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COMPOSITION CONSTANTS FOR RAISING THE ORDERS OF

UNCONVENTIONAL SCHEMES FOR ORDINARY

DIFFERENTIAL EQUATIONS

WILLIAM KAHAN AND REN-CANG LI

Abstract. Many models of physical and chemical processes give rise to or-
dinary differential equations with special structural properties that go unex-
ploited by general-purpose software designed to solve numerically a wide range
of differential equations. If those properties are to be exploited fully for the
sake of better numerical stability, accuracy and/or speed, the differential equa-
tions may have to be solved by unconventional methods. This short paper is
to publish composition constants obtained by the authors to increase efficiency
of a family of mostly unconventional methods, called reflexive.

1. Introduction

Modeling many problems in physics, chemistry, and engineering gives rise to
systems of ordinary differential equations. Typically these systems take the form

dy

dt
= f(t,y), with y(0) = y0.(1)

The initial vector y0 and the vector-valued function f( · ) are given, and the function
is assumed as smooth as necessary. An interval 0 ≤ t ≤ T is usually specified for
the scalar variable t, often identified with Time. The problem (1) is known as an
Initial Value Problem (IVP), and as an Autonomous Initial Value Problem (AIVP)
if f(t,y) ≡ f(y). Any given IVP (1) can be rewritten in a way that suppresses all
explicit references to t; in other words, any IVP is equivalent to an AIVP. In what
follows, we will consider AIVP

dy

dt
= f(y), with y(0) = y0(2)

only, unless otherwise stated, in order to simplify the formulas that will arise.
In relatively few instances can analytical solutions be found for (2), and therefore

the only option for most IVPs is a numerical solution. A typical program to solve
the initial value problem is expected to generate a sequence of approximations
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y1,y2, · · · , yN to y(t) at Sample-Times t0 = 0 < t1 < t2 < · · · < tN = T .
Numerical methods are classified into two major categories—One-Step Methods
and Multi-Step Methods according to how they use past information. A method
is classified as a one-step method if the computation of yn+1 involves only the
approximation yn to y(tn), but not approximations at previous sample times; it is
a multi-step method otherwise.

Many conventional methods (linear multi-step, Runge-Kutta methods) [1, 2, 7]
are in use. To achieve generality, they have evolved into complicated programs
thousands of lines long, and have become highly refined and relatively efficient
solvers of a wide range of differential equations. Yet, because of their generality,
conventional methods may do worse than what we called unconventional methods
which exploit what may be known a priori about the initial value problem. In
applications, differential systems often have some special structures and properties.
Such structures and properties, if known and incorporated, may improve the effi-
ciency of a numerical method greatly. Normally, constructing low order numerical
formulas that preserve the structure is often much easier than going directly for
higher order formulas that preserve the structure. These ad hoc formulas are often
better than conventional formulas in some respect, but may be inaccurate because
of their low orders of convergence. Composition Schemes are then particularly help-
ful to obtain higher order methods while retaining the properties of simple lower
order updating formulas.

In this short paper, we will present composite constants that may help to increase
the efficiency of certain numerical methods, called reflexive, for solving IVPs. While
keeping this paper as short as possible, we try to give enough details for someone
who’d like to try out our schemes on their particular applications. A more complete
theory and history behind the schemes will be published in forthcoming papers.

2. Updating formulas and convergence

In principle, any one-step method for solving the initial value problem (2) yields
an updating formula Q(θ,g) which advances g ≈ y(τ) to Q(θ,g) ≈ y(τ + θ).

Any updating formula appropriate to problem (2) is intended to be iterated N
times thus:

y(T ) ≈ yN = Q(θN−1,Q(θN−2,Q(θN−3, ...,Q(θ1,Q(θ0,y0)) · · · ))).
For this numerical solution to make sense, it is natural to ask that this N -fold
composition of the updating formula yields a value converging to y(T ) as max

n
θn →

0. It turns out that convergence depends on the local error

Q(θ,g)− Φ(θ,g)

where Φ(θ,y) is the solution operator defined by Φ(θ,g)
def
= y(τ+θ) for the problem

dy

dt
= f(y), with y(τ) = g.

The updating formula Q(θ,g) is called consistent if the local error is at most o(θ).
It turns out that convergence is guaranteed if the updating formula Q(θ,g) is
consistent. A one-step method with updating formula Q(θ,g) is of order p if the
local error satisfies

Q(θ,g)− Φ(θ,g) = O(θp+1).(3)
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This means that the Taylor series of the numerical updating formula in powers of
θ matches that of the true solution Φ(θ,g) up to the term in θp for all g. It is
provable [1] that under (3) the global error behaves like

y(T )− yN = O(max
n

θpn).

An updating formula Q(θ,g) is Reflexive if

Q(−θ,Q(θ,g)) = g.

(It has been called Symmetric, Reversible, and Self-Adjoint too but, as argued by
Kahan [6], these terms are already overworked, so we prefer the word reflexive.) One

example is the Implicit Mid-point Rule: yn+1 = yn + θnf
(

yn+yn+1

2

)
. A consistent

and reflexive formula has at least second order convergence [1, 2, 4, 8] and has other
properties which allow efficient constructions of higher order approximations. One
such construction composes Q(θj , · ) with specially correlated step-sizes θj ; details
will be given in the coming section.

In principle, a reflexive scheme can be obtained out of any conventional one-step
numerical scheme by composing it with its Reflection. Various other unconventional
ways [6, 8] to design reflexive schemes will be published in forthcoming papers.

3. Palindromic composition devised to increase a formula’s order

Assume now g ≈ y(τ). By composing the existing updating formula Q(·, ·) to
obtain higher order methods we mean, for example, that with appropriately chosen
integer m and scalar δj ’s

Q(δmθ,Q(δm−1θ,Q(· · · ,Q(δ1θ,g) · · · )))(4)

approximates y(τ + θ) (much) more accurately than Q(θ,g) does provided θ is

small enough. We call (4) an m-Stage Scheme. Consistency implies that
m∑
j=1

δj = 1.

Because some of the δj ’s may be negative, the approximation (4) may be called a
Back-and-Forth numerical scheme. Particularly interesting are the

Palindromic Compositions: δi = δm−i+1 for i = 1, 2, · · · ,m
when Q is reflexive. (This term was coined by Kahan in his lecture notes [6, 1993].)
They preserve reflexiveness, and then lead to far simpler determining equations
than do non-palindromic compositions. In what follows, we will be considering
Palindromic Compositions (4) only.

An immediate question is “how shall we find these magic numbers δj?” It
turns out there are determining equations–so-called order conditions–that these
δj must satisfy for (4) to be a certain (even) order approximations. Surpris-
ingly the determining equations in this general context are equivalent to those
that would be otherwise derived from special cases like for separable Hamilton-
ian systems [13], the implicit mid-point rule Q [10], and decompositions of ex-
ponential operators [12]. An explanation of such equivalence resides in Lie Al-
gebra Tools [8]. In Yoshida [13], order conditions for orders up to 8 are given;
while Suzuki [12] attempted to give order conditions for orders1 up to 12, but
his order 10 conditions are incorrect and so would his order 12 conditions. Since

1A palindromic scheme is always of even order of convergence. Nevertheless, Suzuki still
assigned an odd order to a palindromic scheme. A scheme to which he assigned order 2k − 1
would actually have order 2k.
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this paper is meant to be short, we will not go any further in this matter. The
reader is referred to Li [8] and forthcoming papers for different ways of derivations.
MAPLE codes that generate order conditions and more is available from NETLIB;
see http://www.netlib.org/ode/composition.txt. The following table lists the
numbers of determining equations for the approximations (4) to have a certain
(even) order. (See also McLachlan [9].) By counting the numbers of equations and

Order 2p 2 4 6 8 10 12

The #’s of det. eqs. 1 2 4 8 16 34

free parameters in δj ’s, we arrive at the minimums of m of an order 2p scheme.

Order 2p 2 4 6 8 10 12

m ≥ 1 3 7 15 31 67

The approximation (4) consists of m moves; at the end of the jth move

Q(δjθ,Q(· · · ,Q(δ1θ,g) · · · )) ≈ y(τ + cjθ)

where cj
def
=

j∑
i=1

δi. It is possible for a scheme to have some cj < 0 or cj > 1,

which means some of the intermediate moves may jump “out of bounds”, outside
[τ, τ + θ]. Such “out of bounds” moves are permissible in orbit calculations, but
may be harmful in situations when true solutions y(t) pass too near singularities:
“out of bounds” moves may hit or cross the singularities, and thus jeopardize com-
putations. In our searching for high order schemes (4), efforts have been made to
keep all 0 ≤ cj ≤ 1, among other things. We found that keeping all 0 ≤ cj ≤ 1 is
possible only when the number of stages m is bigger than its minimum required for
achieving a particular order by at least 2, in which case the determining equations
are underdetermined and thus present room for choices. Considering that increas-
ing m implies increasing work, we always keep m as small as possible while having
0 ≤ cj ≤ 1. Two other quantities we have attempted to minimize (globally if we
can or locally) are

max
1≤j≤m

|δj | and
m∑
j=1

|δj |.(5)

The first one is the largest intermediate step-size and the second is the overall
distance travelled.

4. Palindromic schemes

Palindromic schemes of orders up to 10 have been constructed in Li [8]. Some
of them have been known in some special context as we shall comment. For ease of
future references, we adopt notation sIodrJ? to denote an I-Stage Order J Scheme.
(Thus s1odr2 is the reflexive updating formula itself.) Analytic solutions can be
found for order 4 schemes.

1. s3odr4: m = 3 and δ1 = δ3 = 1
2− 3√2

, δ2 = − 3√2
2− 3√2

< 0 for which c1 = δ1 > 1,

c2 = − 3√2−1
2− 3

√
2
, and c3 = 1. This is the scheme that has been discovered in

integrating separable Hamiltonian systems by Yoshida [13], in composing the
implicit mid-point rule by Sanz-Serna and Abia [10], and in its most general
context by Kahan [6].
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2. s5odr4: m = 5 and δ1 = δ2 = δ4 = δ5 = 1
4− 3

√
4
, δ3 = − 3√4

4− 3
√

4
. Suzuki [11] had

this scheme for exponential approximations. It has been known to the first
author for quite a while, but as the minimizer to both quantities in (5) it is
due to [8].

3. s5odr4a and s5odr4b: m = 5 and δ1 = 3±√3
6 = δ5, δ2 = 3∓√3

6 = δ4, δ3 = −1

for which c1 = 3±√3
6 , c2 = 1, c3 = 0, c4 = 3∓√3

6 , c5 = 1. They are interesting
because they embedded an order 2 scheme in it, and thus may be used with
cheap error estimators.

Analytic solutions are not available for schemes of orders 6 and higher. In the
Appendix, numerical values with 20 correct decimal digits are given. These
constants as well as codes that compute them are available from NETLIB; see
http://www.netlib.org/ode/composition.txt.

5. Linear stability properties

In the past, instances have been reported on successful applications of composi-
tion schemes to Hamiltonian systems, but we cautioned the reader that composition
schemes should be used with care. They may be instable, even though the Q is sta-
ble. In Li [8], a linear stability theory has been developed for the above mentioned
palindromic schemes, assuming Q is the implicit mid-point rule and thus A-Stable
[7]. But the linear stability regions for (4) will have holes in the left half-plane as
long as there are negative δj ’s. This suggests that composition schemes may not
be suitable to integrate stiff systems.

The reader is referred to Li [8] for the linear stability regions for all palindromic
schemes in this paper.

6. An example

We present a simple numerical example to illustrate the usage of our schemes.
The example also serves as a confirmation that these schemes do behave with the
claimed order of convergence. Consider Lorenz Attractor y′1

y′2
y′3

 =

 −σ(y1 − y2)
−y1y3 + ry1 − y2

y1y2 − by3

 ,(6)

where σ = 10, r = 28, and b = 8/3. For illustration only, we take y1(0) = 10,
y2(0) = −20 and y3(0) = 20 initially, and are interested in integrating the system
from t = 0 to t = 1.

A second order reflexive updating formula is obtained via a technique so-called
Symmetrical Splitting [6, 8]. Let yi’s be the approximations at t = τ . Then the
approximations Yi at t = τ + θ are obtained via solving a linear system

 Y1 − y1

Y2 − y2

Y3 − y3

 /θ =

 −σ ((y1 + Y1)/2− (y2 + Y2)/2)
−(y1Y3 + Y1y3)/2 + r(y1 + Y1)/2− (y2 + Y2)/2

−(y1Y2 + Y1y2)/2− b(y3 + Y3)/2


(7)
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Figure 1. Relative errors of numerical solutions by palindromic
schemes based on (8) ploted against costs (in the numbers of calls
to (8)).

which is equivalent to

I − θ

2

 −σ σ 0
−y3 + r −1 −y1

y2 y1 −b

 Y1 − y1

Y2 − y2

Y3 − y3

 = θ

 −σ(y1 − y2)
−y1y3 + ry1 − y2

y1y2 − by3

 ,

(8)

where I is the 3×3 identity matrix. Y = Q(θ,y) obtained by solving (8) is reflexive
since substitutions

y←− Y, ,Y ←− y, −θ ←− θ

leave (7) unchanged. It is worth mentioning that such Q(θ,y) has an advantage over
two conventional reflexive methods—the trapezoidal rule and the implicit mid-point
rule—in that it requires solving no nonlinear systems but linear ones.

Once we have the Q(θ,y), various palindromic schemes follow immediately. To
keep this paper short, we choose to only present Figure 1 which plots the relative
errors in numerical solutions at t = 1 against the numbers of calls to (8), where by
relative errors we mean |α − α̃|/|α| if α̃ is to approximate α. Not all palindromic
schemes in §4 and §A are included in the figure. This is because if we did, the figure
would be a mess and not readable. But we point out that schemes not included
behave similarly.
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Two things need to be said about this example. First, the true solution to the
system (6) is carefully computed using IBM’s FORTRAN REAL*16 and very small
step-sizes. To 20 decimal digits, the true solution is y1

y2

y3


t=1

=

 8.6356927098925060179D0

2.7986633879274570520D0

3.3360635089731421578D+1

 .(9)

These digits are guaranteed correct by doing computations with different step-sizes
and observing convergences.

Second, all computations are done in FORTRAN’s DOUBLE PRECISION, and com-
pensated summation technique is used. We briefly describe what we did with com-
pensated summation technique. (For more discussion of compensated summation,
see Kahan [5] and Higham [3].) The idea of the technique is to represent a number
by two double precision floating point numbers such that the number is correctly
represented to roughly 30 decimal digits. Take y1 for an example. We represent
y1 by (y1,yt1). As time advances from τ to τ + θ, y1 is advanced to Y1 and the
difference Y1 − y1 (not Y1 itself) is computed. Let the computed difference be dy1.
Then Y1 is represented as (Y1, Yt1) computed by

Y1=(dy1+yt1)+y1 and Yt1=((y1-Y1)+dy1)+yt1.

Parentheses here must be fully respected. This technique turns out to be helpful
in suppressing rounding errors sometimes. For example running s9odr6a for θ =
0.390625D-3 with/out compensated summation technique, we have the following
relative errors in yi’s at t = 1:

1. With compensated summation, 0.0000D+00,4.7604e-16,2.1299e-16. For
the y1 component, it is due to pure luck.

2. Without compensated summation, 2.7152e-14, 1.6661e-14, 1.2353e-14,
less accurate by two decimal digits than with the technique.

7. Conclusions

We have presented constants for designing palindromic schemes of orders up
to 10 from composing a reflexive (unconventional) scheme to possiblly increase
its efficiency. Such schemes are very simple to implement, and may work much
better than conventional schemes when they work. A simple example is included
to illustrate the usage, as well as to verify the claimed orders of convergence of our
schemes.

To keep this paper short, we left out discussions on important practical questions
like their stability properties, what orders are worth implementing? The reader is
referred to [8].

Finally, let’s point out again that most of the material in this paper, includ-
ing codes for the example, is available from NETLIB; see http://www.netlib.

org/ode/composition.txt.
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Appendix A. Palindromic schemes for orders 6 and higher

Among schemes that follow, s7odr6 appeared in Yoshida [13], and s15odr8 was
also obtained by McLachlan [9] under different circumstances.

s7odr6

c1 0.78451361047755726382 δ1 = δ7 0.78451361047755726382

c2 1.0200868238369153975 δ2 = δ6 0.23557321335935813368

c3 -0.15759316034195560944 δ3 = δ5 -1.1776799841788710069

δ4 1.3151863206839112189

s9odr6a

c1 0.39216144400731413928 δ1 = δ9 0.39216144400731413928

c2 0.72476058079667357788 δ2 = δ8 0.33259913678935943860

c3 0.018514408239034218070 δ3 = δ7 -0.70624617255763935981

c4 0.10072800453258501830 δ4 = δ6 0.082213596293550800230

δ5 0.79854399093482996340

s9odr6b

c1 0.39103020330868478817 δ1 = δ9 0.39103020330868478817

c2 0.72506749291982080566 δ2 = δ8 0.33403728961113601749

c3 0.018840211732259462202 δ3 = δ7 -0.70622728118756134346

c4 0.10071776138031890797 δ4 = δ6 0.081877549648059445768

δ5 0.79856447723936218406

s15odr8

c1 0.74167036435061295345 δ1 = δ15 0.74167036435061295345

c2 0.33256953855058135945 δ2 = δ14 -0.40910082580003159400

c3 0.52332424884681973940 δ3 = δ13 0.19075471029623837995

c4 -0.050538222269262527252 δ4 = δ12 -0.57386247111608226666

c5 0.24852595903439339659 δ5 = δ11 0.29906418130365592384

c6 0.58315087727969158038 δ6 = δ10 0.33462491824529818378

c7 0.89844396967645817701 δ7 = δ9 0.31529309239676659663

δ8 -0.79688793935291635402

s17odr8a

c1 0.13020248308889008088 δ1 = δ17 0.13020248308889008088

c2 0.69136546486399846544 δ2 = δ16 0.56116298177510838456

c3 0.30189050221915117903 δ3 = δ15 -0.38947496264484728641

c4 0.46073240877430677993 δ4 = δ14 0.15884190655515560090

c5 0.064828514641069202593 δ5 = δ13 -0.39590389413323757734

c6 0.24936815561938490968 δ6 = δ12 0.18453964097831570709

c7 0.50774254330570695698 δ7 = δ11 0.25837438768632204729

c8 0.80275426691501725585 δ8 = δ10 0.29501172360931029887

δ9 -0.60550853383003451170
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s17odr8b

c1 0.12713692773487857916 δ1 = δ17 0.12713692773487857916

c2 0.68883946572368127888 δ2 = δ16 0.56170253798880269972

c3 0.30630474577485109000 δ3 = δ15 -0.38253471994883018888

c4 0.46638080206949852119 δ4 = δ14 0.16007605629464743119

c5 0.064564427742691554464 δ5 = δ13 -0.40181637432680696673

c6 0.25193114428497005171 δ6 = δ12 0.18736671654227849724

c7 0.51263985349276245740 δ7 = δ11 0.26070870920779240570

c8 0.80303724161792408129 δ8 = δ10 0.29039738812516162389

δ9 -0.60607448323584816258

s31odr10a

c1 -0.48159895600253002870 c9 0.13637459831059490870

c2 -0.47796856284807043601 c10 0.32249749378157398757

c3 0.023834612739160966776 c11 0.55387077244595759390

c4 0.30681863898422351546 c12 0.031960406541771304852

c5 1.1138483179379457535 c13 0.78062154368676427278

c6 1.0877577373993535481 c14 0.84735805557736833031

c7 0.21489183593617283260 c15 0.043754811820660027146

c8 -0.30884384468893298382

δ1 = δ31 -0.48159895600253002870 δ9 = δ23 0.44521844299952789252

δ2 = δ30 0.0036303931544595926879 δ10 = δ22 0.18612289547097907887

δ3 = δ29 0.50180317558723140279 δ11 = δ21 0.23137327866438360633

δ4 = δ28 0.28298402624506254868 δ12 = δ20 -0.52191036590418628905

δ5 = δ27 0.80702967895372223806 δ13 = δ19 0.74866113714499296793

δ6 = δ26 -0.026090580538592205447 δ14 = δ18 0.066736511890604057532

δ7 = δ25 -0.87286590146318071547 δ15 = δ17 -0.80360324375670830316

δ8 = δ24 -0.52373568062510581643 δ16 0.91249037635867994571

s31odr10b

c1 0.27338476926228452782 c9 0.61814916938393924433

c2 0.71926323428788736779 c10 0.13895907755995660185

c3 1.5514596627592504390 c11 0.30619982436039369094

c4 0.71749097720967101026 c12 -0.56823168827336774213

c5 0.99640940777982295318 c13 -1.0669665068095694000

c6 1.8867367882368482732 c14 -0.47766114071982021148

c7 1.9434183030820939827 c15 0.35692823718900708627

c8 1.0860440949323051054

δ1 = δ31 0.27338476926228452782 δ9 = δ23 -0.46789492554836586111

δ2 = δ30 0.44587846502560283997 δ10 = δ22 -0.47919009182398264249

δ3 = δ29 0.83219642847136307126 δ11 = δ21 0.16724074680043708909

δ4 = δ28 -0.83396868554957942879 δ12 = δ20 -0.87443151263376143307

δ5 = δ27 0.27891843057015194293 δ13 = δ19 -0.49873481853620165786

δ6 = δ26 0.89032738045702532006 δ14 = δ18 0.58930536608974918851

δ7 = δ25 0.056681514845245709418 δ15 = δ17 0.83458937790882729775

δ8 = δ24 -0.85737420814978887722 δ16 0.28614352562198582747
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s33odr10a

c1 0.070428877682658066880 c9 0.41100594684580454818

c2 0.94458539503619755729 c10 0.95487420737052878156

c3 1 c11 0.022351898086056138449

c4 0.93319952210120298840 c12 0.19195369692282078700

c5 0.30678643251320743247 c13 0.90803937270732642308

c6 0.54361264338849506120 c14 0.10787207023422068796

c7 0.12140200935679451910 c15 0.34565392315678839544

c8 0.36363143136720311159 c16 0.022350907648148961545

δ1 = δ33 0.070428877682658066880 δ10 = δ24 0.54386826052472423338

δ2 = δ32 0.87415651735353949041 δ11 = δ23 -0.93252230928447264311

δ3 = δ31 0.055414604963802442707 δ12 = δ22 0.16960179883676464855

δ4 = δ30 -0.066800477898797011598 δ13 = δ21 0.71608567578450563608

δ5 = δ29 -0.62641308958799555593 δ14 = δ20 -0.80016730247310573512

δ6 = δ28 0.23682621087528762872 δ15 = δ19 0.23778185292256770747

δ7 = δ27 -0.42221063403170054210 δ16 = δ18 -0.32330301550863943389

δ8 = δ26 0.24222942201040859249 δ17 0.95529818470370207691

δ9 = δ25 0.047374515478601436594

s33odr10b

c1 0.12282427644721572094 c9 0.45769021135686462033

c2 0.89927108535418012436 c10 0.90032429949679707981

c3 1.0480862308915230991 c11 0.080970924700860105168

c4 0.87569497135646242666 c12 0.21542566611838894562

c5 0.32823501353793778878 c13 0.85986805780855541100

c6 0.47336433681100706358 c14 0.14056656410653928542

c7 0.15771878527986245795 c15 0.35093558908002593152

c8 0.27858743617820117774 c16 0.081853639664320768579

δ1 = δ33 0.12282427644721572094 δ10 = δ24 0.44263408813993245949

δ2 = δ32 0.77644680890696440342 δ11 = δ23 -0.81935337479593697464

δ3 = δ31 0.14881514553734297479 δ12 = δ22 0.13445474141752884045

δ4 = δ30 -0.17239125953506067249 δ13 = δ21 0.64444239169016646538

δ5 = δ29 -0.54745995781852463787 δ14 = δ20 -0.71930149370201612557

δ6 = δ28 0.14512932327306927479 δ15 = δ19 0.21036902497348664610

δ7 = δ27 -0.31564555153114460562 δ16 = δ18 -0.26908194941570516294

δ8 = δ26 0.12086865089833871979 δ17 0.83629272067135846284

δ9 = δ25 0.17910277517866344258
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s33odr10c

c1 0.12313526870982994083 c9 0.45728247090890761976

c2 0.89958508567920304603 c10 0.90046791756319334905

c3 1.0486399864748735022 c11 0.080978911880202504863

c4 0.87613237428093605795 c12 0.21480436926509833506

c5 0.32741996609293427854 c13 0.85989460450920438526

c6 0.47031762031135269954 c14 0.14053123280998377807

c7 0.15612568767148407956 c15 0.35004505094462027488

c8 0.28283512506709448979 c16 0.081763919538259755223

δ1 = δ33 0.12313526870982994083 δ10 = δ24 0.44318544665428572929

δ2 = δ32 0.77644981696937310520 δ11 = δ23 -0.81948900568299084419

δ3 = δ31 0.14905490079567045613 δ12 = δ22 0.13382545738489583020

δ4 = δ30 -0.17250761219393744420 δ13 = δ21 0.64509023524410605020

δ5 = δ29 -0.54871240818800177942 δ14 = δ20 -0.71936337169922060719

δ6 = δ28 0.14289765421841842100 δ15 = δ19 -0.71936337169922060719

δ7 = δ27 -0.31419193263986861997 δ16 = δ18 -0.26828113140636051966

δ8 = δ26 0.12670943739561041022 δ17 0.83647216092348048955

δ9 = δ25 0.17444734584181312998
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