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ANALYSIS OF A CELL–VERTEX FINITE VOLUME METHOD

FOR CONVECTION–DIFFUSION PROBLEMS

K. W. MORTON, MARTIN STYNES, AND ENDRE SÜLI

Abstract. A cell-vertex finite volume approximation of elliptic convection-
dominated diffusion equations is considered in two dimensions. The scheme is
shown to be stable and second-order convergent in a mesh-dependent L2-norm.

1. Introduction

A finite volume formulation is the preferred technique for discretising systems
of partial differential equations where conservation is the most important property
to be modelled, compressible gas dynamics being the prime example–see Jameson
[3] and a large subsequent literature. Of the various formulations that are possible,
the cell-vertex scheme is often advocated for its compactness and its accuracy for
first-order equations on distorted meshes (see Morton and Paisley [8] and Süli [17]);
moreover, Morton et al. [6] and Crumpton et al. [2] have also demonstrated the
effectiveness of the cell-vertex scheme for the compressible Navier-Stokes equations
(see also Mackenzie and Morton [7]). Numerous practical computations have, in-
deed, shown this discretisation to be of very general utility, with recent extensions to
unstructured three-dimensional meshes on general domains, and applicable to the
very high aspect ratio meshes encountered with high Reynolds number, turbulent
flows.

However, the resulting system of discrete equations is difficult to solve and its
accuracy is hard to analyse. Some of these issues can be studied with simple
model problems on rectangular meshes. In the earlier form of the method, for
purely hyperbolic problems, when it was referred to as the finite difference box
scheme of Thomas [18], Preissmann [13], Wendroff [19], Keller [4] and others, the
equations were always solved by marching in a special coordinate direction. This
is not possible with the equations for steady inviscid transonic flow and various
alternatives have been developed, based on the work of Ni [11]; marching techniques
are even less appropriate when second-order viscous terms are present, but Ni’s
techniques are still effective (see [2] and [7]). The present paper is one in a series
devoted to the analysis of the resulting cell-vertex finite volume schemes.

Scalar convection-dominated diffusion problems, with general convective velocity
fields, show both the remarkable approximation properties of cell-vertex methods
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and highlight the challenge posed by their analysis. Mackenzie and Morton [7]
presented a two-dimensional cell-vertex finite volume scheme which reduces to a
non-standard twelve-point difference scheme on a uniform rectangular mesh; they
demonstrated its accuracy in some well-known model problems and analysed its
one-dimensional analogue. Morton and Stynes [9] adopted an alternative approach
to the one-dimensional problem and analysed the case of pure convection in two
dimensions, making use of the techniques of Süli [15], [16], [17]. The present paper
is developed from this approach. The key ideas in the analysis are, firstly, to treat
the finite volume scheme as a Petrov-Galerkin finite element method with a trial
space Uh consisting of continuous piecewise bilinear functions, a test space Mh

of piecewise constant functions, and an associated discrete bilinear form Bh(·, ·);
secondly, a mapping E from Uh to Mh is constructed such that Bh(v, Ev) ≥ C‖v‖2
for all v in Uh, where C is a fixed positive constant and ‖·‖ is a suitable norm on Uh,
so that Bh is coercive over Uh ×Mh. The bulk of the effort is in the construction
of this mapping.

We consider the model convection-diffusion problem

∇ · (−ε∇u+ ~au) = f on Ω,(1.1)

u = 0 on ∂Ω,(1.2)

where Ω = (0, 1)× (0, 1) ⊂ R2, ε is a small positive parameter, and ~a = (a1, a2) is
a variable convective velocity, ~a ∈ (C1(Ω̄))2. We assume that there exist positive
constants α1 and α2 such that ai ≥ αi on Ω̄, i = 1, 2, and that f ∈ L2(Ω).

The well-posedness of this problem can be demonstrated by multiplying (1.2) by
gu, where g is a bounded non-negative weight-function constructed so that

−ε∇2g − ~a · ∇g + (∇ · ~a)g > 0 in Ω.

Our stability analysis of the cell-vertex finite volume approximation of (1.1), (1.2)
makes use of a similar construction, and also requires that the discretisation takes
particular forms at inflow and outflow boundaries. To clarify these points we have
assumed that both components of ~a are strictly positive; then the construction of g
is simplified and the inflow boundaries for the reduced problem (corresponding to
ε = 0) are at x = 0 and y = 0, with the outflow boundaries at x = 1 and y = 1. In
any case, the presence of the zero Dirichlet boundary condition along the outflow
boundary of the reduced problem implies that, for ε � 1, the analytical solution
contains a thin boundary layer in the neighbourhood of this part of ∂Ω.

Wide-ranging comparisons of finite difference, finite element and finite volume
methods for this problem are given in [5] and [14]. It is shown in [5] that the
distinctive feature of the cell-vertex scheme for convection-diffusion problems is its
uniform effectiveness as ε tends to 0, without the use of any adjustable parame-
ters; indeed, as highlighted below, this is also a distinctive feature of the stability
analysis. On the other hand, a dominant difficulty arises from the presence of the
spurious chequer-board mode, which of course does not appear in one-dimensional
problems. In nearly all other methods that suffer from chequer-board oscillations,
the spurious mode is damped out by the diffusion term approximation, but not in
the cell-vertex scheme where the diffusion term is transparent to the chequer-board
mode: in practical computations with the cell-vertex scheme chequer-board oscilla-
tions are controlled by a fourth-order artificial dissipation term. However, since the
inclusion of such a term complicates the analysis even further, in the present paper
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we make an assumption on the convective velocity which reduces the generation of
the chequer-board mode and so simplifies the argument.

In Section 2 we state the cell-vertex approximation of the convection-diffusion
equation (1.1) using the terminology of Petrov-Galerkin finite element methods.
In Section 3 we prove that the cell-vertex scheme is stable in a mesh-dependent
L2-norm, uniformly as ε tends to zero. In doing so, we introduce the technical
assumption on the velocity field ~a (see (3.1)) which takes the form of a discrete
analogue of ∂ya1 + ∂xa2 = 0. A general class of vector functions ~a satisfying
condition (3.1) is given by

~a(x, y) = (a1(x, y), a2(x, y)),

with

a1(x, y) = A1(x) +By, a2(x, y) = A2(y)−Bx,

where A1 and A2 are arbitrary functions of x and y, respectively, and B is a real
constant. This gives quite a large class of velocity fields which the analysis can
handle. However, we believe that condition (3.1) could be overcome by either a
slight change in the scheme or a more sophisticated analysis: indeed, in the case of
variable-coefficient linear advection, corresponding to ε = 0, the analysis of Balland
and Süli [1] establishes the stability of the cell-vertex scheme in the absence of
hypothesis (3.1). Unfortunately, the argument in [1] is difficult to extend to the
case of ε > 0.

The stability of the scheme is a straightforward consequence of the discrete
G̊arding inequality stated in Theorem 3.5. Second-order convergence in a mesh-
dependent L2-norm is then deduced from a superconvergence result of Balland and
Süli (see Proposition 3.1 in [1]); the resulting error estimate is stated in Theorem
3.7.

Throughout the paper, C (sometimes subscripted) will denote a generic positive
constant, independent of ε and of the mesh-size, and may take different values at
different occurrences. We denote by ‖ · ‖Hs(Ω) and | · |Hs(Ω) the norm and the semi-
norm of the hilbertian Sobolev space Hs(Ω) of index s, and by ‖ · ‖Lp(Ω) the norm
of the Lebesgue space Lp(Ω), for 1 ≤ p ≤ ∞.

2. The cell-vertex discretisation

Consider the uniform square mesh

{(xi, yj) : xi = ih, yj = jh; i, j = 0, ..., N}
of step-size h = 1/N , where N is an integer, N ≥ 3.

The approximate solution U will be assumed to be continuous and piecewise
bilinear on Ω̄, that is, bilinear on each cell

Kij ≡ (xi−1, xi)× (yj−1, yj).

Following the usual route, we construct the cell-vertex finite volume approximation
of problem (1.1), (1.2) by integrating (1.1) over each cell (except for those cells that
lie adjacent to the part of the boundary of Ω which is the outflow boundary for
the reduced problem corresponding to ε = 0) and using Gauss’ Theorem to convert
integrals over cells into integrals over cell boundaries; we note that the outflow
boundary for the reduced problem is

{(x, y) ∈ ∂Ω : ~a(x, y) · ~n(x, y) > 0},
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where ~n(x, y) denotes the unit outward normal to ∂Ω at (x, y) ∈ ∂Ω. An approxi-
mation of the contour integrals is needed to proceed further: we use the trapezium
rule to evaluate integrals of (~au − ε∇u), and approximate ∇u by finite differences
of u. Motivated by this approximate equality satisfied by the exact solution, we
define the cell-vertex approximation of u as a continuous piecewise bilinear function
U that satisfies the same relation as u but with approximate equality replaced by
the equality sign. The equations resulting from this construction are supplemented
with a zero Dirichlet boundary condition.

In order to give a precise definition of the cell-vertex finite volume scheme, we
shall employ the terminology of Petrov-Galerkin finite element methods. Thus,
we let Uh denote, for a mesh of size h, the linear space of all continuous piecewise
bilinear functions that vanish on ∂Ω, and letMh denote the linear space of piecewise
constant functions on the mesh which vanish on those Kij for which i = N or j = N .
Let Ih : (H1

0 (Ω) ∩C(Ω̄))2 → (Uh)2 be the interpolation projector onto (Uh)2. The
desired discretisation of the convection term is obtained by defining the bilinear
form Bc : Uh ×Mh → R by

Bc(w, p) = (∇ · Ih(~aw), p),(2.1)

where (·, ·) is the inner product in L2(Ω). It is easy to see that the use of this
bilinear form is equivalent to applying Gauss’ Theorem followed by the use of the
trapezium rule. Indeed, for v ∈ C(Ω̄) let vij denote v(xi, yj), and for q ∈ Mh let
qij denote the value of q on Kij; then, by choosing p in (2.1) as the characteristic
function χij of the cell Kij , we have that

Bc(w, χ
ij) =

h

2
[(a1w)ij + (a1w)i,j−1 − (a1w)i−1,j − (a1w)i−1,j−1]

+
h

2
[(a2w)ij + (a2w)i−1,j − (a2w)i,j−1 − (a2w)i−1,j−1]

= hµyδx(a1w)ij + hµxδy(a2w)ij ,(2.2)

where we have employed the finite difference operators

δxvij = vij − vi−1,j , δyvij = vij − vi,j−1,

µxvij = (vij + vi−1,j)/2, µyvij = (vij + vi,j−1)/2.

We use the methods of Mackenzie and Morton [7] to discretise the diffusion term
in (1.1), together with a simple second-order boundary condition on the inflow
boundary. For this purpose we consider the bilinear form Bd : Uh ×Mh → R
defined by

Bd(w, p) = −ε
N−1∑
i=1

N−1∑
j=1

hpij [µ̂y(wx)ij − µ̂y(wx)i−1,j + µ̂x(wy)ij − µ̂x(wy)i,j−1],

(2.3)

where, for j = 1, . . . , N − 1, we set

µ̂y(wx)ij =

{
h−1(µxµywi+1,j − µxµywij), if i = 1, . . . , N − 1,
h−1(2µyw1j − 1

2µyw2j), if i = 0,
(2.4)

with µ̂x(wy)ij defined analogously.
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Now the cell-vertex finite volume approximation of (1.1), (1.2) is defined as
follows: find U ∈ Uh such that

Bh(U, p) ≡ Bd(U, p) +Bc(U, p) = (f, p) ∀p ∈ Mh.(2.5)

This is a system of (N − 1)2 linear equations in the (N − 1)2 unknowns Uij , the
nodal values of the continuous piecewise bilinear function U ∈ Uh, where i, j =
1, . . . , N − 1. In the next section we show that Bh is coercive over Uh ×Mh, and
therefore U is well-defined.

3. Stability and convergence

The crucial step in the analysis of the cell-vertex scheme is to prove stability via
a discrete G̊arding inequality that guarantees coercivity in a generalised sense. Let
P h : L2(Ω) → Mh be the orthogonal projector onto Mh. It is easily seen that
(P hw)ij = µxµywij for any w in Uh. We shall consider

Bh(w,GP hw + λP h∇ · Ih(~aw)),

where G and λ are suitable elements in Mh chosen so as to achieve the desired
coercivity. We analyse this expression in the following four lemmas.

Let Ωh = (0, xN−1) × (0, yN−1). Then, as in Süli [15], [16], [17], Morton and
Süli [10], and Morton and Stynes [9], we define the l2(Ωh)-seminorm |v|l2(Ωh) of a
locally integrable function v by

|v|l2(Ωh) =

 ∑
Kij⊂Ωh

h2

∣∣∣∣ 1

h2

∫
Kij

v dx dy

∣∣∣∣2


1/2

.

We note that this seminorm is a norm on the linear space Uh.

Lemma 3.1. Assume that there exist positive constants α1 and α2 such that ai ≥
αi, i = 1, 2, and that

µxδy(a1)ij + δxµy(a2)ij = 0(3.1)

for all i and j. There exist G ∈ Mh and positive constants Ci, i = 1, 2, 3, 4, such
that C1 ≥ Gij ≥ C2, G

ij −Gi+1,j ≥ C3h and Gij −Gi,j+1 ≥ C4h for all i and j,
and

Bc(w,GP
hw) ≥ 2C2|w|2l2(Ωh) +

N−1∑
j=1

h(
1

8
α1G

N−1,j − C2h)(µywN−1,j)
2

+

N−1∑
i=1

h(
1

8
α2G

i,N−1 − C2h)(µxwi,N−1)
2,

for all w ∈ Uh and for all h ≤ h0(~a), where h0(~a) depends only on ‖~a‖C2(Ω).

Proof. From (2.2) and the definition of Mh we have that

Bc(w,GP
hw) =

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)[µyδx(a1w)ij + µxδy(a2w)ij ].(3.2)
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Using the elementary identities

δx(bc) = (µxb)(δxc) + (δxb)(µxc),

µx(bc) = (µxb)(µxc) +
1

4
(δxb)(δxc)

and their δx, µy analogues, we can rewrite (3.2) as

Bc(w,GP
hw) =

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)
2[δxµy(a1)ij + µxδy(a2)ij ]

+
1

4

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)(δxδywij)[µxδy(a1)ij + δxµy(a2)ij ]

+

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)(δxµywij)[µxµy(a1)ij +
1

4
δxδy(a2)ij ]

+

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)(µxδywij)[
1

4
δxδy(a1)ij + µxµy(a2)ij ]

≡ S1 + S2 + S3 + S4.(3.3)

We define

G(x, y) = e−(κ1xi−1+κ2yj−1), for (x, y) ∈ Kij ,

where κl, l = 1, 2, are positive constants which will be chosen appropriately in the
course of the proof.

First we bound S1 from below. Observing that

(µxµywij)
2 ≤ 1

2
[(µxwij)

2 + (µxwi,j−1)
2],(3.4)

it follows that

S1 ≥ −1

2

N−1∑
i=1

N−1∑
j=1

h2Gij(µxwij)
2|Aij |

−1

2

N−1∑
i=1

N−2∑
j=1

h2Gi,j+1(µxwij)
2|Ai,j+1|,(3.5)

with a similar bound in terms of (µywij)
2, where

Aij =
1

h
(δxµy(a1)ij + µxδy(a2)ij).(3.6)

Noting that Gij ≥ Gi,j+1 and separating out the term with j = N − 1 from the
first double summation,

S1 ≥ −1

2

N−1∑
i=1

N−2∑
j=1

h2Gij(µxwij)
2(|Aij |+ |Ai,j+1|)(3.7)

−1

2

N−1∑
i=1

h2Gi,N−1(µxwi,N−1)
2|Ai,N−1|.(3.8)
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Now (µxbij)(δxbij) = (1/2)δxb
2
ij ; we use this identity and sum by parts to get

S3 =
1

2

N−2∑
i=1

N−1∑
j=1

(µywij)
2(GijBij −Gi+1,jBi+1,j)

+
1

2

N−1∑
j=1

(µywN−1,j)
2GN−1,jBN−1,j ,(3.9)

where

Bij = h(µxµy(a1)ij +
1

4
δxδy(a2)ij).

Let us write

GijBij −Gi+1,jBi+1,j = (Gij −Gi+1,j)Bi+1,j +Gij(Bij −Bi+1,j).

Recalling the definition of Gij , it follows that

Gij −Gi+1,j ≥ 1

2
κ1hG

ij ,

provided h ≤ 1/κ1. In addition, since a1, a2 ∈ C1(Ω̄),

Bij = h(a1)ij +O(h2) = h(a1)i−1,j +O(h2).

Thus, for 0 < h ≤ h0, where h0 = h0(~a), we have

Bij ≥ 1

2
hα1.

Similarly, for 0 < h ≤ h0, where h0 = h0(~a) (with a possible adjustment of the
previous h0),

|Bij −Bi+1,j | ≤ 2h2‖∇~a‖L∞(Ω).

Consequently,

GijBij −Gi+1,jBi+1,j ≥ h2Gij

(
1

4
κ1α1 − 2‖∇~a‖L∞(Ω)

)
.

Returning to S3, we deduce that

S3 ≥ 1

2

N−2∑
i=1

N−1∑
j=1

h2Gij(µywij)
2

(
1

4
κ1α1 − 2‖∇~a‖L∞(Ω)

)

+
1

4

N−1∑
j=1

hGN−1,j(µywN−1,j)
2α1.

Analogously,

S4 ≥ 1

2

N−1∑
i=1

N−2∑
j=1

h2Gij(µxwij)
2

(
1

4
κ2α2 − 2‖∇~a‖L∞(Ω)

)

+
1

4

N−1∑
i=1

hGi,N−1(µxwi,N−1)
2α2.
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Now combining the lower bounds for S1 and S4 we obtain

1

2
S1 + S4 ≥

N−1∑
i=1

N−2∑
j=1

h2Gij(µxwij)
2

(
1

8
κ2α2 − ‖∇~a‖L∞(Ω) − 1

4
|Aij +Ai,j+1|

)

+
1

4

N−1∑
i=1

hGi,N−1(µxwi,N−1)
2 (α2 − h|Ai,N−1|) .

Noting that |Ai,j(±1)| ≤ 2‖∇~a‖L∞(Ω) for 0 < h ≤ h0, where h0 = h0(~a) (with a
possible adjustment of the previous h0), it follows that

α2 − h|Ai,N−1| ≥ 1

2
α2.

Choosing κ2 such that

κ2 ≥ 8

α2

(
1 + 2‖∇~a‖L∞(Ω)

)
,

it follows that for 0 < h ≤ h0, where h0 depends only on ~a,

1

2
S1 + S4 ≥

N−1∑
i=1

N−2∑
j=1

h2Gij(µxwij)
2 +

1

8
α2

N−1∑
i=1

hGi,N−1(µxwi,N−1)
2.

Similarly, choosing κ1 such that

κ1 ≥ 8

α1

(
1 + 2‖∇~a‖L∞(Ω)

)
and using the alternative bound for S1, we have that

1

2
S1 + S3 ≥

N−2∑
i=1

N−1∑
j=1

h2Gij(µywij)
2 +

1

8
α1

N−1∑
j=1

hGN−1,j(µywN−1,j)
2.

Finally,

S1 + S3 + S4 ≥
N−2∑
i=1

N−1∑
j=1

h2Gij(µywij)
2 +

N−1∑
i=1

N−2∑
j=1

h2Gij(µxwij)
2

+
1

8
α1

N−1∑
j=1

hGN−1,j(µywN−1,j)
2 +

1

8
α2

N−1∑
i=1

hGi,N−1(µxwi,N−1)
2,

provided h ≤ h0(~a), and κi, i = 1, 2, are chosen as indicated above. Inserting this
lower bound into (3.3) and recalling that due to (3.1) the term S2 = 0, we deduce
that

Bc(w,GP
hw) ≥ C2

N−2∑
i=1

N−1∑
j=1

h2(µywij)
2 +

N−1∑
i=1

N−2∑
j=1

h2(µxwij)
2


+

1

8

α1

N−1∑
j=1

hGN−1,j(µywN−1,j)
2 + α2

N−1∑
i=1

hGi,N−1(µxwi,N−1)
2

(3.10)
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for all w ∈ Uh and for all h ≤ h0(~a). To complete the proof of the lemma we bound
from below the right-hand side of this inequality in terms of ‖w‖l2(Ωh). This is
easily accomplished by defining

µwij =
1

h2

∫
Kij

w dxdy,

and noting that, for w ∈ Uh,

‖w‖2l2(Ωh) =

N−1∑
i=1

N−1∑
j=1

h2(µwij)
2,

µwij =
1

2
(µxwij + µxwi,j−1),

and

µwij =
1

2
(µywij + µywi−1,j).

Since

(µwij)
2 ≤ 1

2
(µxwij)

2 +
1

2
(µxwi,j−1)

2,

and w = 0 on ∂Ω, it follows that

C2

N−1∑
i=1

N−1∑
j=1

h2|µwij |2 ≤ C2

N−1∑
i=1

N−2∑
j=1

h2(µxwij)
2 + C2h

N−1∑
i=1

h(µxwi,N−1)
2.

Similarly,

C2

N−1∑
i=1

N−1∑
j=1

h2|µwij |2 ≤ C2

N−2∑
i=1

N−1∑
j=1

h2(µywij)
2 + C2h

N−1∑
j=1

h(µywN−1,j)
2.

Substituting the sum of these two inequalities into (3.10), we deduce the desired
coercivity of the bilinear form Bc(·, ·) for all w ∈ Uh and for all h ≤ h0(~a).

We note that condition (3.1) was necessary in order to remove the term S2 that
contained the second-difference δxδy; this term cannot be absorbed into any of the
positive terms in the lower bound on Bc(w,GP

hw).

Lemma 3.2. For all w ∈ Uh and all λ ∈Mh, λ ≥ 0,

Bc(w, λP
h∇ · Ih(~aw)) = |λ1/2∇ · Ih(~aw)|2l2(Ωh).

Proof. This is immediate from (2.1).

Lemma 3.3. Assume that there exist positive constants C2 and C5 such that Gij ≥
C2, |Gij − Gi−1,j | ≤ C5h, and |Gij − Gi,j−1| ≤ C5h for all i and j. Then there
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exist positive constants C6 = C6(C2, C5) and h1 = h1(C2, C5), such that

Bd(w,GP
hw) ≥ 1

8
C2ε

 N∑
i=1

N−1∑
j=1

h2(µ̂y(wx)i−1,j)
2

+

N−1∑
i=1

N∑
j=1

h2(µ̂x(wy)i,j−1)
2

− C6ε|w|2l2(Ωh)

− ε

8h

N−1∑
i=1

hGi,N−1|µxwi,N−1|2 +

N−1∑
j=1

hGN−1,j |µywN−1,i|2


for all w ∈ Uh and all h ≤ h1.

Proof. We give details only for the µ̂y terms, postponing the analogous contribution
from the µ̂x terms of (2.3) until later in the proof. Thus we write, for any w ∈ Uh,

Bd(w,GP
hw) = −ε

N−1∑
i=1

N−1∑
j=1

hGij(µxµywij)[µ̂y(wx)ij − µ̂y(wx)i−1,j ] + (wy terms)

= ε

N−1∑
j=1

h

{
N−1∑
i=2

µ̂y(wx)i−1,j [G
ijµxµywij −Gi−1,jµxµywi−1,j ](3.11)

−µ̂y(wx)N−1,jG
N−1,jµxµywN−1,j + µ̂y(wx)0,jG

1,jµxµyw1,j

}
+ (wy terms).

Now for 1 ≤ i ≤ N we have that

Gijµxµywij −Gi−1,jµxµywi−1,j = hGij µ̂y(wx)i−1,j + (Gij −Gi−1,j)µxµywi−1,j .

Therefore, using |Gij−Gi−1,j | ≤ C5h together with the arithmetic-geometric mean
inequality, we get

µ̂y(wx)i−1,j(G
ijµxµywij −Gi−1,jµxµywi−1,j)

≥ h
[
Gij(µ̂y(wx)i−1,j)

2 − C5|µ̂y(wx)i−1,j µxµywi−1,j |
]

≥ 1

2
h
[
Gij(µ̂y(wx)i−1,j)

2 − C2
5 (Gij)−1(µxµywi−1,j)

2
]
.(3.12)

On the other hand,

−µ̂y(wx)N−1,j µxµywN−1,j = h(µ̂y(wx)N−1,j)
2 − µ̂y(wx)N−1,j µxµywN,j

≥ h

2
(µ̂y(wx)N−1,j)

2 − 1

8h
(µywN−1,j)

2,

and therefore

−µ̂y(wx)N−1,jG
N−1,j µxµywN−1,j ≥ h

2
GN−1,j(µ̂y(wx)N−1,j)

2

− 1

8h
GN−1,j(µywN−1,j)

2.(3.13)
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Analogously, since µ̂y(wx)0,j + µ̂y(wx)1,j = (4/h)µxµyw1,j , it follows that

µ̂y(wx)0,j µxµyw1,j =
h

4
(µ̂y(wx)0,j)

2 +
h

4
µ̂y(wx)0,j µ̂y(wx)1,j

≥ h

8
(µ̂y(wx)0,j)

2 − h

8
(µ̂y(wx)1,j)

2,(3.14)

and therefore

µ̂y(wx)0,jG
1,j µxµyw1,j ≥ h

8
G1,j(µ̂y(wx)0,j)

2 − h

8
G1,j(µ̂y(wx)1,j)

2.(3.15)

Substituting (3.12)–(3.15) into (3.11), absorbing the last term of (3.15) into the
corresponding term of (3.12), and noting that Gij ≥ C2, we deduce that

Bd(w,GP
hw) ≥ 1

8
C2ε


N−1∑
j=1

N∑
i=1

h2|µ̂y(wx)i−1,j |2 +

N−1∑
i=1

N∑
j=1

h2|µ̂x(wy)i,j−1|2


−1

2
C6ε


N−1∑
j=1

N−1∑
i=2

h2|µxµywi−1,j |2 +

N−1∑
i=1

N−1∑
j=2

h2|µxµywi,j−1|2


− ε

8h


N−1∑
i=1

hGi,N−1|µxwi,N−1|2 +

N−1∑
j=1

hGN−1,j|µywN−1,j |2


with C6 = C2
5/C2, where we have assumed that h is sufficiently small, namely

h ≤ h1(C2, C5). Recalling the definition of |·|l2(Ωh), we obtain the desired result.

We note that with Gij = e−(κ1xi−1+κ2yj−1) and κ1 and κ2 chosen as in the proof
of Lemma 3.1 all hypotheses on G in Lemma 3.3 are satisfied.

Lemma 3.4. For all w ∈ Uh and all λ ∈Mh, λ ≥ 0,

|Bd(w, λP
h∇ · Ih(~aw))| ≤ (ε/

√
2)[

N∑
i=1

N−1∑
j=1

h(λi−1,j + λij)(µ̂y(wx)i−1,j)
2

+
N−1∑
i=1

N∑
j=1

h(λi,j−1 + λij)(µ̂x(wy)i,j−1)
2 + 2

N−1∑
i=1

N−1∑
j=1

hλij((P h∇ · Ih(~aw))ij)2],

where we set λ0j = λi0 = 0.
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Proof. As in the proof of Lemma 3.3, we write out the details only for the µ̂y terms.
The Cauchy-Schwarz inequality gives

|Bd(w, λP
h∇ · Ih(~aw))|

≤ ε

N−1∑
i=1

N−1∑
j=1

λijh|(P h∇ · Ih(~aw))ij |

×|µ̂y(wx)ij − µ̂y(wx)i−1,j |+ (wy terms)

≤ ε{
N−1∑
i=1

N−1∑
j=1

λijh[µ̂y(wx)ij − µ̂y(wx)i−1,j ]
2}1/2

×{
N−1∑
i=1

N−1∑
j=1

λijh((P h∇ · Ih(~aw))ij)2}1/2 + (wy terms)

≤ (ε/
√

2)

N−1∑
i=1

N−1∑
j=1

λijh[(µ̂y(wx)ij)
2 + (µ̂y(wx)i−1,j)

2]

+(ε/
√

2)

N−1∑
i=1

N−1∑
j=1

λijh((P h∇ · Ih(~aw))ij)2 + (wy terms)

= (ε/
√

2)

N∑
i=1

N−1∑
j=1

h(λi−1,j + λij)(µ̂y(wx)i−1,j)
2

+(ε/
√

2)
N−1∑
i=1

N−1∑
j=1

λijh((P h∇ · Ih(~aw))ij)2 + (wy terms).

Including the wy terms, we obtain the desired result.

We now combine these four lemmas to reach our coercivity bound.

Theorem 3.5. Assume that there exist positive constants α1 and α2 such that
ai ≥ αi, i = 1, 2, and that

µxδy(a1)ij + δxµy(a2)ij = 0

for all i and j. Choose G ∈Mh such that C1 ≥ Gij ≥ C2 > 0, Gij −Gi+1,j ≥ C3h,
Gij −Gi,j+1 ≥ C4h, |Gij −Gi−1,j | ≤ C5h and |Gij −Gi,j−1| ≤ C5h for all i and j.
Let λ ∈ Mh be defined as follows:

λij =

{ C2

8
√

2
h, if h ≥ 2

√
2ε,

0, otherwise,

with the convention that λ0j = λi0 = 0.
Then, for all h ≤ min (h0(~a), h1(C2, C5)) and all ε such that

αih

ε
≥
(

1− 8h

αi

)−1

, i = 1, 2,(3.16)

we have that

Bh(w,GP hw + λP h∇ · Ih(~aw)) ≥ C2|w|2l2(Ωh) +
1

2
|λ1/2∇ · Ih(~aw)|2l2(Ωh)(3.17)

for all w ∈ Uh. Here h0(~a) and h1(C2, C5) are as in Lemmas 3.1 and 3.3, respec-
tively.
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We note that a function G satisfying the conditions of Theorem 3.5 has been
constructed in Lemma 3.1. The hypothesis (3.16) requires the mesh Péclet number
to be greater than or equal to 1 + Ch; this condition is automatically satisfied for
the convection-dominated diffusion equations considered here.

Proof. Adding the results of the previous lemmas, we obtain

Bh(w,GP hw + λP h∇ · Ih(~aw))

≥ (2C2 − C6ε)|w|2l2(Ωh) + |λ1/2∇ · Ih(~aw)|2l2(Ωh)

− 2ε√
2

N−1∑
i=1

N−1∑
j=1

hλij((P h∇ · Ih(~aw))ij)2

+ε

N∑
i=1

N−1∑
j=1

h[
1

8
hC2 − 1√

2
(λi−1,j + λij)](µ̂y(wx)i−1,j)

2

+ε

N−1∑
i=1

N∑
j=1

h[
1

8
hC2 − 1√

2
(λi,j−1 + λij)](µ̂x(wy)i,j−1)

2

+

N−1∑
j=1

h

(
1

8
(α1 − ε

h
)GN−1,j − C2h

)
(µywN−1,j)

2

+
N−1∑
i=1

h

(
1

8
(α2 − ε

h
)Gi,N−1 − C2h

)
(µxwi,N−1)

2.(3.18)

Recalling our assumed lower bound on αih/ε, it follows that the last two sums are
non-negative. In order to deal with the remaining terms, we need ε so small that
2C2 − C6ε ≥ C2 > 0; since C6 = C2

5/C2, this can be achieved by supposing that
ε ≤ (C2/C5)

2. Next, we claim that

2ε√
2
hλij ≤ 1

2
h2λij

for each i and j. For if λij = 0, the inequality is trivial. If λij 6= 0, then ε ≤ h/(2
√

2)
by hypothesis, as required.

Finally,

1√
2
(λi−1,j + λij) ≤ 1

8
C2h,

and similarly,

1√
2
(λi,j−1 + λij) ≤ 1

8
C2h.

Using the above inequalities in (3.18), the result follows.

We can now derive a bound on u− U .
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Theorem 3.6. Suppose that the hypotheses of Theorem 3.5 hold. Then, for all
sufficiently small ε and h, such as in (3.16),

|u− U |l2(Ωh) + |λ1/2∇ · Ih(~a(u− U))|l2(Ωh)

≤ Cε[

N−1∑
i=1

N−1∑
j=1

h2{ 1

h
[µ̂y(u

I
x)ij −

1

h

∫ yj

yj−1

ux(xi, y) dy

−µ̂y(uIx)i−1,j +
1

h

∫ yj

yj−1

ux(xi−1, y) dy]

+
1

h
[µ̂x(u

I
y)ij −

1

h

∫ xi

xi−1

uy(x, yj) dx

−µ̂x(uIy)i,j−1 +
1

h

∫ xi

xi−1

uy(x, yj−1) dx]}2]1/2

+C|∇ · (Ih(~au)− ~au)|l2(Ωh) + |u− uI |l2(Ωh),

where uI is the interpolant of u from Uh.

Proof. For brevity, set

θ = GPh(uI − U) + λP h∇ · Ih(~a(uI − U))

and

χij =
1

h
[µ̂y(u

I
x)ij −

1

h

∫ yj

yj−1

ux(xi, y) dy − µ̂y(u
I
x)i−1,j +

1

h

∫ yj

yj−1

ux(xi−1, y) dy]

+
1

h
[µ̂x(u

I
y)ij −

1

h

∫ xi

xi−1

uy(x, yj) dx− µ̂x(u
I
y)i,j−1 +

1

h

∫ xi

xi−1

uy(x, yj−1) dx].

From Theorem 3.5 we have that

|uI − U |2l2(Ωh) + |λ1/2∇ · Ih(~a(uI − U))|2l2(Ωh)

≤ CBh(uI − U, θ) = CBh(uI , θ)− C(f, θ)

= CBh(uI , θ)− C(∇ · (−ε∇u+ ~au), θ)

= −Cε
N−1∑
i=1

N−1∑
j=1

h2θijχij + C(∇ · Ih(~auI)−∇ · (~au), θ)

≤ C|θ|l2(Ωh){ε[
N−1∑
i=1

N−1∑
j=1

h2|χij |2]1/2 + |∇ · (Ih(~auI)− ~au)|l2(Ωh)}.

Noting that Ih(~auI) = Ih(~au), we deduce that

|uI − U |l2(Ωh) + |λ1/2∇ · Ih(~a(u − U))|l2(Ωh)

≤ Cε[

N−1∑
i=1

N−1∑
j=1

h2|χij |2]1/2 + C|∇ · (Ih(~au)− ~au)|l2(Ωh).

We combine this with the triangle inequality

|u− U |l2(Ωh) ≤ |u− uI |l2(Ωh) + |uI − U |l2(Ωh)

and recall the definition of χij to complete the argument.

Hence we easily obtain our final bound on the global error.
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Theorem 3.7. Let the hypotheses of Theorem 3.5 hold. Suppose, further, that
u ∈ Hs(Ω) ∩ H1

0 (Ω), s > 2, and assume that the entries of ~a belong to C〈s〉(Ω̄),
where 〈s〉 denotes the smallest integer greater than or equal to s. Let λ be as in
Theorem 3.5.

There exist positive constants K1, K2 and K3 such that

|u− U |l2(Ωh) + |λ1/2∇ · Ih(~a(u− U))|l2(Ωh)

≤ K1(ε, u)hr1−1 +K2(ε, u)hr2−1 +K3(u)hr3 ,(3.19)

where

K1(ε, u) = C1ε|u|Hr1+1(Ω) + C2|u|Hr1 (Ωh), 1 ≤ r1 ≤ min(s, 3),

K2(ε, u) = C1ε
1/2‖u‖Hr2+1(Ωh), 2 < r2 ≤ min(s, 3),

K3(u) = C3|u|Hr3 (Ωh), 1 ≤ r3 ≤ 2.

The proof of this theorem relies on the following superconvergence result (see
Balland and Süli [1]).

Proposition 3.1. Given that s is a real number, s > 1, there exists a constant C,
independent of the mesh-size h, such that

‖Ph
(
∇ · ~d−∇ · (Ih ~d)

)
‖L2(Ω) ≤ Chr−1 |~d|Hr(Ω), with 1 < r ≤ min(s, 3),

for all ~d = (d1, d2) in (Hs(Ω))2.

We shall also need the following boundary layer estimate.

Proposition 3.2. Let D = (0, A) × (0, B), where A,B > 0. Suppose that r is a
positive real number, and let Dτ = (0, τ)× (0, B) with 0 < τ < A. Then

|u|Hr(Dτ ) ≤ Cτ1/2‖u‖Hr+1(D).

Proof. We shall prove the estimate for 0 ≤ r ≤ 1; for r > 1, the proof is identical.
According to a classical result (see, for example, Chapter 1, Section 4, of Oganesian
and Ruhovec [12]):

‖u‖L2(Dτ ) ≤ Cτ1/2‖u‖H1(D).(3.20)

Consequently,

|u|H1(Dτ ) ≤ Cτ1/2‖u‖H2(D).(3.21)

Combining (3.20) and (3.21) we also have that

‖u‖H1(Dτ ) ≤ Cτ1/2‖u‖H2(D).(3.22)

Now inequalities (3.20) and (3.22) imply that I : u 7→ u is a bounded linear
operator from H1(D) to L2(Dτ ) and from H2(D) to H1(Dτ ). Using the K-method
of function space interpolation it follows that I is a bounded linear operator from
Hr+1(D) to Hr(Dτ ), for 0 < r < 1, and that

‖u‖Hr(Dτ ) ≤ Cτ1/2‖u‖Hr+1(D).

Therefore also,

|u|Hr(Dτ ) ≤ Cτ1/2‖u‖Hr+1(D), 0 < r < 1.

For r = 0 and r = 1, the desired inequalities are (3.20) and (3.21), respectively.
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Proof. (of Theorem 3.7) Let us label the three terms on the right-hand side of the
inequality in Theorem 3.6 by T1, T2 and T3.

We begin by considering T1. For the sake of notational simplicity, we define, as
in the proof of Theorem 3.6,

χij =
1

h
[µ̂y(u

I
x)ij −

1

h

∫ yj

yj−1

ux(xi, y) dy − µ̂y(u
I
x)i−1,j +

1

h

∫ yj

yj−1

ux(xi−1, y) dy]

+
1

h
[µ̂x(u

I
y)ij −

1

h

∫ xi

xi−1

uy(x, yj) dx− µ̂x(u
I
y)i,j−1 +

1

h

∫ xi

xi−1

uy(x, yj−1) dx]

≡ χij(1) + χij(2), 1 ≤ i, j ≤ N − 1.

For 2 ≤ i ≤ N − 1 and 1 ≤ j ≤ N − 1, a simple application of the Bramble-Hilbert
lemma yields

|χij(1)| ≤ Ch−2hr−1|u|Hr(Tij), 2 < r ≤ min(s, 4),

where Tij = (xi−2, xi+1)× (yj−1, yj). Consequently, for 2 ≤ i ≤ N − 1 and 1 ≤ j ≤
N − 1, N−1∑

i=2

N−1∑
j=1

h2|χij(1)|2
1/2

≤ Chr−2|u|Hr(Ω), 2 < r ≤ min(s, 4).

Now let us consider the case when i = 1 and 1 ≤ j ≤ N − 1; recalling the definition
of µ̂y(u

I
x)0,j and appealing to the Bramble-Hilbert lemma, we deduce thatN−1∑
j=1

h2|χ1j
(1)|2

1/2

≤ C

N−1∑
j=1

h2 1

h4
h2t−2|u|2Ht((x0,x2)×(yj−1,yj)

1/2

≤ Cht−2|u|Ht(Ω0), 2 < t ≤ min(s, 3),

where Ω0 = (x0, x2)× (y0, yN−1). Combining these two bounds we getN−1∑
i=1

N−1∑
j=1

h2|χij(1)|2
1/2

≤ C(hr−2|u|Hr(Ω) + ht−2|u|Ht(Ω0)),

with 2 < r ≤ min(s, 4) and 2 < t ≤ min(t, 3). Exploiting the boundary layer
estimate stated in Proposition 3.1,

|u|Ht(Ω0) ≤ Ch1/2‖u‖Ht+1(Ωh).

Thus,

ε

N−1∑
i=1

N−1∑
j=1

h2|χij(1)|2
1/2

≤ Cε(hr−1|u|Hr+1(Ω) + ht−2h1/2‖u‖Ht+1(Ωh)),

with 1 < r ≤ min(s, 3), 2 < t ≤ min(s, 3). Similarly,

ε

N−1∑
i=1

N−1∑
j=1

h2|χij(2)|2
1/2

≤ Cε(hr−1|u|Hr+1(Ω) + ht−2h1/2‖u‖Ht+1(Ωh)),
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with 1 < r ≤ min(s, 3), 2 < t ≤ min(s, 3). Thus, recalling from the statement of
Theorem 3.5 that ε ≤ Ch, it follows that

T1 ≤ C1(εh
r−1|u|Hr+1(Ω) + ε1/2ht−1‖u‖Ht+1(Ωh)),

for 1 < r ≤ min(s, 3), 2 < t ≤ min(s, 3).

Term T2 is estimated using Proposition 3.1 with ~d = ~au; we obtain the bound

T2 ≤ C2h
r−1|u|Hr(Ωh), 1 < r ≤ min(s, 3).

Finally, the term T3 can be bounded using a standard interpolation error estimate
to obtain

T3 ≤ C3h
r|u|Hr(Ωh), 1 < r ≤ min(s, 2) = 2.

Combining the bounds on T1, T2 and T3 yields the desired error estimate.

4. Conclusions

In this paper we have been concerned with the stability and the convergence of
a cell-vertex finite volume method for linear elliptic convection-dominated diffusion
equations in the plane. Using a combination of techniques from the theory of
finite difference and finite element methods we proved that the scheme is stable,
uniformly as the diffusion coefficient tends to zero, and second-order convergent. In
addition to the error bound in the mesh-dependent l2-norm, Theorem 3.7 implies
that, provided u ∈ H4(Ω)∩H1

0 (Ω), the derivative of the global error in the stream-

wise direction is O(h3/2), as long as h ≥ 2
√

2ε. The results presented here may be
extended to tensor-product non-uniform meshes.
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