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OPTIMAL INFORMATION FOR APPROXIMATING

PERIODIC ANALYTIC FUNCTIONS

K. YU. OSIPENKO AND K. WILDEROTTER

Abstract. Let Sβ := {z ∈ C : | Im z| < β} be a strip in the complex plane.
For fixed integer r ≥ 0 let Hr

∞,β denote the class of 2π-periodic functions f ,

which are analytic in Sβ and satisfy |f(r)(z)| ≤ 1 in Sβ . Denote by Hr,R
∞,β the

subset of functions from Hr
∞,β that are real-valued on the real axis. Given

a function f ∈ Hr
∞,β , we try to recover f(ζ) at a fixed point ζ ∈ R by an

algorithm A on the basis of the information

If = (a0(f), a1(f), . . . , an−1(f), b1(f), . . . , bn−1(f)),

where aj(f), bj(f) are the Fourier coefficients of f . We find the intrinsic error
of recovery

E(Hr
∞,β , I) := inf

A : C2n−1→C
sup

f∈Hr
∞,β

|f(ζ)− A(If)|.

Furthermore the (2n−1)-dimensional optimal information error, optimal sam-

pling error and n-widths of Hr,R
∞,β in C, the space of continuous functions on

[0, 2π], are determined. The optimal sampling error turns out to be strictly
greater than the optimal information error. Finally the same problems are in-
vestigated for the class Hp,β , consisting of all 2π-periodic functions, which are
analytic in Sβ with p-integrable boundary values. In the case p = 2 sampling
fails to yield optimal information as well in odd as in even dimensions.

Introduction

Let W be a class of 2π-periodic, real-valued (or complex-valued) functions. Sup-
pose that W ⊂ C, where C is the space of continuous functions on [0, 2π] endowed
with the supremum norm. Consider the problem of optimal recovery of the linear
functional U on W given by Uf = f(ζ), i.e. point evaluation in ζ, on the basis of
the information

If = (L1f, . . . , Lnf),

where L1, . . . , Ln are continuous linear functionals on W .
By an algorithm we mean any map (not necessarily linear or continuous) A :

Zn → Z, where Z = R or C depending on whether W is a set of real-valued or
complex-valued functions.
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The algorithm A produces the error

EA(W, I) := sup
f∈W

|Uf −A(If)|.

The value

E(W, I) := inf
A : Zn→Z

EA(W, I)

is called the intrinsic error of the problem. An algorithm A∗, for which

EA∗(W, I) = E(W, I)

is said to be an optimal algorithm.
The optimal information error for estimating W in C by n linear observations is

defined as follows:

in(W,C) := inf
L1,...,Ln

inf
A : Zn→C

sup
f∈W

‖f −A(If)‖C .(1)

Any continuous linear functionals L∗1, . . . , L∗n for which the infimum is attained are
called optimal.

If we restrict the class of admissible linear observations to function values, then
we have the value

sn(W,C) := inf
z1,...,zn∈[0,2π)

inf
A : Zn→C

sup
f∈W

‖f −A(f(z1), . . . , f(zn))‖C ,

which is called the optimal sampling error. If the infimum is attained at the points
z∗1 , . . . , z

∗
n, then these points are said to be optimal.

The study of optimal recovery problems has received much attention in the last
years. For a detailed survey we refer to the papers of Micchelli and Rivlin [8] and
[9] as well as to the book of Traub and Wozniakowski [16]. The values in and sn
were considered by Fisher and Micchelli [6] and [7] for the unit balls of Hilbert
spaces of nonperiodic functions with simply connected domain of holomorphy.

Let Sβ := {z ∈ C : | Im z| < β} be a strip in the complex plane. For fixed
integer r ≥ 0 let Hr

∞,β denote the Hardy–Sobolev class of functions f , which are

2π-periodic, analytic in Sβ , and satisfy |f (r)(z)| ≤ 1 in Sβ. Denote by Hr,R
∞,β the

subset of functions from Hr
∞,β that are real-valued on the real axis. In the case

r = 0 we will omit the upper index r. The Fourier coefficients of f are given by

ak(f) :=
1

π

∫ 2π

0

f(x) cos kx dx, k = 0, 1, . . . ,

bk(f) :=
1

π

∫ 2π

0

f(x) sin kx dx, k = 1, 2, . . . .

In Section 1 we find an optimal algorithm for approximating f(ζ), ζ ∈ [0, 2π),
on the basis of the information

If = (a0(f), a1(f), . . . , an−1(f), b1(f), . . . , bn−1(f)),(2)

uniformly for all f ∈ Hr
∞,β . We show that the error E(Hr

∞,β , I) of an optimal

algorithm is given by ‖Φβ
n,r‖C , where Φβ

n,r is the r-th indefinite integral of a periodic
Blaschke product with 2n equidistant, real zeros.

In Section 2 this result is applied to determine the optimal information error

i2n−1(H
r,R
∞,β , C). We show that the Fourier coefficients are optimal information and
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that

i2n−1(H
r,R
∞,β , C) = d2n−1(H

r,R
∞,β , C) = d2n−1(Hr,R

∞,β , C)

= δ2n−1(H
r,R
∞,β , C) = ‖Φβ

n,r‖C ,
where d2n−1, d

2n−1 and δ2n−1 denote the Kolmogorov, Gel′fand and linear widths,
respectively. Osipenko [13] proved that a corresponding equation is valid in the

even dimensional case. Thus i2n−1(H
r,R
∞,β , C) = i2n(H

r,R
∞,β , C) and all three widths

of order 2n− 1 and 2n coincide and are equal to ‖Φβ
n,r‖C .

In the case r = 0 we find in addition the optimal error s2n−1(H∞,β , C), which
coincides with s2n−1(H

R
∞,β , C). It turns out that equidistant nodes are optimal.

However, s2n−1(H
R
∞,β , C) is strictly greater than i2n−1(H

R
∞,β , C), i.e. sampling in

optimal nodes does not yield optimal information. In particular, we calculate the
value

s2n−1(H
R
∞,β , C)

i2n−1(HR
∞,β , C)

,

which gives a quantitative measure, how much sampling fails to be optimal. This
situation is in a sharp contrast to the even dimensional case, where it is known
that sampling in equidistant nodes is optimal information (cf. Osipenko [11] and
Wilderotter [18]). Moreover, we recall that Fisher and Micchelli [5] proved that for
a simply connected domain of holomorphy sampling always yields optimal informa-
tion.

In Section 3 we consider the problem of optimal recovery and optimal information
for the class Hp,β , 1 ≤ p <∞. Here Hp,β denotes the set of all functions f , which
are 2π-periodic, analytic in Sβ , and satisfy

sup
0≤η<β

(
1

4π

∫ 2π

0

(|f(t+ iη)|p + |f(t− iη)|p) dt
)1/p

≤ 1.

For fixed points z1, . . . , zn ∈ [0, 2π) with multiplicities ν1, . . . , νn ∈ N and ζ ∈
[0, 2π) we find an optimal algorithm and the intrinsic error for approximating f(ζ),
f ∈ Hp,β, on the basis of the Hermite information

If =
(
f(z1), . . . , f

(ν1−1)(z1), . . . , f(zn), . . . , f (νn−1)(zn)
)
.

We also find the optimal sampling error sn(Hp,β , C). It turns out that sampling in
equidistant nodes is optimal for all p and all n. Moreover, for p = 2 we compare
sn(H2,β , C) with the optimal information error in(H2,β , C). We show that these
quantities do not coincide and calculate the ratios

s2n−1(H2,β , C)

i2n−1(H2,β , C)
,

s2n(H2,β, C)

i2n(H2,β , C)
.

The nonoptimality of sampling in the even dimensional case is quite remarkable.
In all examples studied so far for the imbedding of Hp,β in Lq with p ≥ q (see
Osipenko [11], Wilderotter [19]) we found that sampling in 2n equidistant nodes
yields optimal information for i2n. The present paper shows that this fails to be
valid for the imbedding of H2,β in C.

Throughout the paper we use substantially elliptic function techniques. We
emphasize that pretty optimal elliptic function bounds date back already to the
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classical work of N. I. Achieser [1], which influenced and stimulated the present
article.

1. Optimal recovery from Fourier coefficients

This section deals with the optimal recovery of the linear functional Uf = f(ζ),
ζ ∈ [0, 2π), on Hr

∞,β , using the information (2). Of central importance for our
considerations is the following well known general duality formula due to Smolyak
(we use here the complex version of Smolyak’s result proved by Osipenko [10]):

E(Hr
∞,β , I) = sup

f∈Hr
∞,β

If=0

|f(ζ)|.(3)

Moreover, the minimal error is achieved by a linear method of the form

A∗(If) = c0a0(f) +
n−1∑
j=1

(cjaj(f) + djbj(f)).(4)

By an extremal function we mean any function f0 ∈ Hr
∞,β with If0 = 0 and

|f0(ζ)| = E(Hr
∞,β , I).

Our further strategy will be to determine explicitly an extremal function f0. For
this purpose we need some auxiliary facts about periodic Blaschke products.

In order to introduce periodic Blaschke products, we transfer the analysis from
the strip Sβ to the annulus Ω := {w ∈ C : R < |w| < R−1}, where R = e−β.
The universal covering transformation w = eiz maps Sβ onto Ω and induces a

correspondence f(z) → g(w) = f

(
1

i
lnw

)
between analytic periodic functions in

Sβ and analytic functions in Ω.
A Blaschke product B of degree m on Ω is a function of the form

B(w) = exp

(
−

m∑
j=1

(g(w,αj) + ih(w,αj))

)
.

Here α1, . . . , αm are points in Ω, g(w,αj) is the Green’s function for Ω with sin-
gularity at αj and h(w,αj) is the harmonic conjugate of g(w,αj). In general B is
multiple valued. However, if we choose m = 2n and locate all points α1, . . . , α2n on
the unit circle {w ∈ C : |w| = 1}, it turns out that B is single valued. For a proof
of the last fact and further details on Blaschke products we refer to Fisher [4] and
Wilderotter [18].

In particular we may choose the 2n zeros on the unit circle to be equidistant.

Let α∗j = exp
(
i(j − 1)

π

n

)
for j = 1, . . . , 2n and

B2n(w) = exp

(
−

2n∑
j=1

(g(w,α∗j ) + ih(w,α∗j ))
)
.

Finally we go back again from the annulus to our original setting of the strip and

introduce the periodic Blaschke product B̃2n on Sβ by defining B̃2n(z) := B2n(eiz).
Blaschke products are closely related to elliptic functions. Throughout the

present paper we will use the following terminology (see for example Achieser [2],
Bateman [3]): sn(z, k), cn(z, k), and dn(z, k) denote the Jacobi elliptic functions
with modulus k (further we will note the dependence of the Jacobi elliptic functions
on the modulus only in case the modulus is different from k); the complementary



OPTIMAL INFORMATION FOR APPROXIMATING ANALYTIC FUNCTIONS 1583

modulus is given by k′ =
√

1− k2 and the complete elliptic integrals of the first
kind with moduli k and k′ are denoted by K and K ′, respectively. We always
suppose that K and K ′ satisfy the equation

πK ′

2K
= β.

With this notation B̃2n can be written in the form (see Osipenko [11]):

B̃2n(z) = kn
2n∏
j=1

sn

(
K

π
z − (j − 1)

K

n

)
.

Using the first fundamental transformation of elliptic functions of degree 2n one
can show that

B̃2n(z) = −
√
λ sn

(
2nΛ

π
z, λ

)
.

Here Λ is the complete elliptic integral of the first kind with modulus λ determined
by the equation

Λ′

Λ
= 2n

K ′

K
.

In order to cope with the optimal recovery problem, we introduce the r-th in-

definite integral Φβ
n,r of −B̃2n defined by

Φβ
n,0 := −B̃2n, Φβ

n,r := Dr ∗ Φβ
n,0, r ≥ 1.

Here

Dr(t) = 2

∞∑
k=1

cos(kt− πr/2)

kr
, r = 1, 2, . . . ,

is the Bernouilli Monospline, while

(f ∗ g)(z) =
1

2π

∫ 2π

0

f(z − t)g(t) dt

denotes the convolution of two periodic functions.
Osipenko [13] gave the following explicit representation for Φβ

n,r and ‖Φβ
n,r‖C :

Φβ
n,r(z) =

π√
λΛnr

∞∑
k=0

sin((2k + 1)nz − πr/2)

(2k + 1)r sinh((2k + 1)2nβ)
,

‖Φβ
n,r‖C =

π√
λΛnr

∞∑
k=0

(−1)k(r+1)

(2k + 1)r sinh((2k + 1)2nβ)
,

r = 0, 1, . . . .

From this one can read off that IΦβ
n,r = 0.

We now are ready to formulate our first main result.

Theorem 1. For all integers r ≥ 0 and with I defined by (2),

E(Hr
∞,β , I) = ‖Φβ

n,r‖C .
Proof. We can assume without loss of generality that the fixed evaluation point in
the problem (3) is equal to ζ = 0. Put

ϕ(z) :=

{
Φβ
n,r

(
z +

π

2n

)
, r = 2k,

Φβ
n,r(z), r = 2k + 1.
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We wish to show that ϕ is an extremal function of the problem (3). Note that
Iϕ = 0, |ϕ(0)| = ‖Φβ

n,r‖C , and ϕ is an even function. Suppose there exists a
function f0 ∈ Hr

∞,β with If0 = 0 and |f0(0)| > |ϕ(0)|. After scaling f0 with the

factor exp(−i arg f0(0)), we may assume f0(0) to be real and positive. Let us define

f1(z) :=
f0(z) + f0(z)

2
, f2(z) :=

f1(z) + f1(−z)
2

.

Then f2 ∈ Hr,R
∞,β, If2 = 0, and f2(0) = f0(0). Moreover, f2 is an even function. Set

ρ := ϕ(0)/f2(0), F := ϕ− ρf2.

We claim that the function F has at least 2n+ 1 distinct zeros in [−π, π). Clearly
F (0) = 0. Moreover, since both ϕ and f2 are even functions, F does not change
its sign in ζ = 0. On the other side we have IF = 0, since Iϕ = If2 = 0. The
condition IF = 0 means that∫ 2π

0

F (x) cos kx dx = 0, k = 0, 1, . . . , n− 1,∫ 2π

0

F (x) sin kx dx = 0, k = 1, 2, . . . , n− 1.

Since the trigonometric polynomials of degree at most n − 1 are a Tchebycheff
system of dimension 2n− 1, it follows from Pinkus [15, Chap. III, Prop. 1.4], that
F has at least 2n cyclic sign changes. In addition F has a zero in ζ = 0 without sign
change. Hence F has altogether at least 2n+1 zeros in [−π, π). By Rolle’s theorem

the same conclusion remains valid for the r-th derivative F (r) = ϕ(r) − ρf
(r)
2 .

Transferring this result from the strip to the annulus, we see that the function

F (r)

(
1

i
lnw

)
is single valued and analytic in Ω and has at least 2n+ 1 zeros in Ω.

By the definition of Φβ
n,r we have

ϕ(r)

(
1

i
lnw

)
=

{
−B2n

(
w exp

(
i
π

2n

))
, r = 2k,

−B2n(w), r = 2k + 1.

The boundary values of the Blaschke product B2n satisfy identically |B2n(w)| ≡ 1
on ∂Ω. Consequently we have for w ∈ ∂Ω

∣∣∣∣ϕ(r)

(
1

i
lnw

)
− F (r)

(
1

i
lnw

)∣∣∣∣ = ∣∣∣∣ρf (r)
2

(
1

i
lnw

)∣∣∣∣ ≤ |ρ| < 1 =

∣∣∣∣ϕ(r)

(
1

i
lnw

)∣∣∣∣ .
Since B2n has 2n zeros in Ω, Rouche’s theorem implies that F (r)

(
1

i
lnw

)
has

exactly 2n zeros in Ω. This is a contradiction and the proof of Theorem 1 is
complete.

2. Optimal information and n-widths of Hr,R
∞,β

In this section Theorem 1 is applied to determine the optimal information er-

ror i2n−1(H
r,R
∞,β , C). It turns out that i2n−1(H

r,R
∞,β , C) coincides with certain odd

dimensional n-widths. Therefore we start by recalling the definition of the various
n-widths.
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Let V be a subset of a normed linear space X . The Kolmogorov n-widths are
defined by

dn(V,X) := inf
Xn

sup
x∈V

inf
y∈Xn

‖x− y‖X ,

where Xn runs over all subspaces of X of dimension n or less.
The Gel′fand n-widths are defined by

dn(V,X) := inf
Xn

sup
x∈Xn∩V

‖x‖X ,

where Xn runs over all subspaces of codimension at most n (here we assume that
0 ∈ V ).

The linear n-widths are given by

δn(V,X) := inf
Pn

sup
x∈V

‖x− Pnx‖X ,

where Pn is any linear operator of X into X of rank at most n.
Much information on n-widths can be found in the book of A. Pinkus [15]. In

particular, the following fundamental inequality holds:

dn(V,X) , dn(V,X) ≤ δn(V,X).(5)

Analogously to (1) we can define the optimal information error in(V,X) for
estimating V in X by n linear observations.

Lemma. Assume that V is a centrally symmetric set and 0 ∈ V . Then

dn(V,X) ≤ in(V,X) ≤ δn(V,X).(6)

Proof. The inequality

in(V,X) ≤ δn(V,X)

evidently follows from the definition. To prove the lower bound consider any con-
tinuous linear functionals L1, . . . , Ln. For each ε > 0 there exists xε ∈ V such that
L1xε = · · · = Lnxε = 0 and

sup
x∈V

L1x=···=Lnx=0

‖x‖X ≤ ‖xε‖X + ε.

For all algorithms A we have

‖xε −A(0, . . . , 0)‖X + ‖ − xε −A(0, . . . , 0)‖X ≥ 2‖xε‖X .
Therefore,

sup
x∈V

‖x−A(L1x, . . . , Lnx)‖X ≥ ‖xε‖X ≥ sup
x∈V

L1x=···=Lnx=0

‖x‖X − ε ≥ dn(V,X)− ε.

Taking the infimum over A and L1 . . . , Ln we obtain

in(V,X) ≥ dn(V,X).

Our result reads now as follows:
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Theorem 2. For all integer r ≥ 0

i2n−1(H
r,R
∞,β , C) = d2n−1(H

r,R
∞,β , C) = d2n−1(Hr,R

∞,β , C)

= δ2n−1(H
r,R
∞,β , C) = ‖Φβ

n,r‖C .
Proof. In view of (5) and (6) to establish upper bounds we may restrict ourselves

to δ(Hr,R
∞,β , C). It follows from Theorem 1 that there exists an optimal method (4)

such that

|f(0)−A∗(If)| ≤ ‖Φβ
n,r‖C

for all f ∈ Hr,R
∞,β. Now let η be an arbitrary fixed point in the interval [0, 2π) and

set (Tηf)(z) := f(z + η). Since

aj(Tηf) = aj(f) cos jη + bj(f) sin jη,

bj(Tηf) = −aj(f) sin jη + bj(f) cos jη,

we obtain that∣∣∣∣f(η)− c0a0(f)−
n−1∑
j=1

(
(cj cos jη − dj sin jη)aj(f)

+(cj sin jη + dj cos jη)bj(f)
)∣∣∣∣ ≤ ‖Φβ

n,r‖C .

This pointwise estimate holds uniformly in [0, 2π). Thus we have

δ2n−1(H
r,R
∞,β , C) ≤ ‖Φβ

n,r‖C .
As mentioned in the introduction, Osipenko [13] proved that

d2n(Hr,R
∞,β , C) = d2n(Hr,R

∞,β , C) = δ2n(Hr,R
∞,β , C) = ‖Φβ

n,r‖C .(7)

The lower bounds now follow from the monotonicity of the n-widths.

Combining (7) with Theorem 2, we get in view of (6) that i2n−1(H
r,R
∞,β , C) and

i2n(H
r,R
∞,β , C) as well as all three kinds of widths of order 2n − 1 and 2n coincide

and are equal to ‖Φβ
n,r‖C .

The preceding analysis may give the impression that the situation in odd and
even dimensions is identical. This is definitely not true. Although the differ-
ent values of the widths are all the same, the properties of optimal information
are substantially different in odd and even dimensions. In the sequel we will re-
strict ourselves to the case r = 0. Our course of proof showed that the Fourier
coefficients (a0(f), a1(f), . . . , an−1(f), b1(f), . . . , bn−1(f)) are optimal information
for i2n−1(H

R
∞,β , C) and consequently also for i2n(HR

∞,β , C). However, Osipenko

[11] and Wilderotter [18] proved that in the even dimensional case sampling in
2n equidistant nodes yields optimal information as well, that is s2n(HR

∞,β , C) =

i2n−1(H
R
∞,β , C). We now try to find the optimal sampling error s2n−1(H

R
∞,β , C).

For this purpose we consider in a first step fixed sampling points z1, . . . , z2n−1 ∈
[0, 2π). From the results of Ovchincev [14] and Wilderotter [17] it follows that

inf
A : R2n−1→C

sup
f∈HR

∞,β

‖f −A(f(z1), . . . , f(z2n−1))‖C = kn
∥∥∥∥2n−1∏
j=1

sn

(
K

π
(· − zj)

)∥∥∥∥
C

.
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In a second step we minimize the right-hand side of the last equation over all
possible choices of sampling points. Osipenko [11] showed in a different context
that

inf
z1,...,zn∈[0,2π)

kn/2
∥∥∥∥ n∏
j=1

sn

(
K

π
(· − zj)

)∥∥∥∥
C

=
√
λn,(8)

where

λn = 4e−βn
( ∑∞

m=0 e
−2βnm(m+1)

1 + 2
∑∞

m=1 e
−2βnm2

)2

= 4e−βn +O(e−3βn)(9)

(λn can also be defined as a solution of the equation Λ′/Λ = nK ′/K). Moreover,
equidistant nodes are the unique nodes (up to a shift), for which the infimum in
(8) is attained. Thus

s2n−1(H
R
∞,β , C) =

√
kλ2n−1.

On the other side we have

i2n−1(H
R
∞,β , C) = i2n(HR

∞,β , C) = s2n(HR
∞,β , C) = ‖Φn,0‖C =

√
λ2n.

Set z∗j := (j − 1)
2π

2n− 1
, j = 1, . . . , 2n− 1,

b1(z) :=
√
k sn

(
K

π
(z − z∗n+1)

)
, b2(z) := kn−1/2

2n−1∏
j=1

sn

(
K

π
(z − z∗j )

)
.

Using the first fundamental transformation of elliptic functions of degree 2n− 1 it
can be shown that

b2(z) =
√
λ2n−1 sn

(
(2n− 1)Λ2n−1

π
z, λ2n−1

)
,

where Λ2n−1 is the complete elliptic integral of the first kind with modulus λ2n−1.
It is easy to check that

‖b1‖C = −b1
(

π

2n− 1

)
=
√
k, ‖b2‖C = b2

(
π

2n− 1

)
=
√
λ2n−1.

Consequently

‖b1b2‖C =
√
kλ2n−1.

Since equidistant nodes are unique optimal nodes in the extremal problem (8) we

obtain that
√
λ2n <

√
kλ2n−1. Thus

s2n−1(H
R
∞,β , C) > i2n−1(H

R
∞,β , C),

i.e. sampling does not yield optimal information in odd dimensions.
More precisely we may calculate the following ratio, which gives a quantitative

measure, how much sampling fails to be optimal:

s2n−1(H
R
∞,β , C)

i2n−1(HR
∞,β , C)

=

√
kλ2n−1√
λ2n

=
√
keβ/2 +O(e−4βn).
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For n = 1 from (9) it follows that

k = 4e−β
( ∑∞

m=0 e
−2βm(m+1)

1 + 2
∑∞

m=1 e
−2βm2

)2

.

Using this equality it is easy to show that

e−β/2 <
√
k < 2e−β/2.

Thus 1 <
√
keβ/2 < 2 for all β ∈ (0,+∞).

3. Optimal sampling and information in Hp,β

Denote by Hp,β, 1 ≤ p ≤ ∞, the space of all 2π-periodic functions f , which are
analytic in Sβ and satisfy

‖f‖Hp,β
:= sup

0≤η<β

(
1

4π

∫ 2π

0

(|f(t+ iη)|p + |f(t− iη)|p) dt
)1/p

<∞, 1 ≤ p <∞,

‖f‖H∞,β
:= sup

z∈Sβ
|f(z)| <∞.

Let Hp,β be the closed unit ball of Hp,β . Given an evaluation point ζ ∈ [0, 2π)
consider the problem of optimal recovery of f(ζ), f ∈ Hp,β, on the basis of the
Hermite information

If = (f(z1), . . . , f
(ν1−1)(z1), . . . , f(zn), . . . , f (νn−1)(zn)), N :=

n∑
j=1

νj ,

where z1, . . . , zn ∈ [0, 2π). The case p = ∞ was obtained by Ovchincev [14] and
Wilderotter [17]. The solution of this recovery problem for 1 ≤ p < ∞ reads as
follows.

Theorem 3. Set

W (z) = kN/2
n∏
j=1

snνj
(
K

π
(z − zj)

)
.

Then

E(Hp,β , I) =


(

2K

π

)1/p

|W (ζ)|, N even,(
2K

π

)1/p√
k|W (ζ)|, N odd.

An optimal method of recovery is given by

f(ζ) ≈
n∑
j=1

νj−1∑
ν=0

cjν(ζ, p)f
(ν)(zj),(10)
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where

cjν(ζ, p) =
K

π

W (ζ)

ν!(νj − ν − 1)!

× lim
z→zj

(z − zj)
νjγN(z) dn

p−2
p

(
K

π
(ζ − z)

)
W (z) sn

(
K

π
(ζ − z)

)


(νj−ν−1)

,

γN (z) =


cn

(
K

π
(ζ − z)

)
, N even,

dn

(
K

π
(ζ − z)

)
, N odd.

Proof. The function

b(z) =
√
k sn

K

π
z

is analytic in Sβ . Moreover, b(z + 2π) = −b(z) and |b(x + iβ)| ≡ 1 for all x ∈ R.

Thus W (z) = W−1(z) for z ∈ ∂Sβ.
Suppose N is an even number. Consider the function

g(z) = W (z) dn2/p

(
K

π
(ζ − z)

)
.

Since dn
K

π
z is 2π-periodic and does not vanish in the strip Sβ , g ∈ H∞,β. Set

α :=
2K

π
g(ζ).

For f ∈ Hp,β consider the integral

Jf :=
α

4π

∫
Γ0

g(z)|g(z)|p−2f(z) dz,

where Γ0 := [−iβ, 2π− iβ]∪ [iβ, 2π+ iβ]. Using the properties of elliptic functions,
we have

dn

(
K

π
(x± iβ)

)
= ±i

cn

(
K

π
(x ± iβ)

)
sn

(
K

π
(x± iβ)

) .
The element of integration in Jf is 2π-periodic. So we can rewrite Jf in the
following form

Jf =
KW (ζ)

π

1

2πi

∫
Γε

cn

(
K

π
(ζ − z)

)
dn

p−2
p

(
K

π
(ζ − z)

)
W (z) sn

(
K

π
(ζ − z)

) f(z) dz,

where Γε is the boundary of the rectangle −ε ≤ Re z ≤ 2π − ε, | Im z| ≤ β, and ε
such that ζ, z1, . . . , zn lie inside this rectangle. By the residue theorem

Jf = f(ζ)−
n∑
j=1

νj−1∑
ν=0

cjν(ζ, p)f
(ν)(zj).(11)
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For f(z) = g(z) this equality gives

‖g‖Hp,β
=
( π

2K

)1/p

.

If f ∈ Hp,β, then by Hölder’s inequality we obtain

|Jf | ≤ |α| ‖g‖p/qHp,β
‖f‖Hp,β

≤
(

2K

π

)1/p

|g(ζ)|, 1

p
+

1

q
= 1.

In view of (11) we have

E(Hp,β , I) ≤
(

2K

π

)1/p

|g(ζ)|.

On the other hand, g0 := g/‖g‖Hp,β
∈ Hp,β and Ig0 = 0. Consequently,

E(Hp,β , I) = sup
f∈Hp,β

If=0

|f(ζ)| ≥ |g0(ζ)| =
(

2K

π

)1/p

|g(ζ)|.

Hence

E(Hp,β , I) =

(
2K

π

)1/p

|g(ζ)|

and (10) is an optimal method of recovery.
For odd N the same scheme of proof is applied to Jf with

g(z) =
√
k sn

(
K

π
(z − ζ + π)

)
W (z) dn2/p

(
K

π
(ζ − z)

)

(here we use that sn(u +K) = cnu/ dnu).

Taking into account the equality (8), we have

Corollary. For all 1 ≤ p <∞ and n ∈ N,

sn(Hp,β , C) =


(

2K

π

)1/p√
λn, n even,(

2K

π

)1/p√
kλn, n odd,

where λn is defined by (9). Moreover, equidistant nodes are optimal.
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Finally we compare in the case p = 2 the optimal sampling error sn(H2,β , C)
with the optimal information error in(H2,β , C). Osipenko [12] proved that

δ2n−1(H2,β , C) = d2n−1(H2,β , C) =

2

∞∑
j=n

1

cosh 2jβ

1/2

=
2√

1− e−2β
e−βn +O(e−5βn),

δ2n(H2,β , C) = d2n(H2,β , C) =

 1

cosh 2nβ
+ 2

∞∑
j=n+1

1

cosh 2jβ

1/2

=

√
2
1 + e−2β

1− e−2β
e−βn +O(e−5βn).

In view of (6) the same equalities hold for in(H2,β, C). Thus we obtain

s2n−1(H2,β , C)

i2n−1(H2,β , C)
= 2

√
kK

π
sinh β +O(e−4βn),

s2n(H2,β , C)

i2n(H2,β , C)
= 2

√
K

π
tanhβ + O(e−4βn).

The last result is very interesting, inasmuch as it is the first example known so far
of a periodic Hardy space imbedding, for which sampling in equidistant nodes does
not yield optimal information in even dimensions.
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