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UNIVERSAL BINARY HERMITIAN FORMS

A. G. EARNEST AND AZAR KHOSRAVANI

Abstract. We will determine (up to equivalence) all of the integral positive
definite Hermitian lattices in imaginary quadratic fields of class number 1 that
represent all positive integers.

1. Introduction

The search for positive definite quaternary integral quadratic forms which repre-
sent all positive integers has a long and illustrious history, dating back to Lagrange’s
proof in 1770 that the form x2 + y2 + z2 + w2 has this property. Such forms are
referred to as universal in the contemporary literature. More generally, a positive
integral quadratic form over a totally real number field is said to be universal if
every totally positive integer of the field is represented by the form. While no uni-
versal positive binary quadratic forms exist, Maass [8] showed that the sum of three

squares is universal over Q(
√

5). In 1994, Chan, Kim and Raghavan [1] showed that

among the real quadratic fields, only the fields Q(
√

2), Q(
√

3), and Q(
√

5) admit
universal ternary classic integral quadratic forms; all such forms are listed by the
authors.

In this paper, we consider the analogous problem of finding universal positive
definite Hermitian forms. It will be shown that over all imaginary quadratic fields,
there exist only finitely many classes of universal binary positive definite Hermit-
ian forms. All such forms will be determined for the imaginary quadratic fields
of class number 1; i.e., the fields Q(

√
m) where m = −1,−2,−3,−7,−11,−19,

−43,−67,−163.
Computational methods were used to produce a list containing all potentially

universal binary Hermitian forms, and all classes in their genera, over the nine
imaginary quadratic fields of class number 1. We now give a brief outline of the
method used. First, an upper bound for the discriminant of a universal binary
Hermitian form is determined for each of the fields. Next, inequalities are obtained
via reduction theory for the coefficients of such forms. The potentially universal
reduced forms are then listed and are screened for possible universality by determin-
ing whether the integers 1 through 5 are represented. This rough screening leaves
thirteen candidates. Of these, six give rise via the trace mapping of Jacobson [4] to
diagonal integral quaternary quadratic forms; their universality is established by ap-
pealing to known results for universality of such diagonal forms. For the remaining
forms, all binary Hermitian forms of the given discriminant are computer-generated
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and separated into genera. The four candidates which are found in this way to have
only one class in their genus are then known to be universal. The details and re-
sults of these computations are given in section 3 of this paper. The genera of the
remaining three candidates contain two classes each, so establishing their univer-
sality requires further argument. Each of these genera is treated individually in
the remaining sections of the paper. Ultimately, all the candidates that passed the
initial screening are proven to be universal.

2. Preliminaries

Let E be an imaginary quadratic field with nontrivial Q-involution − and ring of
algebraic integers O. A finitely generated O-module L is an Hermitian lattice over
O if there is a nondegenerate Hermitian space (V,H) over E for which EL = V .
All lattices considered here will be assumed to be integral and positive definite,
in the sense that H(x, y) ∈ O for all x, y ∈ L and H(x) > 0 for all x 6= 0 (here
and throughout the paper, H(x, x) is abbreviated simply to H(x)). Note that it
follows from these assumptions that H(x) ∈ Z for all x ∈ L. In this paper, the term
Hermitian lattice will always refer to a positive definite integral Hermitian lattice
over O.

In the case that O is a principal ideal domain (i.e., E is a field of class number
1), every Hermitian lattice is free and each choice of an O-basis {v1, . . . , vn} for
L gives rise to a function f : On → Z defined by f(x1, . . . , xn) = H(

∑
xivi) =∑

H(vi, vj)xixj . Such a function will be referred to as an Hermitian form associated
to L. In this way, isometry classes of Hermitian lattices on a fixed Hermitian
space correspond to classes of Hermitian forms equivalent under invertible integral
transformations.

Our primary interest here lies in the integers represented by Hermitian lattices.
An integer a is said to be represented by the Hermitian lattice L if there exists
x ∈ L for which H(x) = a. In terms of an associated Hermitian form f , this
is equivalent to the existence of α1, . . . , αn ∈ O such that f(α1, . . . , αn) = a. A
major tool in our analysis of representation properties of Hermitian lattices will
be a mapping which associates to a given Hermitian lattice L a quadratic lattice
L̃, having twice the rank of L, which represents the same integers as L. To each
Hermitian space (V,H), Jacobson [4] associated a symmetric bilinear space (Ṽ , BH)

where Ṽ denotes V considered as a vector space over Q and

BH(x, y) =
1

2
[H(x, y) +H(y, x)] =

1

2
TrE/Q(H(x, y)).

Analogously, associate to a Hermitian O-lattice L on V the quadratic Z-lattice L̃
on Ṽ obtained by viewing L as a Z-lattice on (Ṽ , BH). Then L and L̃ represent
the same integers, as BH(x, x) = 1

2 TrE/Q(H(x, x)) = H(x) for all x ∈ L. Now let

m be a squarefree negative integer such that E = Q(
√
m), and write ω =

√
m if

m ≡ 2, 3 (mod 4) or ω = (1+
√
m)/2 if m ≡ 1 (mod 4). Then f̃(x1, y1, . . . , xn, yn) =

f(x1 + ωy1, . . . , xn + ωyn) is a quadratic form in 2n variables corresponding to the

lattice L̃.

3. Generating possible universal binary Hermitian forms

For the remainder of the paper, we consider only binary Hermitian forms and
their corresponding quaternary quadratic forms. Let f(x, y) = axx̄+bxȳ+b̄x̄y+cyȳ,
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with a, c ∈ N, b = b1 + ωb2, b1, b2 ∈ Z; the discriminant of f is D = ac−NE/Q(b).

Let D̃ be the determinant of the quaternary quadratic form f̃ associated to f via
the trace map as described in the preceding section. Then D and D̃ are related
by the equation D̃ = (D2 disc(E/Q)2)/16 (see [9]). By a result of Ross (see [12]),
the determinant of a universal positive definite quaternary quadratic form does not
exceed 861. Moreover, f is a universal binary Hermitian form if and only if f̃ is a
universal quaternary quadratic form. It follows that there are only finitely many
classes of universal binary Hermitian forms over all imaginary quadratic fields,
that the largest possible discriminant of a universal binary Hermitian form over
Q(
√
m) is 29, 14, 39, 16, 10, 6, 2, 1 for m = −1,−2,−3,−7,−11,−19,−43,−47,

respectively, and that Q(
√−163) does not admit such a lattice.

From this point on, we will always assume that E is one of the nine imaginary
quadratic fields of class number 1. Consequently, every class of positive definite
binary Hermitian lattices over E = Q(

√
m) contains a reduced form f whose coef-

ficients satisfy:

a = min f, −1

2
a ≤ b1 ≤ 1

2
a, 0 ≤ b2 ≤ 1

2
a, and a ≤ c

(e.g., see [13]). The minimum of the corresponding quaternary quadratic form f̃

is no greater than
√

2D̃1/4(e.g., see [7, p. 294] Consequently, from the relationship

between D and D̃, we obtain the inequality

a ≤
√

2(D(− disc(E/Q)/4))1/2.(1)

As f is positive definite, 1 ≤ a, thus giving a finite range for a for any given
discriminant D. Thus, to set up a program to enumerate representatives from
every class of binary Hermitian forms of discriminant D, it remains to find an
upper bound for c in terms of D and a. Using the inequalities above, we get

ac− (
a2

4
(2 +N(w))) ≤ D ≤ ac.

Isolating c in this inequality yields the desired upper bound

c ≤ D

a
+
a

2
+N(w)

a

4
.(2)

In case the reduced binary form f is universal, it must be that a = 1. The
inequalities above for the integers b1 and b2 then force b1 = b2 = 0; that is, f is
a diagonal form. Consequently, the possible reduced universal binary Hermitian
forms are of the form xx̄ +Dyȳ, where D does not exceed the bound given above
for the relevant field. For each of these forms the number of representations of the
integers n were determined for each of the integers 1 through 5. The computer
program used for this purpose worked with the associated integral quaternary qua-
dratic form f̃ and was based on the method of successively completing squares to
diagonalize a multiple of this form over the ring of rational integers; it is then rou-
tine to find bounds on the four integer variables and count the number of integral
vectors x satisfying f̃(x) = n. If the number of representations of some integer in
this range is zero, then f cannot be universal.
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This screening method eliminates all but thirteen forms from the prior list. These
forms are:

1)− 5) xx̄+ yȳ in Q(
√
m) for m = −1,−2,−3,−7,−11,

6)− 11) xx̄+ 2yȳ in Q(
√
m) for m = −1,−2,−3,−7,−11,−19,

12)− 13) xx̄+ 3yȳ in Q(
√
m) for m = −1,−2.

The remainder of the paper is devoted to proving that the above forms are indeed
universal.

The quaternary quadratic forms which correspond to the Hermitian forms 1),
2), 6), 7), 12), and 13) are the diagonal forms:

1′) x2 + y2 + z2 + w2,

2′) x2 + y2 + 2z2 + 2w2,

6′) x2 + y2 + 2z2 + 2w2,

7′) x2 + 2y2 + 2z2 + 4w2,

12′) x2 + y2 + 3z2 + 3w2,

13′) x2 + 2y2 + 3z2 + 6w2.

Each of these was shown to be universal by Ramanujan [10]; consequently, these
six binary Hermitian forms are universal.

For the remaining seven candidates, it was first checked that the forms represent
all positive integers locally with respect to all primes (here the notion of localization
is that introduced by Shimura [11]; for a description of the local representation
conditions the reader is referred to [3] and [4]). Then, utilizing the inequalities
(1) and (2), all reduced forms with the same discriminant as each of the given
forms were computer generated. These forms were then separated into equivalence
classes, with the aid of the computations of representation numbers as described
above. Finally, the inequivalent forms were separated into genera by checking their
local invariants. In this way it was determined that the forms 3), 8), 4) and 10) each
lie in a genus of a single class. As it is known that the forms in a genus collectively
represent all integers represented by the genus, it follows that these four forms are
also universal.

4. The universality of the form f = xx̄+ yȳ in Q(
√−11)

In Q(
√−11), the genus of f = xx̄+ yȳ consists of the class of f and the class of

g = 2xx̄+wx̄y+ w̄xȳ+2yȳ. Using the trace map, we get the quaternary quadratic
forms corresponding to f and g, respectively:

f̃ = x2 + 3y2 + z2 + 3w2 + xy + zw

and g̃ = 2x2 + 6y2 + 2z2 + 6w2 + 2xy + xz − 5xw + 6yz + 3yw + 2zw.

The reduced form equivalent to g̃ is

g̃R = 2x2 + 2y2 + 2z2 + 2w2 + 2xy + xz + xw + yw + 2zw.

Since equivalent forms represent the same integers, we will use g̃R in place of g̃.
Straightforward computations show that f̃(x+z, y+w, x−z, y−w) = 2f̃(x, y, z, w).

So, in order to show that f̃ is universal, it suffices to show that f̃ represents all
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odd positive integers. So suppose n is an odd positive integer represented by g̃R.
Completing squares yields the identity

8g̃R(x, y, z, w) = (4x+ 2y + z + w)2 + (−y + 2z − 2w)2 + 11(z + w)2 + 11y2

= r2 + s2 + 11t2 + 11u2,(1)

where r and t are of the same parity and s and u are of the same parity. We need
to consider the following two cases:

I) r, t and s, u have opposite parities,
II) r, t, s, and u are of the same parity.

We will show the latter is the only case that needs to be considered; first assume
the former. Assume r and t are odd and s and u are even. Then y must be even
and z + w must be odd, which implies that either z or w must be odd. Since n is
odd, and

n ≡ xz + xw + yw (mod 2)

≡ x(z + w) + yw (mod 2),

x must also be odd. Suppose z is odd, then consider the representation (w, z, y, x)
of n by g̃R such that r, s, t, and u are all odd. If w is odd, then (y, x,−z, z + w)
yields a representation of n by g̃R such that r, s, t, and u are all odd.

Next assume r and t are even and s and u are odd. Then y is odd and z + w
is even. Since n is odd, w must be odd, and so z must be odd. If x is odd, then
consider the representation (y, x,−z, z + w) of n by g̃R such that r, s, t and u are
all odd. If x is even, then consider the representation (w, z, y, x) of n by g̃R such
that r, s, t, and u are all odd.

Thus we may assume that the representation of n by g̃R leads to case II. First
suppose r, s, t, and u are all even. Then y and z + w must be even, which in turn
implies that n ≡ x(z +w) + yw (mod 2) is even. Now suppose r, s, t, and u are all
odd. There are two possibilities: (r − t) + (s − u) ≡ 0 or 2 (mod 4). We observe
that if (r − t) + (s − u) ≡ 0 (mod 4), then (r − t) − (s − u) ≡ 0 (mod 4) as well.
Moreover, if (r − t) + (s− u) ≡ 2 (mod 4) then (r − t)± (s + u) ≡ 0 (mod 4).

Now assume that n is represented by g̃R. We will show that n is represented by
f̃ . Consider the substitution

x =
r ∓ s− t− u

4
, y =

t+ u

2
, z =

r ± s− t+ u

4
and w =

t− u

2
,

where the top signs are selected in the case (r − t) + (s− u) ≡ 0 (mod 4), and the
bottom in the case (r − t) + (s − u) ≡ 2 (mod 4). Then x, y, z and w are integers

such that f̃(x, y, z, w) = n.

5. Universality of the form xx̄+ 2yȳ in Q(
√−7)

Over Q(
√−7), the genus of f = xx̄ + 2yȳ consists of the class of f and the

class of g = 2xx̄− wx̄y − w̄xȳ + 2yȳ. Using the trace map, we get the quaternary
quadratic forms corresponding to f and g, respectively:

f̃ = x2 + 2y2 + 2z2 + 4w2 + xy + 2zw

and g̃ = 2x2 + 4y2 + 2z2 + 4w2 + 2xy − xz + 3xw − 4yz − 2yw + 2zw.

The reduced form equivalent to g̃ is

g̃R = 2x2 + 2y2 + 2z2 + 2w2 + xy + xz + yw − zw.
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Since equivalent forms represent the same integers, we will use g̃R in place of g̃.
Straightforward computations show that f̃(2y, x, 2w, z) = 2n. So in order to show

f̃ , and hence f , is universal, it suffices to show that f̃ represents all odd positive
integers.

Suppose n is an odd positive integer represented by g̃R. Since n is odd, and

n ≡ xy + xz + yw − zw (mod 2)

≡ x(y + z) + w(y − z) (mod 2),

y and z must have opposite parities, and x and w must have opposite parities. With-
out loss of generality, we may assume z is odd, as (x, z, y,−w) is another representa-

tion of n by g̃R. Now n = f(x+w, y,−z, x+ z − w

2
), where (x+w, y,−z, x+ z − w

2
)

is an integral solution.

6. The universality of the form f = xx̄+ 2yȳ in Q(
√−19)

Over Q(
√−19), the genus of the form f = xx̄+2yȳ consists of f and the class of

g = 3xx̄+(1+w)x̄y+(1+ w̄)xȳ+3yȳ. Using the trace map, we get the quaternary
quadratic forms corresponding to f and g, respectively:

f̃ = x2 + 5y2 + 2z2 + 10w2 + xy + 2zw,

g̃ = 3x2 + 15y2 + 3z2 + 15w2 + 3xy + 3xz − 8xy + 11yz + 15yw+ 3zw.

The reduced forms equivalent to f̃ and g̃ are

f̃R = x2 + 2y2 + 5z2 + 10w2 + xz + 2yw

and g̃R = 3x2 + 3y2 + 5z2 + 5w2 + 3xy + 2xz + 2xw − yz + 3yw + 4zw,

respectively. Since equivalent forms represent the same integers, we will freely use
either of the pairs of forms where convenient.

To show that f̃ , and hence f , is universal, we first make several reductions.
Straightforward computations show that the identities

f̃(2z, 2w, x, y) = 2f̃(x, y, z, w) and

f̃R(x+ 2z + 2w, x− z − w, y − 2w, y + w) = 3f̃R(x, y, z, w)

hold. So, in order to show that f̃ is universal, it suffices to show that f̃ represents
all odd positive integers not divisible by 3. So in the remainder of the argument we
assume that n is such an integer.

Completing squares yields the identities

(1)

12g̃R(x, y, z, w)=(6x+ 3y + 2z + 2w)2+2(2y − 3z + 3w)2+19y2+38(z + w)2

=r21 + 2s21 + 19t21 + 38u2
1

and

(2)

12g̃(x, y, z, w)=(6x+ 3y + 3z − 8w)2+2(2z + w)2+19(3y + z + 2w)2+38w2

=r22 + 2s22 + 19t22 + 38u2
2.
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For i = 1, 2, equations (1) and (2) imply 2|(r2i + 19t2i ); so ri and ti are of the same
parity. Moreover, r2i + 2s2i + 3t2i + 2u2

i ≡ 0 (mod 4). Since r2i + 3t2i ≡ 0 (mod 4)
whenever ri and ti are of the same parity, it follows that 2s2i + 2u2

i ≡ 0 (mod 4);
hence, si and ui are of the same parity. Finally, r2i + 2s2i + t2i + 2u2

i ≡ 0 (mod 3).
This relation is satisfied only in the following cases:

I) ri ≡ si(mod 3) and ti ≡ ui(mod 3),

II) ri ≡ si(mod 3) and ti ≡ 2ui(mod 3),

III) ri ≡ 2si(mod 3) and ti ≡ ui(mod 3),

IV) ri ≡ 2si(mod 3) and ti ≡ 2ui(mod 3),

V) ri ≡ ui ≡ 0(mod 3), si 6≡ 0(mod 3) or

si ≡ ti ≡ 0(mod 3), ri 6≡ 0(mod 3).

Now assume that n is represented by g̃ (equivalently, by g̃R). We next show that
if this representation leads to any of the cases I) – IV) above for the representation

of 12n, then n is represented by f̃ . In cases I) and II), consider the substitution

x =
ri + 2si − ti ∓ 2ui

6
, y =

ti ± 2ui
3

, z =
ri − si − ui ± ti

6
, and w =

ui ∓ ti
3

,

where the top signs are selected in case I), the bottom in case II). In cases III) and
IV), consider the substitution

x =
2si − ri − ti ∓ 2u

6
, y =

ti ± 2ui
3

, z =
ri + si − ui ± ti

6
, and w =

ui ∓ ti
3

,

where the top signs are selected in case III), the bottom in case IV). Then x, y, z

and w are integers such that f̃(x, y, z, w) = n.
Finally we assume that the known representation of n by g̃R leads to case V).

Suppose first that the representation (x, y, z, w) in equation (1) leads to r1 ≡ u1 ≡
0 (mod 3), s1 6≡ 0 (mod 3) and t1 6≡ 0 (mod 3). Then we have z + w ≡ 0 (mod 3)
and y 6≡ 0 (mod 3). Without loss of generality we may assume that z 6≡ 0 (mod 3),
for otherwise u1 ≡ 0 (mod 3) will imply w ≡ 0 (mod 3), and thus n ≡ 0 (mod 3),
contrary to our restriction on n. We may also assume that x 6≡ 0 (mod 3), for
otherwise we may consider (x + y,−y, w, z), for which g̃R(x+ y,−y, w, z) = n and
x+y 6≡ 0 (mod 3). Now g̃(−x−y+2z, w, x−z−2w, z) = n, which leads via equation
(2) to r2 = −3x− 6y+ z− 3w, s2 = 2x− z− 4w, t2 = x+ z +w and u2 = z. Since
x 6≡ 0 (mod 3), it follows that s2 6≡ 0 (mod 3) and t2 6≡ 0 (mod 3). Furthermore,
z 6≡ 0 (mod 3) will imply that r2 6≡ 0 (mod 3) and u2 6≡ 0 (mod 3). As case V) is not

satisfied for this representation of n by g̃, n→ f̃ follows from one of the cases I)–IV).
Now suppose that the representation (x, y, z, w) of n by g̃R leads in equation (1)
to s1 ≡ t1 ≡ 0 (mod 3), r1 6≡ 0 (mod 3) and u1 6≡ 0 (mod 3). Then y ≡ 0 (mod 3)
and z + w 6≡ 0 (mod 3). Without loss of generality we may assume z 6≡ 0 (mod 3),
for otherwise we may consider the representation (x+ y,−y, w, z) of n by g̃R with
w 6≡ 0 (mod 3). Again consider the representation g̃(−x−y+2z, w, x−z−2w, z) = n
with the corresponding r2, s2, t2, u2 as above. Again z 6≡ 0 (mod 3) will imply
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r2 6≡ 0 (mod 3). We may further assume that x+ y + z 6≡ 0 (mod 3) for otherwise

n ≡ 5z2 + 5w2 + 2xz + 2xw + 4zw (mod 3)

≡ 3(z2 + w2) + 2(z + w)2 + 2x(z + w) (mod 3)

≡ 2(z + w)(z + w + x) (mod 3)

≡ 0 (mod 3),

contrary to our restriction on n. Finally, x + z + w 6≡ 0 (mod 3) will imply t1 6≡
0 (mod 3) and s1 6≡ 0 (mod 3). As before n → f̃ follows from one of cases I)–IV).
This completes the proof.

As a final note, we observe that the ternary section of the form f̃ obtained
by setting w = 0 is a ternary quadratic form which Kaplansky [6] has recently
conjectured to represent all positive odd integers.
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