follows that the same is true of the partial zeta functions. The abelian Stark
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Conjecture, the first inklings of which appear in [20] and which was developed in
the fundamental series of papers [22]–[25], is that the coefficient of s in the Taylor
expansions of these zeta functions near s = 0 can be computed ‘algebraically’:

Rank One Abelian Stark Conjecture. Under the hypotheses on K/k and S above,
there exists an S-unit ε in K such that

• If S contains at least 3 places, then |ε|w′ = 1 for all places w′ of K not dividing
the place v of k. In particular, ε is a v-unit in K.
If S = {v, v′}, then |ε|σw′ = |ε|w′ for all σ ∈ G and all places w′ of K dividing
v′.
• log |εσ|w = −eζ′S(0, σ) for all σ ∈ G, where e is the number of roots of

unity in K, where w is a prime of K lying above the prime v of k that splits
completely in K, and where the absolute values are normalized. Equivalently,

L′S(0, χ) = −1

e

∑
σ∈G χ(σ) log |εσ|w for all characters χ of G.

• The extension K(ε1/e) is an abelian extension of k.

Remark. The statement above is stronger than the more conservative versions ac-
tually conjectured (in print) by Stark, specifically with respect to the last abelian
condition. The version above appears in [26]. A generalization of this Conjecture
(again for abelian extensions K/k) to higher-order zeros appears in [14], which is
the reason we refer to this as the rank one situation.

The purpose of this paper is to consider this conjecture in one of the first situ-
ations for which it is not known, namely the situation of a totally real cubic base
field k (the first section below indicates those situations in which the conjecture
has been proved). This work was motivated by a computation of Stark. The meth-
ods used to compute the relevant values of the partial zeta functions, described in
Section 3, considerably improve upon Stark’s original computations. In Section 4
we use the results of these computations to indicate how Stark’s conjecture can
be used to compute explicit Hilbert class fields for some totally real cubic fields,
very much in the spirit of Stark’s interpretation of his conjecture as a step in the
direction of solving Hilbert’s 12th Problem. The complete numerical confirmation
of Stark’s conjecture for these cubic fields (to the accuracy of the computations,
generally 10−30) is done in Section 5. An explicit interesting example is described
in detail in Section 6 and the final section contains some relevant tables.

2. Preliminaries

For a given abelian extension K/k, the hypotheses on the set S for the abelian
Stark Conjecture St(K/k, S) of the previous section are that (1) S contains all the
Archimedean primes of k and all the finite primes of k ramifying in the extension
K/k, (2) S contains at least two primes, and (3) S contains at least one prime
v decomposing completely in K/k. In this paper we shall be concerned with the
situation where k is a totally real cubic field, K is a certain abelian extension of
k unramified at all finite primes of k, and S consists precisely of the Archimedean
primes of k. We first collect the known results regarding St(K/k, S) in this section
(note, however, that the function field and local conjectures are not considered, nor
are the connections with Kolyvagin Euler systems), and indicate the status of this
Conjecture. The totally real cubic fields considered later are one of the first cases
where the rank one Stark conjecture St(K/k, S) has not been proved.
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(i) If S contains at least two primes totally split in K, then St(K/k, S) is true
(for more or less trivial reasons: For χ 6= 1, L(s, χ) has a zero at s = 0 of
order at least 2, so we can take ε = 1 if S has at least 3 elements. It remains
to consider the case χ = 1 and S of cardinality 2, cf. [26], p. 91).

(ii) In particular, if S contains at least 2 complex Archimedean primes, then
St(K/k, S) is true, [26], p. 92.

(iii) If St(K/k, S) is true, then St(K/k, S′) is true for any S ⊆ S′ (by induction:
S′ = S ∪ {v′} so εS′ = ε1−Fv where Fv is the Frobenius for v, cf. [26], p. 92).

(iv) If St(K/k, S) is true, then St(K ′/k, S) is true for k ⊆ K ′ ⊆ K, with unit
given up to a root of unity by the norm: ζNK/K′(ε) (this follows essentially
formally from the functorial properties of the L-series, cf. [26], p. 92). See
also [12].

(v) If k is totally real and v is a fixed (real) Archimedean place of k, then the
field obtained by adjoining all Stark units ε as K varies over fields in which v
splits completely is essentially the full abelian closure of the embedding of k
in R defined by v ([26], p. 94).

(vi) St(K/k, S) is true if k = Q or if k is an imaginary quadratic field ([25], [26],
p. 95, cf. also [7]–[9]).

(vii) St(K/k, S) is true if |S| = 2, ([26], p. 98).
(viii) St(K/k, S) is true if [K : k] = 2 (this follows from an analysis of the ‘± parts’

of the classical formula for the residue at s = 0 of the Dedekind zeta functions
([26], p. 104).

(ix) St(K/k, S) is true if Gal(K/k) is of exponent 2 and order 2m with either K/k
tamely ramified or |S| > m+ 1, ([16], [17]).

(x) St(K/k, S) is true if v is a finite prime, K is abelian over Q and S contains
all primes dividing the discriminant of K over Q ([15]).

(xi) If k is a totally real field and K is a CM field, then, under some mild additional
assumptions on the set S depending on the field k, the first two parts of
St(K/k, S∪{v}) above (the “annihilation portion of the Brumer Conjecture”)
are true for all finite primes v whose order in the class group of k is odd ([28]).

By (iii) it suffices, for a given abelian extension K/k, to verify St(K/k, S) with
a minimal set S, i.e., for S consisting precisely of the Archimedean primes of k
and the primes of k ramified in K. The minimal possible such set S would consist
precisely of the Archimedean primes of k, which leads to a consideration of abelian
extensions K/k that are unramified at all the finite primes of k. By (ii) we may
take k either totally real or having precisely one complex Archimedean prime, and
we may also assume that precisely one Archimedean prime of k splits completely
in K. If this Archimedean prime is real, then all remaining real infinite primes of
k become complex in K and this is the situation considered in this paper. (Note
that to date no computations have been done in the situation where there is more
than one Archimedean prime of k and the unique Archimedean prime of k splitting
in K is complex.) Then, by (iv), we may assume that K is the maximal abelian
extension K of k subject to these constraints.

By (vi) the minimal fields k for which St(K/k, S) is not known to be true are
real quadratic fields k and fields k with [k : Q] = 3. Stark considered the situation
of real quadratic fields, publishing several examples but computing a number of
others (also C. Fogel, [5], has computed a number of (unpublished) examples in
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this case). Shintani, in [18] and [19], found some special cases of the Stark conjec-
ture and computed the values of derivatives of certain L-series for real quadratic
fields in terms of double Γ-functions, in particular computing a number of explicit
examples (cf. also [1], [13], and [17] for some special cases). Hayes, in [10] and
[11], has considered the real quadratic case in the situation where the prime v of
k splitting in K is non-Archimedean. The next case to consider concerns cubic
extensions k of Q which are either totally real (with one real Archimedean prime

p
(1)
∞ splitting completely in K and the other two ramifying) or have precisely one

complex Archimedean prime (with the real prime ramifying in K).
In this paper we consider the case where k is a totally real cubic field with

Archimedean primes p
(1)
∞ , p

(2)
∞ , and p

(3)
∞ .

By the remarks above, the field K should be taken to be the maximal abelian

extension of k unramified outside p
(2)
∞ and p

(3)
∞ (i.e., K is the ray class field of k of

conductor p
(2)
∞ p

(3)
∞ ) and both p

(2)
∞ and p

(3)
∞ should ramify in K. The latter condition

implies in particular that K, which contains the Hilbert class field H of k, should
be in fact a proper extension of H.

Because of the results of (viii) and (ix), it is of interest to consider the case where
the class number of k is divisible by 3. Stark, in [21] and [25], (cf. also [26], pp.
98-102) considered one numerical example of such a totally real cubic field having
class number 3. In Stark’s example the Hilbert class field H is obtained as the
composite with k of an abelian extension of Q of degree 3 (i.e., H is a genus field
over k). Discussion of this example between Stark and the first author a few years
ago suggested consideration of a field k for which H is not a genus field, which
led to the investigations of this paper. The first totally real cubic field with class
number divisible by 3 for which the associated Hilbert class field is not a genus field
has discriminant Dk = 28212. This field is considered in some detail in Section 6
below.

3. Computing derivatives of the partial zeta functions

For the reasons indicated in the previous section, let k be a totally real cubic

field of class number 3 and let S consist of the Archimedean primes {p(1)
∞ , p

(2)
∞ , p

(3)
∞ }

of k. Denote by Dk (resp., Dk) the discriminant (resp., different) of k over Q. Let
H be the Hilbert class field to k and let K be the ray class field to k corresponding

to the conductor p
(2)
∞ p

(3)
∞ , with Galois group G = Gal(K/k). The ray class group

of conductor p
(2)
∞ p

(3)
∞ is isomorphic to G under the Artin map which maps the class

b to the Frobenius symbol σb = σA for any fractional ideal A in the class b.
We assume that K is a proper extension of H, i.e., that [K : H] = 2 (as indicated,

this avoids the trivial situation (i) of Section 2), and let τ be a generator for the
Galois group Gal(K/H) (so that τ generates the decomposition group in K/k for

both p
(2)
∞ and p

(3)
∞ ). For any ray class b of k let b̄ denote the class with σb̄ = τσb

in G.
For simplicity let ζ(s, b) = ζS(s, σb). Define (following Stark [21],[24]):

Λb(s) =

(√
Dk

π3

)s
Γ(
s

2
)Γ(

s+ 1

2
)2[ζ(s, b)− ζ(s, b̄)].
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The function Λb(s) is entire and taking the limit as s tends to 0 shows that

Λb(0) = 2π[ζ′(0, b)− ζ′(0, b̄)].

Since τ generates the decomposition group for both Archimedean primes p
(2)
∞ and

p
(3)
∞ , for every character χ of G with χ(τ) = 1 the corresponding L-series L(s, χ) =
LS(s, χ) has a zero at s = 0 of order at least 2. It follows that

ζ(s, b) + ζ(s, b̄) =
1

3

∑
χ(τ)=1

χ∈Ĝ

χ̄(b)L(s, χ)

also has a zero of order at least 2 at s = 0. Hence ζ′(0, b) + ζ′(0, b̄) = 0 and it
follows that

Λb(0) = 4πζ′(0, b).(1)

This formula allows us to reduce the computation of the values at zero of the deriva-
tives of the partial zeta functions involved in Stark’s Conjecture to the computation
of the value at zero of Λb(s). In Stark’s original computations, these values were
computed as values of a triple integral of a three-dimensional theta function. The
numerical evaluation of these integrals allowed only a limited accuracy and involved
in particular the use of an iterative integration scheme which is not proved to con-
verge to the correct value.

As indicated in the Introduction, one of the purposes of the computation of the
Stark unit is to use this numerical information to recognize the conjectured algebraic
integers and then to use these algebraic integers to construct the relevant ray class
fields. For this purpose, much higher accuracy than Stark’s original computations
is required. Rather than compute the values Λb(0) as iterated integrals, we instead
compute them in terms of certain line integrals, which allows for increased accuracy
and has the additional advantage of providing provably accurate results. This
method was first introduced to us by E. Friedman and the argument leading to
Proposition 1 below is from his paper [6].

The analytic function Λb(s) satisfies the functional equation

Λ
b̌
(1− s) = −Λb(s)

where the ‘dual’ ray class b̌ is the class b−1[Dk] in the ray class group of conductor

p
(2)
∞ p

(3)
∞ .

For simplicity let Λ(s) = Λb(s) and Λ̌(s) = Λb̌(s). Define

Λ+(z) = Λ(z)− Λ̌(z), Λ−(z) = Λ(z) + Λ̌(z)

and

ρ±(s, z) =
1

z − s ±
1

(1− z)− s .

The line integral

I±(s) =
1

2πi

∫ δ+i∞

δ−i∞
Λ±(z)ρ∓(s, z) dz

defines an analytic function of s that is independent of the choice of δ in the region
max(Re(s),Re(1− s)) < δ. If 1/2 < Re(s) < δ, then the analyticity of the function
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Λ(z) implies that moving the line of integration left to δ = 1/2 picks up only the
residue at z = s and shows

I±(s) = Λ±(s) +
1

2πi

∫ 1/2+i∞

1/2−i∞
Λ±(z)ρ∓(s, z) dz.

The functional equation for Λ(s) shows that Λ±(1
2 + it) = Λ(1

2 + it) ± Λ(1
2 − it).

It follows that Λ±(z)ρ∓(s, z) is antisymmetric along the line Re(z) = 1/2, so that
the integral along this line vanishes by symmetry. This shows

I±(s) = Λ±(s)

for all s with 1/2 < Re(s) < δ. It follows that the same equality holds for all s with
max(Re(s),Re(1− s)) < δ by analytic continuation provided δ > 1

2 . Hence

Λb(s) =
1

2
(Λ+(s) + Λ−(s)) =

1

2
(I+(s) + I−(s))(2)

provided the line integrals are computed with a δ with δ > max(1
2 ,Re(s),Re(1−s)).

For a fixed ray class b of k, let an(b) denote the number of integral ideals of k
of absolute norm equal to n lying in the class b and define similarly an(b̄), an(b̌)

and an(¯̌b).
Define

An = an(b)− an(b̄),

Bn = an(b̌)− an(¯̌b)
(3)

so that ζ(s, b) − ζ(s, b̄) =
∑∞
n=1An/n

s and the Bn are the coefficients for the
Dirichlet series for the corresponding dual class.

Proposition 1. With notations as above,

4πζ′(0, b) = Λb(0) =
∞∑
n=1

An 1

2πi

∫ 1
2 +i∞

1
2−i∞

(√
Dk/π3

n

)z
Γ(
z

2
)Γ(

z + 1

2
)2 dz

z

−Bn
1

2πi

∫ 3
2 +i∞

3
2−i∞

(√
Dk/π3

n

)z
Γ(
z

2
)Γ(

z + 1

2
)2 dz

z − 1

 .
Proof. Applying equation (2) and the definition of I±(s) with δ = 3/2 gives

Λb(0) =
1

2πi

∫ 3
2 +i∞

3
2−i∞

(
Λ(z)

z
+

Λ̌(z)

1− z

)
dz

=
1

2πi

∫ 1
2 +i∞

1
2−i∞

Λ(z)

z
dz − 1

2πi

∫ 3
2 +i∞

3
2−i∞

Λ̌(z)

z − 1
dz.

Using the series expansions for Λ(z) and Λ̌(z) and interchanging summation and
integration gives the formula in the proposition.

By the proposition, the accurate computation of the values ζ′(0, b) to high pre-
cision has been reduced to the accurate computation of line integrals essentially
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independent of the field k of the form

F (a) =
1

2πi

∫ 1
2 +i∞

1
2−i∞

azΓ(
z

2
)Γ(

z + 1

2
)2 dz

z
.

These are computed by shifting the line of integration to the left and computing
the residues:

F (a) =π(−3γ − 4 ln 2 + 2 ln a) +
J∑
j=1

(ρj,1 + ρj,2 ln a)a−j +

1

2πi

∫ −J− 1
2

+i∞

−J− 1
2−i∞

azΓ(
z

2
)Γ(

z + 1

2
)2 dz

z

where J ≥ 1 is an integer. Here γ is Euler’s gamma constant and

ρj,2 =


√
π(−1)(j−1)/22j+2

j ( j−1
2 )! j!

(j odd),

0 (j even),

ρj,1 =


ρj,2 (

1

j
+
−3γ +H(j−1)/2 + 2Hj − 2 ln 2

2
) (j odd),

π(−1)1+j/24j(j/2− 1)!

(j!)2
(j even)

(with Hm = 1 + 1/2 + ... + 1/m) are residues arising from the gamma function
factors.

Number of integrals to compute. The estimate

|F (a)| ∼ 2π√
3
a2/3e−3a−2/3

for the integrals used in computing ζ′(0, b) (cf. [6], Prop. 2.3 and [2]) leads to the
following estimate for the error obtained summing N terms:

20 Dk
2/3 e−(3π/Dk

1/3)N2/3

.

It follows that to provide an accuracy of at least 10−M , it suffices to take

N > 0.18
√
Dk (1 + 0.77M +

2

9
lnDk)3/2

for the number of integral terms to compute.

Number of residues to compute. The integral along the line Re(z) = −J − 1/2 is
easily estimated by Stirling’s formula to be at most∣∣∣∣∣ 1

2πi

∫ −J− 1
2 +i∞

−J− 1
2−i∞

azΓ(
z

2
)Γ(

z + 1

2
)2 dz

z

∣∣∣∣∣ < 8√
π3aJ

(
8e3a−2

J3

)J/2
.

For a given accuracy 10−M it is an easy matter to compute the number of residues
to compute for a given value of a. The following table indicates some typical values
of J corresponding to a given a to insure an accuracy of at least 10−M :
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a\M 16 32 48

100 7 13 17
10 11 18 24
1 20 29 38
10−1 44 59 71
10−2 140 160 178
10−3 569 592 614
10−4 2549 2573 2597

It is straightforward to show that the individual residue contribution
(ρj,1 + ρj,2 ln a)a−j to the sum for the integral F (a) is maximal for j ∼ 2a−2/3

with value approximately ae3a−2/3

when j is even and for j ∼ 2a−2/3 ± a−1/3 with

value approximately a4/3e3a−2/3

when j is odd. Note that these maximal values are
approximately the reciprocals of the values of the integrals F (a) being computed,
so that typically it is necessary to sum a number of very large residues to accu-
rately compute the very small line integrals of interest. In particular, this means
that in computations with a final desired accuracy of at least 10−M the internal
computations must be done with an accuracy of at least 10−2M .

Example. For Stark’s explicit cubic example Q(α), α3 − α2 − 9α + 8 = 0, with
Dk = 2597 (cf. [21], pp. 1073-4, and [26], pp. 98-102), the choices N = 1250,
J = 200, and an internal computation precision of 10−70, computes the values of
the zeta functions to a proved accuracy of at least 10−30:

2ζ′(0, c0) = −2ζ′(0, c3) = 2.6229258798145544647221697471032...

2ζ′(0, c1) = −2ζ′(0, c4) = 0.5567427719936224099615684806856...

2ζ′(0, c2) = −2ζ′(0, c5) = −0.7266809196046131328605974037158...

(here c is the ray class containing the prime ideal p = (2, β)). The values agree with
the values predicted by Stark’s units to 10−30, and agree with the values computed
by Stark to 10−16, 10−15 and 10−15, respectively. Note that the values computed by
Stark were not proved to be correct (but now have been, by these computations).

The ‘residue packets’ for the line integrals above are themselves very interesting.
As an example, in recomputing the values for Stark’s example above, one encounters
the following line integral (corresponding to a term with n = 994):

1

2πi

∫ 1/2+i∞

1/2−i∞

(√
2597/π3

994

)z
Γ
(z

2

)
Γ

(
1 + z

2

)2
dz

z
,

which has value approximately 6.95702479 (10−31). The plot in Figure 1 indicates
the residues used in computing this value and indicates the reciprocal correlation
between the value of the line integral being computed and the maximum residue
involved (and also indicates the ‘packet’ nature of the data).
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4. Numerical confirmation of Stark’s Conjecture

We continue with the hypotheses on k, S and K in Section 3: k is a totally real

cubic field with class number 3, S = {p(1)
∞ , p

(2)
∞ , p

(3)
∞ } consists of the Archimedean

primes of k, K is the ray class field to conductor p
(2)
∞ p

(3)
∞ , and [K : k] = 6.

There are 113 totally real cubic fields k with class number divisible by 3 and
having discriminant Dk less than 50000 (from the tables [4]). Each cubic field k is
given explicitly as Q(β) where β is a root of an irreducible cubic polynomial f(x).

The specification of the place p
(1)
∞ amounts to a choice β1 of one of the three real

roots of f(x) to define an embedding of k into R. Computing the orders of the
appropriate ray class groups shows that, for a given choice of embedding defining

p
(1)
∞ , the signs of the fundamental units of k in the other two embeddings determine

whether the ray class field K to conductor p
(2)
∞ p

(3)
∞ is strictly larger than the Hilbert

class field of k: the condition translates into the condition that the product of the

signs of the two fundamental units at p
(2)
∞ and at p

(3)
∞ is +1.

Of the 113 totally real cubic fields, precisely 55 have an embedding p
(1)
∞ satisfying

the condition that K is strictly larger than the Hilbert class field, and for these
fields the class number is precisely 3 (so [K : k] = 6), and the corresponding
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Archimedean prime p
(1)
∞ is unique. Since for these cases G = Gal(K/k) is cyclic of

order 6, the conjectural Stark unit ε would generate the ray class field K over k:
Take χ : Gal(K/k) ↪→ C× a faithful character. Then L′(0, χ) 6= 0. If εσ

′
= ε for

any σ′ ∈ Gal(K/k), then

L′(0, χ) =
−1

2

∑
σσ′

χ(σσ′) ln |εσσ′ |w = χ(σ′)
−1

2

∑
σ

χ(σ) ln |εσ|w = χ(σ′)L′(0, χ)

so χ(σ′) = 1 which implies σ′ = 1 (cf. [26], p. 90). It follows that a numerical
confirmation of Stark’s Conjecture for these fields should produce explicit algebraic
generators for the ray class fields K. Given these explicit elements, one can then
prove they are indeed units generating the relevant class fields independent of any
conjectures used to produce them. These algebraic computations, which are also
necessary to complete the numerical confirmation of Stark’s Conjecture for these
fields, are described in Section 5.

The Archimedean prime p
(1)
∞ is specified by the choice of real root β for the

polynomial f(x) defining the field k, and the ray class of an ideal A in the ray

class group to conductor p
(2)
∞ p

(3)
∞ is then determined by finding the signs at the two

embeddings p
(2)
∞ and p

(3)
∞ of the generator of the principal ideal Aa where a is the

order of the ideal A in the usual class group of k. For our computations, this data
was computed for the relevant prime ideals of k using the Pari-GP calculator, then
this information was used to generate the ideals of k of norm less than N in the
various ray classes using some symbolic manipulations in Mathematica.

Using this norm data, the values at zero of the derivatives of the partial zeta

functions ζ′(0, b) for each of the six ray classes modulo p
(2)
∞ p

(3)
∞ were computed

using the results of the previous section. For most of the examples, the values were
computed to a (proved) accuracy of 10−35, although in some cases more accuracy
was required (10−70 for four of the examples).

This conjecturally computes the six values |εσb | = e−2ζ′(0,b), where the absolute

value is defined by a place over p
(1)
∞ of k. Since ε in Stark’s Conjecture is defined

only up to a root of unity, we choose ε by

ε = e−2ζ′(0,c0),(4)

where c0 is the principal ray modulo p
(2)
∞ p

(3)
∞ , i.e., so that ε is positive in the embed-

ding lying over p
(1)
∞ . The abelian condition in Stark’s Conjecture then implies that

all the conjugates εσb of ε are positive in this embedding (since εσb−1 is a square
in K, hence is positive, cf. [26], p. 93 and [25]). With this choice of ε, we have
conjecturally computed the numerical values of the six Galois conjugates

εσb = e−2ζ′(0,b)(5)

of ε with respect to the real embedding ofK in R (conjecturally) defined by (4). This

embedding defines an Archimedean prime of K lying over p
(1)
∞ and the remaining

primes of K over p
(1)
∞ are the conjugates by the Galois group Gal(K/k) and these

are the real primes of K. The remaining Archimedean primes of K are complex,

lying over p
(2)
∞ and p

(3)
∞ and under the corresponding embeddings of K into C,

the element ε and its Galois conjugates should (conjecturally) be nonreal complex
numbers of absolute value 1.
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To determine the algebraic element ε, we follow Stark and observe that ζ′(0, b) =
−ζ′(0, b̄) for every class b. It follows that the element τ generating Gal(K/H) of
Section 3 acts by inversion on the conjugates of ε: (εσb)τ = (εσb)−1. It follows that
the element

A = ε+ 1/ε = TrK/H(ε)

should be an integral element of the Hilbert class field H (even a generator for H
over k) and that ε satisfies the equation

x2 −Ax+ 1 = 0(6)

over H. The conjugates of A under Gal(H/k) should be the elements εσ
t
c + 1/εσ

t
c

where c is a class generating the ray class group and t = 0, 1, 2 (the element A
corresponds then to t = 0). Hence the element A of H satisfies the cubic equation

x3 − s1x
2 + s2x− s3 = 0(7)

over k, where si is the ith elementary symmetric function in the Gal(H/k)-
conjugates of A above, and should be an algebraic integer in k.

To determine A as an element of H it therefore suffices to determine the algebraic
integers

si = ai + biβ + ciβ
2, i = 1, 2, 3,(8)

in (7) in terms of the generator β of k. In Stark’s example in [21], the approximate

numerical values of the si in the embedding defined by p
(1)
∞ were computed assuming

the validity of (5). The absolute values of the si in the remaining two embeddings of
k were then bounded using the fact that the Galois conjugates of ε are conjecturally
of absolute value 1 in these embeddings. This reduced the determination of ai, bi, ci
(which are elements of Z in Stark’s example) to a check of a small number of cases.

We proceeded slightly differently, instead using a standard recognition algorithm
to determine the monic polynomials in Z[x] satisfied by the real number si in

the embedding defined by p
(1)
∞ . For most of the cases considered, an accuracy of

10−35 in the values of the relevant partial zeta functions was sufficient to recognize
the necessary monic cubics, but some of the more obstreperous examples required
greater accuracy. Once the monic polynomial over Z satisfied by si in (8) was
determined, the three roots could be determined to arbitrary precision. Equation
(8) then gives 3 equations for ai, bi and ci corresponding to the three possible
embeddings of k (i.e., corresponding to the three possible choices of roots β1, β2,
β3 of f(x)) and the three possible roots of the polynomial satisfied by si. The root

si corresponding to the embedding p
(1)
∞ defined by β1 is the value used to recognize

the polynomial satisfied by si, so in fact there are only two possible orderings of
the remaining two roots of this polynomial (which correspond to β2 and β3) to
consider. In all the cases considered, the index of Z[β] in the ring of integers of k
was quite small (dividing 6 in fact), so that ai, bi and ci in (8) should be elements
of (1/6)Z and hence are easily determined as solutions to one of these two systems
of 3 equations by rounding the numerical solutions (in fact it is easy to check that
only one of the two possible orderings of roots for si can produce rational solutions
ai, bi and ci).

Once the coefficients in (8) are determined, it is an easy matter to find the
equations over Q of the elements A and ε defined by equations (8), (7) and (6). For
example, the monic polynomial fA(x) in Z[x] of degree 9 satisfied by A is obtained
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by multiplying together the three cubics x3 − s1x
2 + s2x− s3 obtained from (8) by

substituting the three values β1, β2, and β3 to sufficient precision, expanding and
rounding the coefficients. Note also that ε is a unit since by construction it satisfies
a monic polynomial fε(x) of degree 18 in Z[x] with constant term 1.

In Stark’s original cubic example, the Hilbert class field H and ray class field K
were known explicitly beforehand and the unit ε was constructed as an element of
K. In our examples (which include Stark’s), the algebraic element ε is not (yet)
known to lie in the appropriate ray class field. All that is known at this point is
that 6 of 18 roots of a polynomial fε(x) satisfied by a unit ε in some extension of
k are real and agree with the exponentials of the 6 proved approximate values of
the partial zeta functions for k. The only immediate numerical indication that ε is
indeed the required Stark unit is provided by a quick computation of the roots of
fε(x) (to whatever precision one chooses), which shows that the remaining 12 roots
are indeed all nonreal complex numbers of absolute value 1. A number of items
therefore remain to be proved to complete the numerical confirmation of Stark’s
conjecture for these examples, which we state as

Theorem 1. Let k be one of the 55 totally real cubic fields of discriminant Dk <
50000 with class number divisible by 3 such that the ray class group of conductor

p
(2)
∞ p

(3)
∞ for two of the Archimedean primes of k is strictly larger than the Hilbert

class field of k. Let ε be a root of the polynomial fε(x) constructed above, let
A = ε+ 1/ε, and set K = k(ε), and H = k(A). Then:

1. The field H = k(A) is the Hilbert class field of k.

2. The field K = k(ε) is the ray class field of k of conductor p
(2)
∞ p

(3)
∞ .

3. If the embedding of K into R extending the embedding of k into R defined by

the remaining Archimedean prime p
(1)
∞ of k is fixed by taking ε to the real root of

fε(x) that agrees numerically with the value computed in equation (4), then for each
of the remaining five ray classes b the image of the Galois conjugate σb(ε) agrees

numerically with the value e−2ζ′(0,b) in (5) (i.e., the Frobenius automorphisms are
acting as predicted by Stark’s conjecture).

4. The field K(
√
ε) is an abelian extension of k.

The proof of Theorem 1 will be given in the following section. Since the computed
values of the relevant partial zeta functions have, by the results of Section 3, been
proved to be accurate, Theorem 1 immediately gives the following

Corollary. The refined abelian (rank-one) Stark Conjecture is valid for the fields
K/k in Theorem 1 to a proved numerical accuracy of at least 10−30.

The properties in Theorem 1 are essentially completely algebraic in nature and
are independent of Stark’s conjecture. Note, however, that while they are algebraic
we shall in fact use the analytic data given in Stark’s conjecture as a ‘catalyst’ to
verify them, in much the same catalytic manner that Stark’s conjecture was used
to produce them.

5. Using Stark’s Conjecture to compute Hilbert and ray class fields

In this section we indicate the proof of the properties of Theorem 1 of the previous
section for the 55 cubic examples. In particular this will indicate how Stark’s
conjecture can be used to provide explicit generators for Hilbert and certain ray
class fields. Each of these cubic fields k has class number 3 (and associated ray
class number 6).
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In each of the computed examples, the monic polynomial of degree 18 satisfied
by ε was irreducible over Q. In particular, [K : k] = 6 and [H : k] = 3. It follows
also that ε in fact generates K = k(ε) over Q, and not just over k. Similarly, the
element A generates H = k(A) over Q.

The roots of the polynomial fA(x) are all real, so the field H = k(A) is a totally
real extension of k of degree 3. Computing the discriminant of H over Q (using
Pari-GP) shows that DH = D3

k, which implies that H is an unramified extension
of k. If H were not Galois over k, then its Galois closure over k would also be an
unramified extension of k, of degree 6, and having the symmetric group S3 as Galois
group. The quadratic subfield of this extension of k would then be an unramified
quadratic extension of k, which means that the class number of k would be divisible
by 2, which it is not. It follows that H is in fact Galois over k, hence is the Hilbert
class field of k. This proves (1) of Theorem 1.

Remark. In computing field discriminants it was necessary in some instances to
modify the algebraic integer generator for the field by multiplying by a unit in the
field k to produce another integer α, the discriminant of whose minimal polynomial,
while larger, was nevertheless easier to factor.

We next prove (4) of Theorem 1, which will in particular prove that K/k is an
abelian extension. In all examples, the polynomial fε(x

2) is irreducible over Q,
so [K(

√
ε) : k] = 12 (and ε is never a square in K for these examples). Since

(
√
ε± 1/

√
ε)2 = A± 2, we have

K(
√
ε) = k(

√
A+ 2,

√
A− 2).

HenceK(
√
ε) is an abelian extension of k if (and only if) the extensions k(

√
A± 2) =

H(
√
A± 2) are both abelian extensions of k (of degree 6, although this is not re-

quired). The quadratic extension H(
√
A± 2) of H will be Galois over k (hence

abelian over k, since H is Galois over k) if and only if σ(A ± 2)/(A ± 2) is
a (nonzero) square in H for a generator σ of Gal(H/k). This is equivalent to
σ(A ± 2)(A ± 2) = −c/σ2(A ± 2) being a square in H where c is the constant
term of the cubic polynomial satisfied by A ± 2 over k, which in turn is equiva-
lent to −(A ± 2)/c being a square in H. Since the minimal polynomial for A was
constructed in (7), it is an easy matter to find the minimal polynomial over k for
the element −(A ± 2)/c, hence also the minimal polynomial of degree 9 over Q
for this element. In all cases this polynomial factors over Q into a product of two
polynomials of degree 9 when x2 is substituted for x, and this is a sufficient (and
necessary) condition for the element to be a square. This proves (4) of Theorem 1.

To complete the proof of (2) of Theorem 1 it suffices to check that the extension
K/k is unramified outside the infinite primes of k. Because of the size of the fields
involved ([K : Q] = 18), it was difficult to compute the discriminant of K over Q
directly (confirming that DK = D6

k would prove that K/k was unramified). Instead
we determined the unique quadratic extension F of k contained in K and confirmed
(by a discriminant calculation on this extension of degree 6 over Q, checking that
DF = D2

k) that the extension F/k is also unramified at all finite primes of k. To
determine the field F , observe that ε satisfies the sextic

(x2 −Ax+ 1)(x2 − σ(A)x + 1)(x2 − σ2(A)x + 1)

over k. Expanding and using the elementary symmetric functions si of the conju-
gates of A in equation (7) shows that the minimal polynomial for ε over k is the
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sextic

x6 − s1x
5 + (s2 + 3)x4 − (2s1 + s3)x3 + (s2 + 3)x2 − s1x+ 1.(9)

The discriminant of this sextic differs by the square of −s2
1s

2
2 + 4s3

2 + 4s3
1s3 −

18s1s2s3 + 27s2
3 from the element

∆ = −(8 + 4s1 + 2s2 + s3)(8− 4s1 + 2s2 − s3)(10)

and so F = k(
√

∆) (note that the alternating group A6 does not contain a cyclic
subgroup of order 6). This determines a polynomial of degree 6 over Q defining the
field F and allows the determination of the discriminant of F , confirming that F/k
is unramified and proving that K is the appropriate ray class field.

It remains to prove (3) of Theorem 1, namely that the numerical values computed
in equation (5) of the previous section do in fact correspond to the conjugates by the
appropriate Frobenius elements of the algebraic element ε. We proceed by using
equation (5) to numerically produce an algebraic conjugate of ε and then verify
independently that this conjugate is indeed given by the appropriate Frobenius
automorphism. Let c denote the generator of the ray class group of k of conductor

p
(2)
∞ p

(3)
∞ used to compute the values of the partial zeta functions used in equation

(5). Suppose σ is a generator of Gal(K/k). Then

σ(ε) = a0 + a1ε+ a2ε
2 + a3ε

3 + a4ε
4 + a5ε

5(11)

for some a0, ..., a5 ∈ k. Conjugating this equation by σ, σ2, ..., σ5 gives the system
of equations

σi+1(ε) = a0 + a1σ
i(ε) + a2σ

i(ε)2 + a3σ
i(ε)3 + a4σ

i(ε)4 + a5σ
i(ε)5(12)

for i = 0, 1, .., 5 (σ6 = 1). Assume for the moment that Stark’s conjecture in
equation (5) is valid and take σ = σc, the Frobenius element for the ray class c

in Gal(K/k). Then we have the numerical values of the elements in the system
of 6 equations in (12), from which we can solve numerically for the six coefficients
a0, ..., a5. We then recognize the cubic polynomials satisfied by these elements and
use these to determine the elements a0, ..., a5 as polynomials with Q-coefficients in
the elements 1, β, β2.

Remark. As a computational matter, the system of numerical equations (12) is
rewritten in order to write each ai as the quotient of two algebraic integers in k
since this provides an easy check on the recognition algorithm (namely, whether the
resulting cubic polynomial is monic). Also, since the polynomial fε(x) ∈ Z[x] has
been determined, we can, under the assumption of the validity of Stark’s conjecture,
determine the numerical values in equation (5) to arbitrary precision by solving for
the appropriate root of fε(x). In the computations of the Frobenius automorphism
above, typically 500 digits of accuracy were required.

We now use these exact elements a0, ..., a5 of k to define σ(ε) by equation (11).
It is then immediate to verify that the resulting σ(ε) is again a root of the minimal
polynomial of ε over k in equation (9), so that the map ε 7→ σ(ε) defines an element
of Gal(K/k), and that this automorphism is of order 6. This proves that there is an
algebraic automorphism σ ∈ Gal(K/k) such that the numerical values of the conju-
gates of ε agree with the values on the right hand side of equation (5). To complete
the proof of Theorem 1 it therefore suffices to show that this automorphism σ is the
Frobenius automorphism corresponding to the class c in the extension K/k (and
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not its inverse, the only other possibility in this case). Let p (dividing the prime p
in Z) be a prime of k of absolute degree 1 lying in the class c (a list of such primes
is produced in the original computation of the partial zeta function values), such
that p does not divide the discriminant of the polynomial fε(x). If OK denotes the
ring of integers of K, then OK = Z[ε] + P and OK/P = Z/pZ for any prime P of
K dividing p (note that p splits completely in K). It follows that to confirm that
σ = σc it suffices to verify that

σ(ε) ≡ εp mod p(13)

for the σ(ε) defined by equation (11). This is an elementary computation, since
β ≡ b mod P for a (known) rational integer b, so that σ(ε) ∈ Z[ε] mod P and
equation (13) becomes an equality of two polynomials in Z[x] in the quotient ring
Z[x]/(p, fε(x)). The confirmation that these equations are satisfied for all the ex-
amples completes the proof of Theorem 1.

In general it is of interest to know whether the element ε in Stark’s conjecture can
be taken to be a square in K (for example, cf. [3]), and to examine the ramification
properties of the extension K(

√
ε)/k (cf. [27] ). As mentioned in the proof of

Theorem 1, none of the polynomials fε(x
2) factors over Q, and one similarly finds

that also fε(−x2) remains irreducible. It follows that none of the elements ±ε are
squares in K for these examples. Also, since none of these fields has a totally

positive system of fundamental units, the ray class field to conductor p
(1)
∞ p

(2)
∞ p

(3)
∞

(the strict Hilbert class field) is the same as the field K. It follows that the quadratic
extensions K(

√
±ε) over K ramify at some prime above 2. We did not determine

whether a particular choice of sign minimizes the different of the extension.

Corollary. For the examples in Theorem 1, the elements ±ε are not squares in K
and the two quadratic extensions K(

√
±ε) are both ramified at some prime above 2.

It is not clear whether the fact that none of the Stark units for these 55 examples
were squares in the corresponding ray class field K is significant (although in light
of [3] it is suggestive). The group of units of K modulo squares of units is an
elementary abelian 2-group of rank 12, so that the probability that a randomly
chosen unit of K is a square is 1/212. The probability that of 110 randomly chosen
units none of them is a square is then approximately 0.9735, so this sample size is
too small to be predictive.

6. Example: discriminant 28212

As previously mentioned, in Stark’s original cubic example the Hilbert class
field H is obtained over k by composing with an abelian extension of Q (namely
Q(cos(2π)/7)) and our numerical investigations originated in trying to construct a
similar but more generic cubic example in which H is not a ‘genus class field’. The
first example of such a field occurs for a discriminant Dk = 28212. In this section we
indicate some of the details of the computations described in the previous sections
for this cubic field, in particular finding explicit generators for the Hilbert class field
and using this to find the Galois closure of H and prove that H is not obtained
by composing any cubic extension of Q (let alone abelian) with k. The example
described here also serves as a paradigm for the abbreviated data for the other
examples in the tables in Section 7.

There are 3 nonisomorphic totally real cubic fields of discriminant 28212 = 22 ·
3 · 2351, defined by the polynomials x3 − x2 − 37x− 47, x3 − x2 − 41x + 93, and
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x3 − x2 − 53x + 153. Up to isomorphism there is precisely one totally real cubic
field of discriminant 7053 = 3 · 2351, defined by the polynomial x3 −x2 − 23x+ 48.

The field k = Q(β) with β3 − β2 − 41β + 93 = 0 satisfies the conditions at the
beginning of Section 4: k has class number divisible by 3 (in fact equal to 3), and

if p
(1)
∞ is the Archimedean prime defined by the root β = 5.40269..., then the ray

class field K of conductor p
(2)
∞ p

(3)
∞ is strictly larger than the Hilbert class field. The

ray class c containing the prime p = (5, β−2) generates the corresponding ray class
group. [The field defined by the equation x3 − x2 − 53x + 153 also satisfies the
necessary hypotheses of Section 4. The corresponding data for this field appears in
the tables in Section 7.]

Using an internal accuracy of 150 digits and computing 350 residues to insure
an accuracy of at least 10−55, one finds

ζ′(0, c0)=4.62040289671991440543776590019223277624303967323957791671782...

ζ′(0, c1)=−5.23781296974710843037213422039206497492945318572477673266825...

ζ′(0, c2)=2.259302064318993328125265486811196491695081900397339500930079...

yielding potential Stark units

ε1 = 10309.34241235303439168049341491290535905308263827742948201871...

ε2 = 0.000028215870927227640203451517278794044636382871473311203053...

ε3 = 91.70749672416162340728363966075410917807739071597377629976299...

The numerical values of the traces (ε+ 1/ε) of these units are then

A1 = 10309.34250935243163759630564450029748610493408547697070477070...

A2 = 35441.04675610630550032056420255885270767586064066439842279032...

A3 = 91.71840095811981121163526964493461769139799224062807444575130...

the elementary symmetric functions of which are:

s1 = 45842.10766641685694912850511670408481147219271838199720200678...

s2 = 3.695700424453132417259675515402850795764644990380044622513860...

s3 = 3.351150893335448884121299970610876103784771962239631343594939...

Using a standard recognition algorithm, one finds that these real numbers are roots
of the following cubic polynomials:

p1(x) = −238095− 234141x− 45837x2 + x3,

p2(x) = 3826481704− 164574444x− 369570042x2 + x3,

p3(x) = −132604621897 + 189189597635x− 33511508939x2 + x3.

Using these polynomials one finds

s1 = −22071 + 5644β + 1282β2,

s2 = −177889957 + 45498408β+ 10334235β2,

s3 = −16130530946 + 4125659898β+ 937077613β2.

Using these exact values we can now find the 9th degree equation satisfied by A:
Take the cubic x3 − s1x

2 + s2x − s3, substitute the 3 possible conjugates of β
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(computed numerically to high precision), multiply these cubics together and round
the (integer) coefficients. The result is the polynomial

fA(x) = x9 − 45837x8 + 369335901x7− 31624086134x6− 169410056472x5

− 164382128003x4 + 465586425823x3 + 980522077951x2

+ 392287249570x− 132604621897.

Applying “initalgred” in Pari-GP to this polynomial f(x) to find another field
generator for H = k(A) gives the polynomial

x9 − x8 − 25x7 + 2x6 + 190x5 + 127x4 − 307x3 − 167x2 + 150x− 23

with field discriminant DH = 22454408824128 = 263323513 = D3
k, proving as in

Section 5 that H is the Hilbert class field for k.
The polynomial of degree 18 satisfied by ε is determined by taking the product

of x2 −Ax+ 1 over all the 9 roots of fA(x) and gives

fε(x) = x18 − 45837x17 + 369335910x16− 31624452830x15− 166824705129x14

− 354127928243x13− 373707802532x12− 151370292943x11

+ 107872718980x10 + 209661834717x9 + 107872718980x8

− 151370292943x7− 373707802532x6− 354127928243x5

− 166824705129x4− 31624452830x3 + 369335910x2− 45837x+ 1.

The absolute values of the roots of fε(x) are given approximately by

{1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 35441.04672789043, 0.0000969993972459158,

0.0109042339581878, 10309.34241235303, 0.00002821587092722764,

91.7074967241616}.

The computed values of ε1, ε2, and ε3 given by Stark’s conjecture from the values
of the partial zeta functions differ from the last three roots of fε(x) above by
approximately 10−60, 10−68, and 10−61, respectively.

The generator σc of Gal(K/k) ∼= Z/6Z (determined as described in Section 5 and
verified by confirming that σc(ε) ≡ ε5 mod p with p = (5, β−2)) is given explicitly
by

σc(ε) = (a0 + a1ε+ a2ε
2 + a3ε

3 + a4ε
4 + a5ε

5)/35626819129793805949

with

a0 = −253021406556793673085768 + 63919617157029310621856β

+ 14582888259664145092184β2,

a1 = 2577370712090340691346989569− 659208900700762693152742032β

− 149728575434905137542429385β2,
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a2 = −239408540778937420780089655905 + 61232837117469668680252067562β

+ 13908059107414446684962003979β2,

a3 = 2640222158834310099968203077− 675284692296064477088106958β

− 153379895000330184633573814β2,

a4 = −337418618277039567474827 + 84163296584968335168506β

+ 19291389389815096078965β2,

a5 = −3599270210410146021309 + 144456675064152741936β

+ 96062588091859333029β2.

The Hilbert class field H here has an interesting Galois closure, which in partic-
ular proves that H is not obtained by composing any cubic extension of Q with k
(so H is certainly not a genus field for k).

The Galois closure of k = Q(β) is the field Q(β,
√

7053) whose class number is 9,
with class group isomorphic to Z/3Z×Z/3Z. Since the polynomial x3−x2−23x+48
mentioned previously has discriminant 7053 and defines a totally real cubic field,
it is easy to see that the Hilbert class field L to Q(β,

√
7053) is given by L =

H(α,
√

7053). The field L is a Galois extension of Q since Q(β,
√

7053) is Galois
over Q. The field diagram is the following:
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The subgroup Gal(L/Q(α,
√

7053)) is a group of order 9. Analyzing the splitting of

the prime 2 in L/Q shows that Gal(L/Q(α,
√

7053)) cannot be cyclic (otherwise the
extension Q(α, β,

√
7053)/Q(α,

√
7053) would be unramified at 2, which it is not).

The prime 31 splits in H(
√

7053) into 6 primes of degree 1 and 4 primes of degree

3, so this extension is not Galois over Q and the subgroup Gal(L/H(
√

7053)) is a
nonnormal subgroup of Gal(L/Q) of order 3. It is relatively straightforward from

this to determine the structure of Gal(L/Q). Let 〈σ〉 = Gal(L/H(
√

7053)), 〈τ〉 =
Gal(L/Q(α, β,

√
7053)), 〈τ, ρ〉 = Gal(L/Q(α,

√
7053)), and 〈π〉 = Gal(L/H(α)).

Then Gal(L/Q) is a group of order 54, the semidirect product of the unique non-
abelian group of order 27 in which every element has order 3 by a subgroup of order
2:

G = 〈σ, τ, ρ〉o 〈π〉
with π inverting σ and ρ, and centralizing τ (which generates the center of G).

It follows easily that the field H = Q(γ) contains a unique cubic subfield, namely
k = Q(β). In particular, H is not obtained by composing k with any other cubic
extension of Q.

It is interesting to note that the extension Q(α, β) is a non-Galois extension of
Q of degree 9 containing 4 (non-Galois) cubic subfields (the maximum possible).
In fact the four subfields are precisely the 3 (up to isomorphism) totally real cubic
fields of discriminant 28212 and the unique (up to isomorphism) totally real cubic
field of discriminant 7053 mentioned at the beginning of this section. The field L
contains 12 cubic subfields (the Galois conjugates of these 4 cubic fields).

7. Tables

The tables below give a complete list of all 55 totally real cubic fields of discrim-
inant less than 50000 with class number divisible by 3 for which there is an abelian
extension unramified at all finite primes strictly larger than the Hilbert class field,
as in the statement of Theorem 1 in Section 4 (note there are a total of 113 such
totally real cubic fields without the condition on the ray class field). These fields
all have class number 3, and for each we give the following abbreviated data:

1. The discriminant Dk.
2. A cubic polynomial f(x) defining the field k.

3. A root β of f(x) defining the Archimedean prime p
(1)
∞ .

4. A prime p of degree 1 in k whose class c generates the ray class group of

conductor p
(2)
∞ p

(3)
∞ of k and with respect to which the partial zeta function

values were computed.
5. The first few digits of the computed Stark units εc0 , εc1 , and εc2 in equation

(5) of Section 4, corresponding to the classes c0, c1, and c2, respectively.
6. The elementary symmetric functions s1, s2, and s3 of equation (7) in Section

4 as elements in the field k = Q(β).

As described in the example in Section 5, this data is enough to easily reconstruct
most of the information required to numerically confirm Stark’s Conjecture for these
fields:

(a) The reciprocals of the elements in item 5 above are the computed Stark units
corresponding to the classes c3, c4, and c5, respectively. The computed values
of the derivatives at 0 of the partial zeta functions are (−1/2) times the logs
of the corresponding Stark unit values as in equation (5) of Section 4.
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(b) The polynomials fA(x) and fε(x) in Section 4 are computed from equations
(6) and (7). Alternatively, the sextic equation satisfied by ε over k is given
by equation (9) in Section 5. The polynomial fA(x) defines the Hilbert class
field for k. The polynomial fε(x) defines the ray class field K of conductor

p
(2)
∞ p

(3)
∞ of k and six of the roots agree to at least 10−30 with the numerical

values of the Stark units.
(c) The quadratic subfield F = k(

√
∆) of K containing k is given by equation

(10) in Section 5.

Dk = 2597, f(x) = x3 − x2 − 9x+ 8 β = 3.07911886..., p = (2, β)
εc0 = 0.0725901617213239..., εc1 = 0.5730726554327768...,
εc2 = 2.0682046655250200...,

s1 = β2 + 3 β, s2 = 5 β2 + 12 β − 11, s3 = 6 β2 + 13 β − 15

Dk = 4212, f(x) = x3 − 12x+ 10, β = 2.93045374..., p = (7, β + 1)
εc0 = 0.0276040307201833..., εc1 = 2.7719617903976693...,
εc2 = 0.2889417781460776...,

s1 = 3 β2 + 9 β − 9, s2 = 19 β2 + 56 β − 66, s3 = 31 β2 + 91 β − 107

Dk = 6885, f(x) = x3 − 12x+ 1, β = −3.50503972..., p = (2, β + 1)
εc0 = 0.0122447097951284..., εc1 = 0.6827644272956277...,
εc2 = 2.1227821547518977...,

s1 = 3 β2 − 13 β + 4, s2 = 16 β2 − 54 β + 7, s3 = 18 β2 − 65 β + 6

Dk = 9653, f(x) = x3 − 14x+ 7, β = −3.97027720..., p = (2, β + 1)
εc0 = 0.0059776944016633..., εc1 = 1.6671321960319223...,
εc2 = 2.1686999050750842...,

s1 = 5 β2 − 21 β + 10, s2 = 25 β2 − 98 β + 42, s3 = 30 β2 − 119 β + 52

Dk = 9800, f(x) = x3 − x2 − 23x− 13, β = −0.58920487..., p = (3, β + 2)
εc0 = 0.1812901941037724..., εc1 = 0.5401769290063933...,
εc2 = 0.0115322865834235...,

s1 = −9/2 β2 + 7 β + 201/2, s2 = −69/2 β2 + 55 β + 1519/2,
s3 = −57 β2 + 91 β + 1255

Dk = 10309, f(x) = x3 − x2 − 17x− 14, β = −3.06021983..., p = (7, β)
εc0 = 0.0025511978534124..., εc1 = 10.3857705742642579...,
εc2 = 0.1673551471759631...,

s1 = 24 β2 − 97 β − 113, s2 = 382 β2 − 1552 β − 1746,
s3 = 1466 β2 − 5952 β − 6705

Dk = 11417, f(x) = x3 − x2 − 30x+ 71, β = 4.09084660..., p = (11, β + 1)
εc0 = 0.0023925102587428..., εc1 = 1.6243927034232794...,
εc2 = 0.3345168756484259...,

s1 = 35 β2 + 108 β − 604, s2 = 194 β2 + 599 β − 3364,
s3 = 259 β2 + 800 β − 4495



COMPUTING STARK UNITS FOR TOTALLY REAL CUBIC FIELDS 1259

Dk = 13932, f(x) = x3 − 30x+ 44, β = 1.60430506..., p = (5, β + 4)
εc0 = 0.0668925269470244..., εc1 = 1.8978062750719885...,
εc2 = 0.0030716822460823...,

s1 = −31/2 β2 − 25 β + 423, s2 = −513/2 β2 − 411 β + 7034,
s3 = −532 β2 − 854 β + 14593

Dk = 14945, f(x) = x3 − x2 − 16x+ 15, β = 4.04089721..., p = (3, β)
εc0 = 0.0007604128277485..., εc1 = 0.7445644328054425...,
εc2 = 2.4401900582120203...,

s1 = 53 β2+161 β−196, s2 = 261 β2+794 β−971, s3 = 314 β2+956 β−1166

Dk = 15884, f(x) = x3 − 38x+ 76, β = −6.99080942..., p = (13, β + 12)
εc0 = 0.0043912242828469..., εc1 = 11.3388026056172075...,
εc2 = 0.0005249315222867...,

s1 = 20 β2 − 137 β + 209, s2 = 4219 β2 − 29490 β + 45854,
s3 = 45642 β2 − 319075 β + 496199

Dk = 18792, f(x) = x3 − 21x+ 26, β = 3.75073717..., p = (5, β + 2)
εc0 = 0.0005204369733600..., εc1 = 2.7335309120333468...,
εc2 = 0.1380723504858949...,

s1 = 91 β2 + 342 β − 631, s2 = 951 β2 + 3566 β − 6594,
s3 = 2073 β2 + 7775 β − 14371

Dk = 19220, f(x) = x3 − x2 − 41x− 85, β = −3.92898670..., p = (5, β + 2)
εc0 = 1.6266922936142138(10−6)..., εc1 = 7.3542800525782704...,
εc2 = 0.3200410108360355...,

s1 = 46683 β2− 230100 β− 1009947, s2 = 510464 β2− 2516070 β− 11043414,
s3 = 1204452 β2 − 5936728 β − 26057208

Dk = 19604, f(x) = x3 − x2 − 17x− 1, β = 4.67896190..., p = (3, β + 2)
εc0 = 0.0003309402687830..., εc1 = 1.3869036022509526...,
εc2 = 0.3686355957391244...,

s1 = 77 β2+283 β+17, s2 = 399 β2+1468 β+83, s3 = 499 β2+1837 β+107

Dk = 19764, f(x) = x3 − 36x+ 18, β = −6.23590488..., p = (23, β + 21)
εc0 = 0.0027377950446671..., εc1 = 14.5965020626905298...,
εc2 = 0.0002776131850798...,

s1 = 148/3 β2 − 308 β + 143, s2 = 51100/3 β2 − 106218 β + 49166
s3 = 717646/3 β2 − 1491724 β + 690497

Dk = 20493, f(x) = x3 − 36x− 9, β = 6.12129697..., p = (2, β + 1)
εc0 = 0.0000176516909529..., εc1 = 0.1693103544097161...,
εc2 = 30.8504905023698287...,

s1 = 742 β2 + 4541 β + 1089, s2 = 27404 β2 + 167747 β + 40290,
s3 = 139113 β2 + 851552 β + 204536

Dk = 21708, f(x) = x3 − 30x+ 28, β = 4.93178949..., p = (5, β + 2)
εc0 = 0.0000558297063219..., εc1 = 46.7101476503325001...,
εc2 = 5.5984057909592865(10−6)...,
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s1 = 4575 β2 +22563 β−25971, s2 = 74674731 β2 +368280054 β−423962226,
s3 = 3479677527 β2 + 17161037073 β − 19755703453

Dk = 21805, f(x) = x3 − x2 − 30x− 20, β = −0.69384876..., p = (31, β + 17)
εc0 = 0.4621517145187437..., εc1 = 0.4569752565642212...,
εc2 = 0.0011044873232772...,

s1 = −67/2 β2 + 113/2 β + 966, s2 = −176 β2 + 298 β + 5071,
s3 = −463/2 β2 + 785/2 β + 6673

Dk = 25137, f(x) = x3 − 21x+ 21, β = −5.01842411..., p = (5, β + 2)
εc0 = 0.0001276177357691..., εc1 = 5.5094459367718433...,
εc2 = 0.5976546993579983...,

s1 = 144 β2 − 721 β + 599, s2 = 1144 β2 − 5740 β + 4784,
s3 = 1856 β2 − 9316 β + 7772

Dk = 26568, f(x) = x3 − 30x+ 8, β = 0.26730330..., p = (59, β + 49)
εc0 = 0.2230517161304252..., εc1 = 424.2073428894345372...,
εc2 = 0.0006441139261552...,

s1 = −133/2 β2 − 18 β + 1991, s2 = −44847/2 β2 − 5994 β + 671102,
s3 = −104062 β2 − 27816 β + 3114425

Dk = 27297, f(x) = x3 − 21x+ 19, β = 4.03644491..., p = (13, β + 1)
εc0 = 0.0000448038334809..., εc1 = 10.6678617703943195...,
εc2 = 0.1661315669787857...,

s1 = 801 β2 + 3234 β − 3768, s2 = 13570 β2 + 54775 β − 63874,
s3 = 53292 β2 + 215110 β − 250852

Dk = 28212, f(x) = x3 − x2 − 41x+ 93, β = 5.40268750..., p = (5, β + 3)
εc0 = 0.0000969993972459..., εc1 = 91.7074967241616234...,
εc2 = 0.0000282158709272...,

s1 = 1282 β2 + 5644 β − 22071, s2 = 10334235 β2 + 45498408 β − 177889957,
s3 = 937077613 β2 + 4125659898 β − 16130530946

Dk = 28212, f(x) = x3 − x2 − 53x+ 153, β = −8.00644491..., p = (59, β+ 51)
εc0 = 0.0046032173748599..., εc1 = 43.8735851311032181...,
εc2 = 0.0000977972023669...,

s1 = 135/2 β2 − 608 β + 2583/2, s2 = 17253 β2 − 155387 β + 329690,
s3 = 1255585/2 β2 − 5654176 β + 23993705/2

Dk = 28392, f(x) = x3 − x2 − 43x+ 103, β = 2.67353762..., p = (3, β + 2)
εc0 = 0.2930997997303122..., εc1 = 824.5691966980162811...,
εc2 = 0.0613118204336775...,

s1 = −63/2 β2 − 53 β + 2423/2, s2 = −1235/2 β2 − 1033 β + 47581/2,
s3 = −1859 β2 − 3111 β + 71619

Dk = 29204, f(x) = x3 − x2 − 37x− 69, β = 7.33096819..., p = (23, β)
εc0 = 0.0000648735003401..., εc1 = 2.3361879218197433...,
εc2 = 0.0263672975859719...,

s1 = 141 β2 + 893 β + 1331, s2 = 5729 β2 + 36272 β + 53929,
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s3 = 14759 β2 + 93441 β + 138919

Dk = 29253, f(x) = x3 − x2 − 23x+ 36, β = −5.01606238..., p = (2, β)
εc0 = 0.0014598741857419..., εc1 = 44.7945699496937565...,
εc2 = 2.9013984304867985...,

s1 = 12 β2 − 70 β + 80, s2 = 529 β2 − 3182 β + 3797,
s3 = 1594 β2 − 9590 β + 11441

Dk = 31425, f(x) = x3 − 45x+ 55, β = 1.26747038..., p = (23, β + 15)
εc0 = 0.0427743169524793..., εc1 = 8307.1941490400751050...,
εc2 = 0.7968524924592291...,

s1 = −622/3 β2−788/3 β+26996/3, s2 = −15803/3 β2−20029/3 β+685747/3,
s3 = −29806/3 β2 − 37778/3 β + 1293386/3

Dk = 31425, f(x) = x3 − x2 − 48x− 63, β = −5.57933674..., p = (31, β + 29)
εc0 = 0.0015977695061765..., εc1 = 21.7862492585460858...,
εc2 = 0.0000592918112393...,

s1 = 929/3 β2− 6113/3 β− 3495, s2 = 580294/3 β2− 3817951/3 β− 2184162,
s3 = 4075580 β2 − 26814613 β − 46020083

Dk = 32009, f(x) = x3 − x2 − 52x+ 159, β = 5.07140430..., p = (19, β + 1)
εc0 = 0.0000251427208548..., εc1 = 3.4839361981696966...,
εc2 = 0.0812275945801842...,

s1 = 2650 β2 + 10789 β − 83082, s2 = 42819 β2 + 174333 β − 1342473,
s3 = 123788 β2 + 503991 β − 3881033

Dk = 32009, f(x) = x3 − x2 − 34x− 24, β = −4.91954825..., p = (7, β + 3)
εc0 = 1.0428085877586164(10−9)..., εc1 = 1451.3622675948953352...,
εc2 = 0.0002529109862479...,

s1 = 19794714 β2 − 117175765 β − 96568445,
s2 = 106996348778 β2 − 633370049668 β − 521981336034,
s3 = 113593937025472 β2 − 672424791663003 β − 554167648627051

Dk = 32009, f(x) = x3 − x2 − 20x− 1, β = 5.02207043..., p = (3, β + 2)
εc0 = 0.0000288557420309..., εc1 = 0.1589595262660890...,
εc2 = 16.9403897177370225...,

s1 = 760 β2 + 3058 β + 153, s2 = 17816 β2 + 71656 β + 3546,
s3 = 83292 β2 + 335006 β + 16583

Dk = 32977, f(x) = x3 − 49x+ 112, β = −7.94352185..., p = (5, β + 1)
εc0 = 43.5186255106119763..., εc1 = 242.9694122634366988...,
εc2 = 0.0014184046089037...,

s1 = 7 β2 − 56 β + 105, s2 = 1515 β2 − 12036 β + 21374,
s3 = 53163 β2 − 422303 β + 749583

Dk = 33369, f(x) = x3 − x2 − 44x+ 57, β = 6.45097717..., p = (11, β + 1)
εc0 = 0.0011147115614020..., εc1 = 38020.1101794094551627...,
εc2 = 0.1329717077954112...,

s1 = 573 β2 + 3123 β − 5067, s2 = 1519153/3 β2 + 8280871/3 β − 4474341,
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s3 = 11525990/3 β2 + 62827907/3 β − 33947388

Dk = 34344, f(x) = x3 − 21x+ 10, β = 4.32281044..., p = (5, β)
εc0 = 7.9143403374984593(10−7)..., εc1 = 0.9011584753497984...,
εc2 = 0.7693392333716590...,

s1 = 36039 β2 + 155790 β − 83367, s2 = 147039 β2 + 635622 β − 340146,
s3 = 149949 β2 + 648201 β − 346879

Dk = 37093, f(x) = x3 − x2 − 37x+ 92, β = 4.70835853..., p = (11, β + 2)
εc0 = 1.9342610856319505(10−6)..., εc1 = 76.2091773933755997...,
εc2 = 0.0253150764404159...,

s1 = 25741 β2 + 95456 β− 502975, s2 = 2978956 β2 + 11047038 β− 58207954,
s3 = 77535970 β2 + 287531176 β − 1515031025

Dk = 37300, f(x) = x3 − x2 − 33x− 53, β = −3.95540135..., p = (11, β + 1)
εc0 = 5.7630853467349060(10−6)..., εc1 = 212.0308814218894593...,
εc2 = 0.0184275543104808...,

s1 = 7955 β2 − 39420 β − 106595, s2 = 2115816 β2 − 10484718 β − 28350662,
s3 = 91422596 β2 − 453035656 β − 1225007816

Dk = 37300, f(x) = x3 − 40x+ 90, β = −7.24082353..., p = (11, β + 5)
εc0 = 0.0003034852478111..., εc1 = 442.7357955871181767...,
εc2 = 0.0532732049548585...,

s1 = 32 β2 − 232 β + 399, s2 = 13038 β2 − 94406 β + 162054,
s3 = 234140 β2 − 1695366 β + 2910249

Dk = 38612, f(x) = x3 − x2 − 37x+ 57, β = 5.72420126..., p = (5, β + 4)
εc0 = 0.0038747037172735..., εc1 = 25488.1845429434402434...,
εc2 = 2.8094106755511608...,

s1 = 1033/2 β2 + 2440 β − 10283/2, s2 = 133592 β2 + 631115 β − 1330275,
s3 = 835383/2 β2 + 1973258 β − 8318521/2

Dk = 38612, f(x) = x3 − x2 − 23x+ 29, β = −4.90069679..., p = (5, β + 1)
εc0 = 3.5221554605445090(10−6)..., εc1 = 358.1485856456480134...,
εc2 = 0.0026042888625828...,

s1 = 4837 β2 − 28541 β + 28619, s2 = 3582597 β2 − 21139820 β + 21200113,
s3 = 663455121 β2 − 3914847505 β + 3926012837

Dk = 40905, f(x) = x3 − 57x+ 161, β = 4.94161480..., p = (7, β)
εc0 = 8.5226378556771703(10−8)..., εc1 = 0.6489640054446504...,
εc2 = 1.8449553913583436...,

s1 = 721674 β2 + 3566235 β − 23512458,
s2 = 3302997 β2 + 16322139 β − 107613108,
s3 = 3772326 β2 + 18641382 β − 122904052

Dk = 41332, f(x) = x3 − x2 − 53x+ 111, β = 2.20485382..., p = (41, β + 2)
εc0 = 0.0000563439070499..., εc1 = 199.7464857636494957...,
εc2 = 0.0187650721496930...,

s1 = −1261/3 β2 − 1519/3 β + 21161,
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s2 = −315373/3 β2 − 379978/3 β + 5292323,
s3 = −13239265/3 β2 − 15951379/3 β + 222170195

Dk = 41332, f(x) = x3 − x2 − 23x− 11, β = −4.02994887..., p = (43, β + 19)
εc0 = 3.8671928208392439(10−6)..., εc1 = 72.4492351915039984...,
εc2 = 0.0042082408760932...,

s1 = 7664 β2 − 38549 β − 20922, s2 = 2374197 β2 − 11942090 β − 6480521,
s3 = 131810698 β2 − 663001073 β − 359785622

Dk = 42817, f(x) = x3 − x2 − 34x− 55, β = −4.04429139..., p = (7, β + 5)
εc0 = 2.4704459483878002(10−6)..., εc1 = 0.3310534628842669...,
εc2 = 2.3551742091210306...,

s1 = 17480 β2 − 88174 β − 237718, s2 = 107177 β2 − 540632 β − 1457548,
s3 = 162858 β2 − 821504 β − 2214772

Dk = 42817, f(x) = x3 − 61x+ 179, β = 5.06664816..., p = (5, β + 3)
εc0 = 4.2783829075100269(10−6)..., εc1 = 0.3117981935008191...,
εc2 = 4.7365340901421433...,

s1 = 14597 β2 + 73958 β − 515696, s2 = 123586 β2 + 626167 β − 4366178,
s3 = 254140 β2 + 1287638 β − 8978532

Dk = 42817, f(x) = x3 − 25x+ 27, β = 4.33215072..., p = (7, β + 4)
εc0 = 0.0000965911295757..., εc1 = 0.6040946069277487...,
εc2 = 0.2548024659913640...,

s1 = 331 β2 + 1434 β − 2065, s2 = 2130 β2 + 9227 β − 13277,
s3 = 3123 β2 + 13530 β − 19460

Dk = 43092, f(x) = x3 − 48x+ 100, β = −7.79886983..., p = (5, β)
εc0 = 0.0000938348168504..., εc1 = 20.1213162265647249...,
εc2 = 4.3973361801708900(10−6)...,

s1 = 3541/2 β2−13809 β+22707, s2 = 18058843 β2−140838567β+231557182,
s3 = 727089695/2 β2 − 2835238943 β + 4661506793

Dk = 45325, f(x) = x3 − x2 − 23x+ 22, β = 4.82302529..., p = (2, β)
εc0 = 1.1858683000629759(10−6)..., εc1 = 0.2584261425059976...,
εc2 = 36.4228534293310583...,

s1 = 22707 β2 + 86809 β − 103578, s2 = 921368 β2 + 3522413 β − 4202777,
s3 = 3416477 β2 + 13061278 β − 15584097

Dk = 45684, f(x) = x3 − 36x+ 12, β = −6.16019403..., p = (71, β + 11)
εc0 = 0.0000574623007658..., εc1 = 149.4620520604661553...,
εc2 = 1.7884050665537613(10−6)...,

s1 = 14817/2 β2 − 45638 β + 14433,
s2 = 126111691 β2 − 776872487 β + 245664386,
s3 = 37368570923/2 β2 − 115098823906 β + 36396812203

Dk = 45717, f(x) = x3 − x2 − 23x− 6, β = −4.17025025..., p = (31, β + 19)
εc0 = 8.5836296890863779(10−6)..., εc1 = 0.0112315655600718...,
εc2 = 2.6896613211917345...,
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s1 = 3108 β2 − 16069 β − 4470, s2 = 286054 β2 − 1478970 β − 411567,
s3 = 846612 β2 − 4377195 β − 1218079

Dk = 46548, f(x) = x3 − 60x+ 174, β = 5.06271682..., p = (11, β + 2)
εc0 = 2.6671937837242204(10−10)..., εc1 = 27.3003706065528768...,
εc2 = 0.0080919034750920...,

s1 = 221937571 β2 + 1123607074 β − 7627749828,
s2 = 33496017624 β2 + 169580851862 β − 1151221226200,
s3 = 749824123748 β2 + 3796147204096 β − 25770629119676

Dk = 46548, f(x) = x3 − 36x+ 4, β = −6.05480244..., p = (5, β + 3)
εc0 = 4.0234729424478067(10−10)..., εc1 = 48.5936439176364186...,
εc2 = 0.2505274973657315...,

s1 = 33594908 β2 − 203410531 β + 22193892,
s2 = 1775703443 β2 − 10751533544 β + 1173087616,
s3 = 6928165268 β2 − 41948671988 β + 4576971972

Dk = 46644, f(x) = x3 − x2 − 69x− 183, β = −5.49617539..., p = (3, β)
εc0 = 0.0007480433912605..., εc1 = 233814.3715515913653399...,
εc2 = 0.1200570746203687...,

s1 = 7210 β2− 46837 β− 240064, s2 = 9644139 β2− 62650018 β− 321110103,
s3 = 80972747 β2 − 526013167 β − 2696058917

Dk = 46813, f(x) = x3 − x2 − 43x+ 116, β = −7.20403114..., p = (17, β+ 15)
εc0 = 7.6001787555541085(10−7)..., εc1 = 0.0110341869090405...,
εc2 = 3.1596420064362269...,

s1 = 10353 β2 − 84933 β + 166692, s2 = 974274 β2 − 7992972 β + 15687845,
s3 = 3261609 β2 − 26758344 β + 52518751

Dk = 47860, f(x) = x3 − x2 − 61x+ 185, β = 6.02818494..., p = (5, β + 2)
εc0 = 0.0004587112066891..., εc1 = 385948.0096909855103361...,
εc2 = 0.0617103648674198...,

s1 = 21587/2 β2 + 54272 β − 662485/2,
s2 = 23572651 β2 + 118527649 β − 723425124,
s3 = 761174735/2 β2 + 1913663670 β − 23359821793/2

Dk = 47860, f(x) = x3 − x2 − 51x+ 81, β = 1.62015373..., p = (13, β + 1)
εc0 = 0.0001232507645705..., εc1 = 6.2253059695722683(106)...,
εc2 = 3.9468054300213463...,

s1 = −403322/3 β2 − 250123/3 β + 6721396,
s2 = −1089933841 β2 − 675926540 β + 54491520987,
s3 = −13726623098/3 β2 − 8512616551/3 β + 228755343506

Dk = 49928, f(x) = x3 − x2 − 26x+ 38, β = −5.28298405..., p = (11, β + 8)
εc0 = 1.6185294898537994(10−6)..., εc1 = 114.7730860004330705...,
εc2 = 0.0052121792756212...,

s1 = 9051 β2 − 56868 β + 65106, s2 = 2774423 β2 − 17431656 β + 19956159,
s3 = 199228431 β2 − 1251749053 β + 1433031081
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It remains to compute explicitly the Frobenius element σc. This can be done with
the data provided above, as described in Section 5, but is rather more intensive,
unlike the simple computations in (a)-(c) above. As a result we include below the
explicit Frobenius automorphisms only for the 5 fields with discriminant less than
10000 and for the field of discriminant 28212 described in Section 6. The data for
the remaining examples as well as electronic versions of the data in these tables can
be obtained by email from the authors.

Dk = 2597
σc(ε) =

[
(25328− 1356β − 3364β2) ε5+

(−137616 + 28858β + 25252β2) ε4+
(318696− 98190β − 69273β2) ε3+
(−358073 + 112785β + 79331β2) ε2+
(199168− 39527β − 36246β2) ε+ (−51496 + 1845β + 6724β2)

]
/3997

Dk = 4212
σc(ε) =

[
(−340775 + 464198β + 320869β2) ε5+

(40526716− 34401038β− 11816512β2) ε4+
(−235405572 + 202535726bβ+ 69063980β2) ε3+
(411620440− 353633098β− 120602498β2) ε2+
(−128401572 + 110581112β+ 37797938β2) ε+
(3039548− 2230368β − 923186β2)

]
/610109

Dk = 6885
σc(ε) =

[
(−154 + 747β + 225β2) ε5 + (50 + 2991β + 905β2) ε4+

(−969 + 5746β + 1547β2) ε3 + (85 + 4743β + 1513β2) ε2+
(−509 + 2517β + 710β2) ε+ (69 + 477β + 132β2)

]
/17

Dk = 9653
σc(ε) =

[
(136280− 62660β − 28884β2) ε5+

(823150−1571890β+ 310096β2) ε4+
(−1646711 + 3813888β− 1079473β2) ε3+
(1666493− 3533513β + 788409β2) ε2+
(−437163 + 794029β − 263140β2) ε+
(130581− 93101β − 8590β2)

]
/191681

Dk = 9800
σc(ε) =

[
(22571911 + 36645874β− 1370309β2) ε5+

(−63256308− 33101528β+ 6061580β2) ε4+
(−219770863− 5441722β+ 16330639β2) ε3+
(2852220080 + 204247608β− 133579400β2) ε2+
(−2000686116− 103046736β+ 89250564β2) ε+
(280105064− 14215168β− 10318120β2)

]
/47722922
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Dk = 28212
σc(ε) = [(−3599270210410146021309 + 144456675064152741936β+

96062588091859333029β2) ε5+
(−337418618277039567474827 + 84163296584968335168506β+

19291389389815096078965β2)ε4+
(2640222158834310099968203077−

675284692296064477088106958β−
153379895000330184633573814β2) ε3+

(−239408540778937420780089655905+
61232837117469668680252067562β+
13908059107414446684962003979β2) ε2+

(2577370712090340691346989569−
659208900700762693152742032β−

149728575434905137542429385β2) ε+
(−253021406556793673085768+

63919617157029310621856β+
14582888259664145092184β2)

]
/35626819129793805949
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