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EXTENSION THEOREMS FOR PLATE ELEMENTS

WITH APPLICATIONS

JINSHENG GU AND XIANCHENG HU

Abstract. Extension theorems for plate elements are established. Their ap-
plications to the analysis of nonoverlapping domain decomposition methods for
solving the plate bending problems are presented. Numerical results support
our theory.

1. Introduction

Consider the plate bending problem with the clamped boundary conditions{ 42u = f in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

(1.1)

where Ω ⊂ <2 is a polygonal domain and ν the unit outward normal vector. The
variational form of (1.1) is

u ∈ H2
0 (Ω) : a(u, v) = (f, v), ∀ v ∈ H2

0 (Ω),(1.2)

where

a(u, v) =

∫
Ω

[
4u4v + (1− γ)(2∂12u∂12v − ∂11u∂22v − ∂22u∂11v)

]
dx,

(f, v) =

∫
Ω

fvdx and γ ∈ (0, 0.5) is the Poisson ratio. As is well–known, the unique

solvability of (1.2) for f ∈ L2(Ω) follows from the continuity and coerciveness of
the bilinear form a(·, ·) in H2

0 (Ω) (cf. [7], [9], [19] for details).
Suppose that Ωh =

{
e
}

is a quasi–uniform mesh of Ω, i.e., Ωh satisfies

sup
e∈Ωh

inf
Br⊃e

r ≤ ch, inf
e∈Ωh

sup
Br⊂e

r ≥ Ch,(1.3)

where e, a triangle, represents the typical element in Ωh, Br is a region bounded
by the circle of radius r, h = max

e∈Ωh

he is the mesh parameter and he = inf
Br⊃e

r. Here

and later, c and C denote generic positive constants independent of h. Let Vh be
the Morley nonconforming finite element space [18, 21] associated with Ωh. Then
v ∈ Vh if and only if it has the following three properties:

(1) v|e is quadratic, ∀ e ∈ Ωh;
(2) v is continuous at each vertex p of e, ∀ e ∈ Ωh;
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(3) ∂v
∂ν is continuous at each edge midpoint m of e, ∀ e ∈ Ωh.

Throughout this paper, we let p and m (with or without subscripts) denote a vertex
and an edge midpoint of the elements in Ωh respectively. The Morley element
discrete problem of (1.2) is

uh ∈ V 0
h : A(uh, v) = (f, v), ∀ v ∈ V 0

h ,(1.4)

where

V 0
h =

{
v ∈ Vh : v(p) = 0,

∂v

∂ν
(m) = 0, ∀ p,m ∈ ∂Ω

}
,

A(w, v) =
∑
e∈Ωh

∫
e

[
4w4v + (1− γ)(2∂12w∂12v − ∂11w∂22v − ∂22w∂11v)

]
dx.

Some progress has been made in the research of domain decomposition methods
for (1.2). Chan et al. [5] presented interface preconditioners for the biharmonic
equations via the finite difference methods where the interface consisits of two grid
lines, while Sun [23] constructed the multilevel preconditioners for the biharmonic
equations via the B–spline methods. All their methods require that the domain Ω
should be a rectangle. Brenner [4] proposed a two–level additive Schwarz precondi-
tioner for nonconforming plate elements through intergrid transfer operators. Gu
[10] considered the parallel Schwarz alternating algorithm for (1.4) and found the
preconditioner of the algorithm by employing the idea of Widlund [8]. Zhang [25]–
[27] and Oswald [20] have recently studied hierarchical, multilevel and Schwarz
methods for discretizations of the biharmonic equation by conforming finite ele-
ments.

The purpose of this paper is to give the extension theorem for Morley elements
with applications to solving (1.4) and further to point out that the extension theo-
rems for other plate elements [4, 6] hold. It is known that the extension theorems
play key roles in the analysis of nonoverlapping domain decomposition methods for
the second order elliptic problems discretized by the conforming or nonconform-
ing finite element methods [10, 11, 14, 24]. When considering the nonoverlapping
domain decomposition methods for the solving of (1.4), we must establish the exten-
sion theorem correspondingly. To this end, the conforming interpolation operator
introduced in [4] is modified to act as a bridge between Morley nonconforming el-
ement space and Argyris conforming element space [2], and its stability proof is
presented thereafter. Additionally we estimate the error of the Morley element ap-
proximate solution of the inhomogeneous boundary value problem under the weak
condition that the solution of (1.2), u ∈ H3(Ω). Hence the extension theorem
for Morley elements is established eventually. To illustrate its applications, we
describe and analyze a nonoverlapping domain decomposition algorithm with two
subdomains. In each iteration of this algorithm, the solution of a discrete subprob-
lem on one subdomain with the Dirichlet condition on the interface is followed by
the solution of a discrete subproblem on another subdomain with the Neumann con-
dition on the interface. So it is in fact the generalization of the Dirichlet–Neumann
alternating method (also known as the Marini–Quarteroni algorithm [17]). Based
on the extension theorem, we show that it is geometrically convergent and the con-
vergence factor independent of h. Numerical results are also presented to indicate
that the theoretical estimate is fully realized in practice. It is more important that
via the same idea as above, we eventually obtain the extension theorems for all the
conforming plate elements [6] and for other nonconforming plate elements [4].
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The remainder of this paper is organized as follows. In §2, we describe and
prove Theorem 2.4, the extension theorem for Morley elements. Its applications
to the analysis of nonoverlapping domain decomposition methods and numerical
experiments are given in §3. To conclude the paper, we point out in §4 that the
extension theorems for other plate elements hold.

2. Extension theorem for Morley elements

The trace estimates are important tools in many nonconforming finite element
analyses. For our purpose, a simple one is stated as follows

Lemma 2.1 ([13, 16]). If e is affine equivalent to the reference element ê, then∫
∂e

w2ds ≤ c{h−1
e ‖w‖2

0,e + he|w|21,e}, ∀ w ∈ H1(e).

Theorem 2.2. Let Γ̃ ⊂ ∂Ω be an open edge of a polygonal domain Ω. Suppose

the functions g1, g2 defined on ∂Ω satisfy g1|Γ̃ ∈ H
5
2
00(Γ̃), g2|Γ̃ ∈ H

3
2
00(Γ̃), g1|∂Ω\Γ̃ =

g2|∂Ω\Γ̃ = 0. Let θ ∈ H3(Ω), θh ∈ Vh, be respectively the solutions of the following

problems:
a(θ, v) = 0, ∀ v ∈ H2

0 (Ω),
θ = g1, on ∂Ω,
∂θ
∂ν = g2, on ∂Ω,


A(θh, v) = 0, ∀ v ∈ V 0

h ,
θh(p) = g1(p), ∀ p ∈ ∂Ω,
∂θh
∂ν (m) = g2(m), ∀ m ∈ ∂Ω.

Then we have

|θ − θh|h,Ω ≤ ch|θ|H3(Ω),

where |w|h,Ω 4
=
(∑
e⊂Ω

|w|22,e
) 1

2

.

Proof. Denote V ∗h = {v ∈ Vh : v(p) = θ(p), ∂v
∂ν (m) = ∂θ

∂ν (m), ∀ p,m ∈ ∂Ω}.
∀ v ∈ V ∗h , it is easy to see that

c|θh − v|2h,Ω ≤ A(θh − v, θh − v)

= A(θ − v, θh − v) +A(θh, θh − v)−A(θ, θh − v)
≤ c|θ − v|h,Ω|θh − v|h,Ω + 0 + |A(θ, θh − v)|.

Hence

|θh − v|h,Ω ≤ c
{
|θ − v|h,Ω +

|A(θ, θh − v)|
|θh − v|h,Ω

}
≤ c

{
|θ − v|h,Ω + sup

w∈V 0
h

|A(θ, w)|
|w|h,Ω

}
, ∀ v ∈ V ∗h .

By the triangle inequality, we get

|θ − θh|h,Ω ≤ c
(

inf
v∈V ∗h

|θ − v|h,Ω + sup
w∈V 0

h

|A(θ, w)|
|w|h,Ω

)
.(2.1)

(2.1) is in fact a variant of the second Strang lemma [6] in the nonhomogeneous
boundary value case.
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Let w ∈ V 0
h . Applying Green’s formula yields

A(θ, w) = −
∑
e⊂Ω

∫
e

∇(4θ) · ∇wdx + E1(θ, w) + E2(θ, w),(2.2)

where

E1(θ, w) = (1− γ)
∑
e⊂Ω

∫
∂e

∂2θ

∂ν∂s

∂w

∂s
ds,(2.3)

E2(θ, w) =
∑
e⊂Ω

∫
∂e

[
4θ − (1− γ)

∂2θ

∂s2

]∂w
∂ν

ds.(2.4)

Denote

D(Ω) = {v ∈ C∞(Ω) : supp v is a compact subset of Ω}.

We note that θ satisfies∑
e⊂Ω

∫
e

∇(4θ) · ∇vdx =

∫
Ω

∇(4θ) · ∇vdx = −
∫

Ω

4θ4vdx = 0, ∀ v ∈ D(Ω).

Since D(Ω) is dense in H1
0 (Ω), we have

∑
e⊂Ω

∫
e

∇(4θ) · ∇vdx = 0, ∀ v ∈ H1
0 (Ω),

A(θ, w) =
∑
e⊂Ω

∫
e

∇(4θ) · ∇(Lew − w)dx + E1(θ, w) + E2(θ, w),

where Le is the linear interpolation operator on e with the vertices of e as interpo-
lation points.

Three notations: Me,MF and α are used throughout the remainder of this sec-
tion in the following sense. Me is the mean value operator over the element e,
defined by

Mev =
1

meas(e)

∫
e

vdx, ∀ v ∈ L2(e),

while MF is the mean value operator over the edge F of e which can be defined

similarly. α = (α1, α2) ∈ N2 is a multi–index with |α| 4= α1 + α2. For example, if

α = (1, 2), then |α| = 3 and ∂α =
∂3

∂x∂y2
.

For each edge F , if F = ∂e ∩ ∂Ω for some e, it is obvious that ∂
∂s (Lew) = 0;

if F = ∂e1 ∩ ∂e2 for some elements e1 and e2, then ∂
∂s (Le1w)|F = ∂

∂s (Le2w)|F .

Furthermore, for each e,

∫
∂e

∂(w − Lew)

∂s
ds = 0. By the Schwarz inequality,
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Lemma 2.1, interpolation error estimates [6] and inverse inequalities [6], we ob-
tain

E1(θ, w) = (1− γ)
∑
e⊂Ω

∫
∂e

[ ∂2θ

∂ν∂s
−Me(

∂2θ

∂ν∂s
)
]∂(w − Lew)

∂s
ds

≤ (1− γ)
(∑
e⊂Ω

∫
∂e

| ∂
2θ

∂ν∂s
−Me(

∂2θ

∂ν∂s
)|2ds

) 1
2
(∑
e⊂Ω

∫
∂e

|∂(w − Lew)

∂s
|2ds

) 1
2

≤ c
(∑
e⊂Ω

∑
|α|=2

∫
∂e

|∂αθ −Me(∂αθ)|2ds
) 1

2
(∑
e⊂Ω

∑
|α|=1

∫
∂e

|∂α(w − Lew)|2ds
) 1

2

≤ c
(∑
e⊂Ω

∑
|α|=2

[h−1
e ‖∂αθ −Me(∂αθ)‖2

0,e + he|∂αθ −Me(∂αθ)|21,e]
) 1

2

·
(∑
e⊂Ω

∑
|α|=1

[h−1
e ‖∂α(w − Lew)‖2

0,e + he|∂α(w − Lew)|21,e
) 1

2

≤ c
(∑
e⊂Ω

∑
|α|=2

he|∂αθ|21,e
) 1

2
(∑
e⊂Ω

∑
|α|=1

he|∂αw|21,e
) 1

2

≤ ch|θ|3,Ω|w|h,Ω.

We notice that for each edge F , if F ⊂ ∂Ω, it is obvious that MF (
∂w

∂ν
) = 0; if

F = ∂e1 ∩ ∂e2 for some elements e1 and e2, then
2∑
i=1

MF (
∂w

∂νi
|F⊂∂ei) = 0, where

νi is the unit outward normal vector of ei. In addition,

∫
F

[∂w
∂ν

−MF (
∂w

∂ν
)
]
ds = 0

for each edge F and

∫
F

(φ−MFφ)2ds ≤
∫
F

(φ− β)2ds for any measurable function

φ and any constant β ∈ <. In the same manner as above, we have

E2(θ, w) =
∑
e⊂Ω

∑
F⊂∂e

∫
F

[
4θ − (1− γ)

∂2θ

∂s2
−MF

(
4θ − (1 − γ)

∂2θ

∂s2

)]
·
[
∂w
∂ν −MF (∂w∂ν )

]
ds

≤ ch|θ|3,Ω|w|h,Ω.
Let πh be the interpolation operator of the Morley element space Vh. Then

πhθ ∈ V ∗h . The standard interpolation error estimate gives∑
e⊂Ω

∫
e

∇(4θ) · 4(w − Lew)dx ≤ ch|θ|3,Ω|w|h,Ω,

inf
v∈V ∗h

|θ − v|h,Ω ≤ |θ − πhθ|h,Ω ≤ ch|θ|3,Ω.
By using (2.1), (2.2) and the arguments that followed, we can complete the proof

of the theorem.

Suppose that there exists an open straight line, Γ, which divides Ω into two open
convex subdomains Ω1 and Ω2 s.t. Ω = Ω1∪Ω2∪Γ, Ω1∩Ω2 = ∅, Γ∩e = ∅, ∀ e ∈ Ωh.
For k = 1, 2, denote

|w|h,Ωk

4
=
(∑
e⊂Ωk

|w|22,e
) 1

2

, (w, v)k =

∫
Ωk

wvdx,
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V k
h =

{
v ∈ V 0

h : v(p) = 0,
∂v

∂ν
(m) = 0, ∀ p,m ∈ Ω\Ωk

}
,

V k,0
h =

{
v ∈ V 0

h : v(p) = 0,
∂v

∂ν
(m) = 0, ∀ p,m ∈ Ω\Ωk

}
,

Ak(w, v) =
∑
e⊂Ωk

∫
e

[
4w4v + (1− γ)(2∂12w∂12v − ∂11w∂22v − ∂22w∂11v)

]
dx.

Brenner [4] has introduced an interpolation operator Ikh which acts as a bridge
between the Morley nonconforming element space V k

h and the Argyris conforming

element [2] space ARk
h. Here, v ∈ ARk

h if and only if v satisfies
(1) v|e is a fifth order polynomial, ∀ e ⊂ Ωk;
(2) ∂αv (0 ≤ |α| ≤ 2) are continuous at each vertex p of e, ∀ e ⊂ Ωk;
(3) ∂v

∂ν is continuous at each edge midpoint m of e, ∀ e ⊂ Ωk;

(4) ∂αv(p) = 0, (0 ≤ |α| ≤ 2), ∂v
∂ν (m) = 0, ∀ p,m ∈ ∂Ωk\Γ.

For our purpose, we modify Ikh as follows: ∀ v ∈ V k
h , I

k
hv ∈ ARk

h s.t.
1.

(
Ikhv

)
(p) = v(p),

2.
∂(Ikhv)

∂ν
(m) =

∂v

∂ν
(m),

3.
[
∂α(Ikhv)

]
(p) = 0, |α| = 2,

4.
[
∂α(Ikhv)

]
(p) =

{
0, |α| = 1, p ∈ ∂Ωk\Γ,
average of

(
∂αvi

)
(p), |α| = 1, p 6∈ ∂Ωk\Γ,

where vi
4
= v|ei and ei contains p as a vertex.

Theorem 2.3. If Ikh is defined as above, then

Ikhv =
∂(Ikhv)

∂ν
= 0 on ∂Ωk\Γ, ∀ v ∈ V k

h ,(2.5)

‖v − Ikhv‖L2(Ωk) ≤ ch2|v|h,Ωk
, ∀ v ∈ V k

h .(2.6)

Proof. (2.5) follows from the definition of Ikh . (2.6) can be obtained by modifying
the proof of Lemma 5.1 [4]. For completeness, we outline it as follows.

Let v ∈ V k
h and e ⊂ Ωk. Denote w = v|e and w̃ = (Ikhv)|e. Then

w − w̃ =

3∑
i=1

∑
|α|=1,2

∂α(w − w̃)(pi)rα,i,

where the functions rα,i are the nodal basis functions corresponding to the nodal
variables (∂αv)(pi) of the Argyris element space on e.

By standard techniques of the almost affine–equivalent family of finite elements
[6], we see that

‖rα,i‖L2(e) ≤ ch2 for |α| = 1,

‖rα,i‖L2(e) ≤ ch3 for |α| = 2.

If |α| = 2, then

|∂α(w − w̃)(pi)| = |∂αw(pi)| ≤ |v|W 2∞(e) ≤ ch−1|v|2,e.
We next discuss the case that |α| = 1.

Suppose that p1 ∈ ∂Ωk\Γ. Since Ωh is quasi–uniform, there exists a positive
integer J , independent of h, such that e1, e2, · · · , eJ = e ⊂ Ωk, e1, e2, · · · , eJ
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contain p1 as a common vertex, meas(∂ej ∩ ∂ej+1) > 0 for j = 1, 2, · · · , J − 1 and
meas(∂e1 ∩ (∂Ωk\Γ)) > 0.

By Taylor’s formula and the fact that v|ej and v|ej−1 agree at the two endpoints
of ∂ej ∩ ∂ej−1, it is easy to obtain

|∂(v|ej )
∂s

(p1)−
∂(v|ej−1 )

∂s
(p1)| ≤ h

2

[
|v|W 2∞(ej) + |v|W 2∞(ej−1)

]
,

where s is the arc length along ∂ej ∩ ∂ej−1. Similarly since
∂(v|ej )
∂ν and

∂(v|ej−1
)

∂ν
agree at the midpoint of ∂ej ∩ ∂ej−1, we get

|∂(v|ej )
∂ν

(p1)−
∂(v|ej−1 )

∂ν
(p1)| ≤ h

2

[
|v|W 2∞(ej) + |v|W 2∞(ej−1)

]
.

Therefore, we have

|∂α(v|ej )(p1)− ∂α(v|ej−1 )(p1)| ≤ ch
[
|v|W 2∞(ej) + |v|W 2∞(ej−1)

]
.

Let p′1 ∈ ∂e1 ∩ (∂Ωk\Γ) be another endpoint of the edge ∂e1 ∩ (∂Ωk\Γ). Since

v(p1) = v(p′1) = 0, there exists a point q ∈ ∂e1 ∩ (∂Ωk\Γ), s.t.
∂(v|e1)

∂s (q) = 0.

Obviously,
∂(v|e1 )

∂ν (m1) = 0, where m1 is the midpoint of the edge ∂e1 ∩ (∂Ωk\Γ).
Then

|∂(v|e1)
∂s

(p1)| = |∂(v|e1)
∂s

(p1)− ∂(v|e1)
∂s

(q)| ≤ h|v|W 2∞(e1),

|∂(v|e1)
∂ν

(p1)| = |∂(v|e1)
∂ν

(p1)− ∂(v|e1)
∂ν

(m1)| ≤ h|v|W 2∞(e1).

So |∂α(v|e1 )(p1)| ≤ ch|v|W 2∞(e1).

|∂α(w − w̃)(p1)| = |∂α(v|e)(p1)|

= |
J∑
j=2

[
∂α(v|ej )(p1)− ∂α(v|ej−1 )(p1)

]
+ ∂α(v|e1)(p1)|

≤
J∑
j=2

|∂α(v|ej )(p1)− ∂α(v|ej−1 )(p1)|+ |∂α(v|e1 )(p1)|

≤ ch

J∑
j=1

|v|W 2∞(ej) ≤ c

J∑
j=1

|v|2,ej ≤ c
∑
e′
|v|2,e′ ,

where e′ ⊂ Ωk s.t. ∂e′ ∩ ∂e 6= ∅.
If p1 6∈ ∂Ωk\Γ, then by the same argument as above, we can easily obtain

|∂α(w − w̃)(p1)| ≤ c
∑
e′
|v|2,e′ .

Therefore, we have

‖v − Ikhv‖L2(e) ≤ ch2
∑
e′
|v|2,e′ .

Summing up the square of the last inequality over all the elements e ⊂ Ωk, we
eventually get (2.6) by the quasi–uniformness of the mesh Ωh.

In what follows,
{
pi
}I
i=1

denotes the set of the vertices on Γ and
{
mj

}J
j=1

the

set of the edge midpoints on Γ. Let νk (k = 1, 2) be the unit outward normal vector
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of Ωk. r0 : Vh → <I and r1 : Vh → <J denote respectively the discrete operators
such that

∀ v ∈ Vh, r0v ∈ <I :
(
r0v

)
(i) = v(pi), i = 1, 2, · · · , I;

∀ w ∈ Vh, r1w ∈ <J :
(
r1w

)
(j) =

∂w

∂ν1
(mj), j = 1, 2, · · · , J.

Define the discrete biharmonic extension operator Ek
h : <I×<J → V k

h as follows:

∀ (λ, µ) ∈ <I ×<J , Ek
h(λ, µ) ∈ V k

h :

 Ak(E
k
h(λ, µ), v) = 0, ∀ v ∈ V k,0

h ,
r0E

k
h(λ, µ) = λ,

r1E
k
h(λ, µ) = µ.

Theorem 2.4. (Extension theorem for Morley elements) If Ω1,Ω2 are convex
polygonal domains, there exist two constants σ, τ , independent of the quasi–uniform
mesh parameter h, such that

σ = sup
(λ,µ)∈<I×<J

A1(E
1
h(λ, µ), E1

h(λ, µ))

A2(E2
h(λ, µ), E2

h(λ, µ))
<∞(2.7)

τ = sup
(λ,µ)∈<I×<J

A2(E
2
h(λ, µ), E2

h(λ, µ))

A1(E1
h(λ, µ), E1

h(λ, µ))
<∞(2.8)

Proof. Let (λ, µ) ∈ <I × <J . Denote uhk = Ek
h(λ, µ) for convenience. With the

inverse inequality and Theorem 2.3, we have

|uh1 − I1
hu

h
1 |2h,Ω1

=
∑
e⊂Ω1

|uh1 − I1
hu

h
1 |22,e ≤ ch−4‖uh1 − I1

hu
h
1‖2

L2(Ω1)
≤ c|uh1 |2h,Ω1

.

Therefore, I1
hu

h
1 ∈ AR1

h ⊂ H2(Ω1) and the triangle inequality yields

|I1
hu

h
1 |H2(Ω1) = |I1

hu
h
1 |h,Ω1 ≤ c|uh1 |h,Ω1 .

Furthermore, applying the trace theorem and the Poincaré–Friedrichs inequality in
H2(Ω1) gives

‖I1
hu

h
1‖2

H
3
2
00(Γ)

+ ‖∂(I1hu
h
1 )

∂ν1
‖2

H
1
2
00(Γ)

≤ c
(
‖I1

hu
h
1‖2

H
3
2 (∂Ω1)

+ ‖∂(I1hu
h
1 )

∂ν1
‖2

H
1
2 (∂Ω1)

)
≤ c‖I1

hu
h
1‖2

H2(Ω1)
≤ c|I1

hu
h
1 |2H2(Ω1) ≤ c|uh1 |2h,Ω1

≤ cA1(u
h
1 , u

h
1).

(2.9)

Construct the following continuous problem:
a(u2, v) = 0, ∀ v ∈ H2

0 (Ω2),
u2 = ∂

∂ν2
u2 = 0, on ∂Ω2\Γ,

u2 = I1
hu

h
1 ,

∂
∂ν2

u2 = − ∂
∂ν1

(I1
hu

h
1), on Γ.

(2.10)

Note that uh2 is the Morley approximation of u2. By Theorem 2.2, we obtain

A2(u
h
2 , u

h
2 ) ≤ 2

(
A2(u2, u2) +A2(u2 − uh2 , u2 − uh2)

)
≤ c

(
‖u2‖2

H2(Ω2) + h2‖u2‖2
H3(Ω2)

)
.

The well–known a priori inequalities of the elliptic problem (2.10) yield [7, 9, 19]

‖u2‖2
H2(Ω2) ≤ c

(
‖u2‖2

H
3
2 (∂Ω2)

+ ‖ ∂
∂ν2

u2‖2

H
1
2 (∂Ω2)

)
,

‖u2‖2
H3(Ω2) ≤ c

(
‖u2‖2

H
5
2 (∂Ω2)

+ ‖ ∂
∂ν2

u2‖2

H
3
2 (∂Ω2)

)
.
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Since u2 and ∂
∂ν2

u2 are piecewise polynomials on ∂Ω2, applying the fractional order

inverse inequalities implied by the interpolation theorem of Sobolev spaces [1], we
see that

|u2|2H3(Ω2) ≤ ch−2
(
‖u2‖2

H
3
2 (∂Ω2)

+ ‖ ∂
∂ν2

u2‖2

H
1
2 (∂Ω2)

)
.

With the above inequalities, we get

A2(u
h
2 , u

h
2 ) ≤ c

(
‖u2‖2

H
3
2 (∂Ω2)

+ ‖ ∂
∂ν2

u2‖2

H
1
2 (∂Ω2)

)
≤ c

(
‖I1

hu
h
1‖2

H
3
2
00(Γ)

+ ‖∂(I1hu
h
1 )

∂ν1
‖2

H
1
2
00(Γ)

)
.

(2.11)

Consequently, (2.8) follows from (2.9) and (2.11), (2.7) can be established in the
same manner.

Define the discrete extension operator T k
h : <I ×<J → V k

h as follows:

∀ (λ, µ) ∈ <I ×<J , T 1
h(λ, µ) ∈ V 1

h : A1(T
1
h(λ, µ), v) = −A2(E

2
h(λ, µ), v), ∀ v ∈ V 0

h ,

∀ (λ, µ) ∈ <I ×<J , T 2
h(λ, µ) ∈ V 2

h : A2(T
2
h(λ, µ), v) = −A1(E

1
h(λ, µ), v), ∀ v ∈ V 0

h .

Corollary 2.5. Let Ω1,Ω2, σ, τ be the same as those in Theorem 2.4. For any
(λ, µ) ∈ <I ×<J , we have

1

σ
A2(E

2
h(λ, µ), E2

h(λ, µ)) ≤ A1(T
1
h(λ, µ), T 1

h (λ, µ)) ≤ τA2(E
2
h(λ, µ), E2

h(λ, µ)),

(2.12)

1

τ
A1(E

1
h(λ, µ), E1

h(λ, µ)) ≤ A2(T
2
h(λ, µ), T 2

h (λ, µ)) ≤ σA1(E
1
h(λ, µ), E1

h(λ, µ)).

(2.13)

Proof. Let (λ, µ) ∈ <I × <J . Take v ∈ V 0
h s.t. v = Ek

h(λ, µ) on Ωk. Then by the
definition of T 1

h and (2.7), we see that

A2(E
2
h(λ, µ), E2

h(λ, µ)) = −A1(T
1
h(λ, µ), E1

h(λ, µ))

≤
(
A1(T

1
h (λ, µ), T 1

h (λ, µ))
) 1

2
(
A1(E

1
h(λ, µ), E1

h(λ, µ))
) 1

2

≤
(
A1(T

1
h (λ, µ), T 1

h (λ, µ))
) 1

2
(
σA2(E

2
h(λ, µ), E2

h(λ, µ))
) 1

2

.

So

A1(T
1
h (λ, µ), T 1

h (λ, µ)) ≥ 1

σ
A2(E

2
h(λ, µ), E2

h(λ, µ)).

Take v ∈ V 0
h s.t.

v =

{
T 1
h(λ, µ), on Ω1,

E2
h(r0T

1
h(λ, µ), r1T

1
h(λ, µ)), on Ω2.
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Then, it follows from (2.8) and the definition of T 1
h that

A1(T
1
h(λ, µ), T 1

h (λ, µ)) = −A2(E
2
h(λ, µ), E2

h(r0T
1
h(λ, µ), r1T

1
h(λ, µ)))

≤
(
A2(E

2
h(λ, µ), E2

h(λ, µ))
) 1

2(
A2(E

2
h(r0T

1
h(λ, µ), r1T

1
h(λ, µ)), E2

h(r0T
1
h(λ, µ), r1T

1
h (λ, µ)))

) 1
2

≤
(
A2(E

2
h(λ, µ), E2

h(λ, µ))
) 1

2(
τA1(E

1
h(r0T

1
h(λ, µ), r1T

1
h(λ, µ)), E1

h(r0T
1
h (λ, µ), r1T

1
h(λ, µ)))

) 1
2

=
(
A2(E

2
h(λ, µ), E2

h(λ, µ))
) 1

2
(
τA1(T

1
h(λ, µ), T 1

h (λ, µ))
) 1

2

.

Hence we have

A1(T
1
h (λ, µ), T 1

h (λ, µ)) ≤ τA2(E
2
h(λ, µ), E2

h(λ, µ)).

Combining the above inequalities yields (2.12).
In the same manner, (2.13) can be established.

3. Applications to domain decomposition analysis

3.1. Domain decomposition method. The extension theorem plays a key role
in the analysis of nonoverlapping, domain decomposition algorithms with two sub-
domains. As an example, define an algorithm as follows:

Step 1. Let (λ0, µ0) ∈ <I ×<J be given arbitrarily. Set n:=1.
Step 2. Find un1 ∈ V 1

h by solving the subproblem on Ω1: A1(u
n
1 , v) = (f, v)1, ∀ v ∈ V 1,0

h ,
r0u

n
1 = λn−1,

r1u
n
1 = µn−1.

Step 3. Find un2 ∈ V 2
h by solving the subproblem on Ω2:

A2(u
n
2 , v) = −A1(u

n
1 , v) + (f, v), ∀ v ∈ V 2

h .

Step 4. Select the relaxation factor θn ∈ (0, 1) and calculate

λn = θnr0u
n
2 + (1− θn)λn−1, µn = θnr1u

n
2 + (1− θn)µn−1.

Set n:=n+1, return to Step 2 until some reasonable stopping criterion is satisfied.

3.2. Convergence analysis.

Theorem 3.1. Let uh be the solution of (1.4). Let un1 , u
n
2 , λ

n, µn be the values
obtained by the algorithm in §3.1. Let εnk ∈ V k

h s.t.

εnk (p) = unk (p)− uh(p),
∂εnk
∂ν

(m) =
∂unk
∂ν

(m)− ∂uh
∂ν

(m), ∀ p,m ∈ Ωk.

Denote δn = λn − r0uh, η
n = µn − r1uh. Then,

(1)

1

τ
A1(ε

n
1 , ε

n
1 ) ≤ A2(ε

n
2 , ε

n
2 ) ≤ σA1(ε

n
1 , ε

n
1 ).(3.1)

(2) There exists a constant θ∗ ∈ (0, 1], such that

A1(ε
n+1
1 , εn+1

1 ) ≤ κ(θn)A1(ε
n
1 , ε

n
1 ),(3.2)

where κ(θn) < 1, ∀ θn ∈ (0, θ∗) .



EXTENSION THEOREMS FOR PLATE ELEMENTS WITH APPLICATIONS 1385

(3) There exists the optimal relaxation factor θopt, such that

κ(θopt) = min
θ∈(0,θ∗)

κ(θ).(3.3)

Proof. It is easy to see that εn+1
k ∈ V k

h satisfies A1(ε
n+1
1 , v) = 0, ∀ v ∈ V 1,0

h ,
r0ε

n+1
1 = δn,

r1ε
n+1
1 = ηn,

(3.4)

A2(ε
n+1
2 , v) = −A1(ε

n+1
1 , v), ∀ v ∈ V 2

h ,(3.5)

δn+1 = θn+1r0ε
n+1
2 + (1 − θn+1)δ

n, ηn+1 = θn+1r1ε
n+1
2 + (1− θn+1)η

n.

(3.6)

(3.4) and (3.5) yield

A2(ε
n+1
2 , v) = −A1(ε

n+1
1 , v), ∀ v ∈ V 0

h .(3.7)

Therefore εn+1
1 = E1

h(δ
n, ηn), εn+1

2 = T 2
h (δn, ηn). By Corollary 2.5, we get (3.1).

Furthermore, it follows from (3.4) and (3.6) that

εn+1
1 = θnE

1
h(r0ε

n
2 , r1ε

n
2 ) + (1 − θn)εn1 ,

A1(ε
n+1
1 , εn+1

1 ) = θ2
nA1(E

1
h(r0ε

n
2 , r1ε

n
2 ), E1

h(r0ε
n
2 , r1ε

n
2 ))

+2θn(1 − θn)A1(E
1
h(r0ε

n
2 , r1ε

n
2 ), εn1 )

+(1− θn)2A1(ε
n
1 , ε

n
1 ).

(3.8)

By (2.7) and (3.1), we see that

A1(E
1
h(r0ε

n
2 , r1ε

n
2 ), E1

h(r0ε
n
2 , r1ε

n
2 )) ≤ σA2(ε

n
2 , ε

n
2 ) ≤ σ2A1(ε

n
1 , ε

n
1 ).

(3.9)

(3.7) gives A2(ε
n+1
2 , εn+1

2 ) = −A1(ε
n+1
1 , E1

h(r0ε
n+1
2 , r1ε

n+1
2 )). So by (3.1), we get

A1(E
1
h(r0ε

n
2 , r1ε

n
2 ), εn1 ) = −A2(ε

n
2 , ε

n
2 ) ≤ − 1

τ
A1(ε

n
1 , ε

n
1 ).(3.10)

If 0 < θn < 1, then (3.2) follows from (3.8), (3.9) and (3.10). Furthermore, κ(θn)
has the following expression:

κ(θn) =
1

τ

(
θ2
n(σ2τ + τ + 2)− 2θn(τ + 1) + τ

)
.(3.11)

An elementary calculation indicates 0 ≤ κ(θn) < 1, if and only if

0 < θn < θ∗ = min
(
1,

2(τ + 1)

σ2τ + τ + 2

)
.

The optimal relaxation factor is given by

θopt =
τ + 1

σ2τ + τ + 2
,(3.12)

for which

κ(θopt) =
σ2τ2 − 1

τ(σ2τ + τ + 2)
= min

θ∈(0,θ∗)
κ(θ).(3.13)

So (3.3) follows from (3.13).
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The algorithm in §3.1 is the generalization of the so–called Dirichlet–Neumann
alternative method or the Marini–Quarteroni method [17] to plate bending prob-
lems. Its essence lies in the continuing correction of the initial guess of (r0uh, r1uh)
by imposing r0(4un1 ) = r0(4un2 ) and r1(4un1 ) = r1(4un2 ) at each iteration. The-
orem 3.1 implies that the algorithm in §3.1 converges geometrically and indepen-
dently of h, which is guaranteed by the extension theorem (Theorem 2.4). In the
special case that the domain Ω is symmetric with respect to Γ, then σ = τ = 1 in
(2.7) and (2.8); thus, by (3.12) and (3.13), θopt = 1

2 and κ(θopt) = 0, which together
with (3.3) show that only one iteration is needed to obtain the solution of (1.4).

Of course, other algorithms in [11] can be generalized and their analysis can be
carried out similarly, based on Theorem 2.4.

3.3. Numerical experiments. Decompose the domain Ω = (0, 1.5)×(0, 1)∪(0, 1)
×[1, 2) into subdomains: Ω1 = (0, 1)×(1, 2), Ω2 = (0, 1.5)×(0, 1). Triangulate Ω to
get the fine mesh Ωh so that each element e ∈ Ωh is an isosceles right triangle with h
as its diameter. When h = 0.25, there are 32, 48 elements and 81, 117 interpolation
points in Ω1,Ω2, respectively. When h = 0.125, there are 128, 192 elements and
289, 425 interpolation points in Ω1,Ω2, respectively. When h = 0.0625, there are
512, 768 elements and 1089, 1617 interpolation points in Ω1,Ω2, respectively. In the
above three cases, there are 7, 15 and 31 interpolation points on Γ respectively. For
an edge midpoint m, if m ∈ ∂e1 ∩ ∂e2, then the outward normal vectors of e1 and
e2 at m are opposite. To ensure that ∂v

∂ν (m) are determined uniquely, we require
that the outward (inward) normal vectors be chosen for the triangular elements
with even (odd) numbers. In the following tables, n is the number of iterations,

εn is the error after n iterations, ‖εn‖A = A(εn, εn), ρn = n
√‖εn‖A/‖ε0‖A and

‖εn‖∞ = ‖εn‖L∞(Ω).
When using the algorithm of §3.1 to solve (1.4), a procedure is built up to

generate a sequence of the discrete biharmonic functions on Ω1 and Ω2 with the
same values at p,m ∈ Γ. This allows us to compute, at each iteration, two constants
σn, τn suggested by (2.7) and (2.8), which combined with (3.12) gives the sequence
of approximate values θn of the optimal relaxation factor θopt. We point out that
the evaluation of θn does not require the solution of any additional problem in our
algorithm (for details, cf. [17] ). The main experimental results, obtained on a
SGI work station, are listed in Table 1 and Table 2, and support our theoretical
analysis.

Table 1. Error reduction factor ρn vs. h

n 1 5 9 13
h = 0.2500 0.0253 0.0343 0.0261 0.0395
h = 0.1250 0.0272 0.0476 0.0438 0.0558
h = 0.0625 0.0264 0.0513 0.0473 0.0464

Table 2. The errors ‖εn‖A and ‖εn‖∞ when h = 0.0625

n 1 5 9 13
‖εn‖A 0.487 · 109 0.129 · 104 0.532 · 10−1 0.718 · 10−6

‖εn‖∞ 0.952 · 104 0.837 · 102 0.261 · 100 0.459 · 10−3
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4. Extension theorems for other plate elements

Let Vh be Fraeijs de Veubeke element space Fh or Zienkiewicz element space
Zh or Adini element space ADh described in [4]. As in Sect. 2, we can define the
discrete biharmonic operator Ek

h : <M → V k
h correspondingly. Here M denotes

the number of degrees of freedom associated with the interface Γ.

Theorem 4.1. (Extension theorem) Let Ω1,Ω2 be convex. If Vh is one of the three
nonconforming plate element spaces Fh, Zh and ADh, there exist two constants
σ̂, τ̂ , independent of the quasi–uniform mesh parameter h, such that

σ̂ = sup
η∈<M

A1(E
1
hη, E

1
hη)

A2(E2
hη, E

2
hη)

<∞, τ̂ = sup
η∈<M

A2(E
2
hη, E

2
hη)

A1(E1
hη, E

1
hη)

<∞.(4.1)

We can adopt the ideas of the proof of Theorem 2.4 to prove Theorem 4.1 with
the following points in mind:

1. The error of the nonconforming approximate solution of the inhomogeneous
boundary value problem can be estimated by first obtaining an inequality similar to
(2.1), subtracting off appropriate “conforming” parts as in (2.2) and then applying
the bilinear lemma [6], cf. [3], [6], [15], [22].

2. The conforming interpolation operator Ikh must be constructed by similarly
modifying the corresponding one introduced in [4] and Theorem 2.3 still holds in
this case.

Theorem 4.2. (Extension theorem) Let Ω1,Ω2 be convex. If Vh is one of the
conforming plate element spaces [6], then (4.1) holds.

Since it is unnecessary to construct the conforming interpolation operator Ikh in
this case, the proof of Theorem 4.2 is much simpler than the proof of Theorem 2.4,
so we omit it here. Analogous results may be found in [24].

Further applications of these extension theorems will be given in forthcoming
papers.
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