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A NEW CLASS OF ASYNCHRONOUS ITERATIVE

ALGORITHMS WITH ORDER INTERVALS

J. C. MIELLOU, D. EL BAZ, AND P. SPITERI

Abstract. This paper deals with a new class of parallel asynchronous itera-
tive algorithms for the solution of nonlinear systems of equations. The main
feature of the new class of methods presented here is the possibility of flexi-
ble communication between processors. In particular partial updates can be
exchanged. Approximation of the associated fixed point mapping is also con-
sidered. A detailed convergence study is presented. A connection with the
Schwarz alternating method is made for the solution of nonlinear boundary
value problems. Computational results on a shared memory multiprocessor
IBM 3090 are briefly presented.

1. Introduction

In the past few years a large number of parallel computing methods have been
proposed for the solution of large scale numerical problems (see Bertsekas and
Tsitsiklis [7], Hockney and Jesshope [22], Ortega [30], and Schendel [34]). Among
parallel algorithms asynchronous iterative methods have received a considerable
amount of attention. Asynchronous algorithmic models were introduced by Chazan
and Miranker (see [8]) for the solution of linear systems of equations. A necessary
and sufficient condition of convergence is given in [8] (see also [2]).

In the nonlinear case, the convergence properties of parallel asynchronous itera-
tive algorithms are now well understood. Many authors have concentrated on fixed
point problems. In particular Miellou (see [24] and [26]) and Baudet (see [3]) have
shown contraction properties using a vectorial norm (see also [33]). El Tarazi [15]
has shown a contraction property using an appropriate scalar norm.

A complementary approach dealing with the properties of the nonlinear equa-
tions operator was considered by Miellou and Spiteri [29], Giraud Spiteri [20], and
Spiteri [35] (see also [36]); the authors quoted above have proposed sufficient condi-
tions of convergence for asynchronous iterations. The reader is referred to Giraud
and Spiteri [21] for an implementation of asynchronous algorithms.

Some authors have also made use of the discrete maximum principle. Monotone
sequences of vectors are generated in this case. Miellou [25] has given a sufficient
condition of convergence for asynchronous iterations under partial ordering. Other
contributions are due to El Tarazi [16], Miellou [27], El Baz (see [10], [12], and
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[13]), Frommer (see [18] and [19]). Reference is also made to Cousot [9] for a study
related to the proof of programs using fixed point techniques.

Finally, we note that Bertsekas has proposed a different approach based on the
definition of a sequence of nested level sets (see [5] and [7], see also [4], [6], and [11]).
Perturbation of fixed point iterative algorithms has been studied in this context by
Miellou, Cortey-Dumont, and Boulbrachêne (see [28]).

In this paper we consider partial ordering techniques and propose new parallel
asynchronous iterative methods which are more general than the ones quoted above.
An original feature of the new parallel iterative methods presented here is flexible
communication between processors. More precisely, updating phases can use data
which are issued from computations in progress. This leads to a better coupling
between communication and computation. In contrast with previous studies (see
[3], [8], and [25]), the methods presented here permit one to consider block itera-
tive schemes with delayed access to block subvectors, the components of which are
relative to different iteration numbers or intermediate computations not explicitly
labelled by an iteration number. Another important feature of this paper is the
use of mappings which approximate the solution. A detailed convergence study
is presented. The new model of parallel asynchronous iterations proposed in this
paper can be applied with success to subdomain methods for the solution of partial
differential equations and gradient type methods for network flow problems. Com-
putational studies using shared memory and distributed memory multiprocessors
are presented in detail in two complementary papers (see [14] and [37]). Com-
putational experiences have shown the practical interest of the proposed parallel
asynchronous iterative methods. A brief presentation of numerical results for the
solution of partial differential equations via subdomain methods is made at the end
of the paper.

The paper contains five sections. In Section 2 we present the main problem
and give some background material. Section 3 deals with the new class of parallel
asynchronous iterative methods. Two kinds of approximations of the fixed point
mapping are presented in Section 4. In Section 5 we consider the application of
the theoretical study to the Schwarz alternating method for the numerical solution
of boundary value problems; computational experience using a shared memory
multiprocessor IBM 3090 is also presented in this section.

2. Problem statement

2.1. Notations, background material. Let n be a positive integer and assume
that

a is a continuous mapping of Rn into Rn,(2.1)

a is a surjective M -function.(2.2)

We recall that the mapping a is anM -function (see [31] and [32]) if a is off-diagonally
antitone i.e. for any x ∈ Rn, the functions defined as follows:{

alk : {t ∈ R | x+ tek ∈ Rn} → R,

alk(t) = al(x+ tek), l 6= k, l, k = 1, . . . , n,
(2.3)

are monotone decreasing, where ek ∈ Rn k = 1, . . . , n, are the unit canonical basis
vectors and furthermore a is inverse isotone i.e.

a(x) ≤ a(y) for any x, y ∈ Rn implies that x ≤ y.(2.4)
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In the sequel we will make use of the following notation: for any sequence {xk} ⊂
Rn, limk→∞ xk = +∞ (limk→∞ xk = −∞) if limk→∞ xki = +∞ (limk→∞ xki =
−∞) for at least one index i.

Definition 1. The mapping a : Rn → Rn is order-coercive if for any sequence
{xk} ⊂ Rn, such that xk ≤ xk+1, k = 0, 1, . . . , and limk→∞ xk = +∞, we have
limk→∞ a(xk) = +∞ and for any sequence {xk} ⊂ Rn, such that xk ≥ xk+1, k =
0, 1, . . . , and limk→∞ xk = −∞, we have limk→∞ a(xk) = −∞.

We can characterize the surjectivity of M -functions by means of the order-
coercivity concept (see [32, Theorem 3.7]).

Theorem 1. Let a : Rn → Rn be a continuous M -function. Then a is surjective
if and only if a is order-coercive.

We consider now the solution of the following system of equations

a(y) = 0.(2.5)

Under the above assumptions problem (2.5) has a unique solution.

2.2. Subproblem decomposition and associated fixed point mapping. Let
E = Rn and consider the following splitting of E : E =

∏α
i=1 Ei, where α is a

positive integer, Ei = Rni , and
∑α

i=1 ni = n. Each subspace Ei is endowed with
the natural (or componentwise) partial ordering associated with the cone Ki = Rni

+

of vectors with non-negative components in Rni . Let w ∈ E. Consider the following
block decomposition of w:

w = {w1, . . . , wi, . . . , wα} ∈
α∏
i=1

Ei,

and the following block decomposition of a:

a(w) = {a1(w), . . . , ai(w), . . . , aα(w)} ∈
α∏
i=1

Ei.

In the sequel ai(w1, . . . , wi−1, yi, wi+1, . . . , wα) will also be denoted by ai(yi;w).
Let assumptions (2.1) and (2.2) hold. Then{

for all i ∈ {1, . . . , α} and all w ∈ E, the mapping: yi → ai(yi, w),

is a continuous surjective M -function of Rni onto Rni
(2.6)

(see [32, Theorem 3.5]). Moreover it follows from the assumption (2.2) that{
for all w ∈ E and i ∈ {1, . . . , α}, the problem ai(zi;w) = 0,

has a unique solution zi.
(2.7)

Thus the mapping F from Rn onto Rn such that

F (w) = z = {z1, . . . , zi, . . . , zα},(2.8)

with zi from (2.7) is well-defined. It is a fixed point formulation for problem (2.5)
since

F (y) = y ⇔ a(y) = 0.

Proposition 1. F is isotone on E.
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Proof. Let w and w′ ∈ E such that w ≤ w′. Let z = F (w) and z′ = F (w′), where
z′i satisfies ai(z

′
i;w

′) = 0, i ∈ {1, . . . , α}. By the off-diagonal antitonicity of a we
have

ai(z
′
i;w) ≥ 0, i ∈ {1, . . . , α}.

Thus for all i ∈ {1, . . . , α}, we have

ai(z
′
i;w) ≥ ai(zi;w) = 0,

and by the inverse isotonicity of ai(zi;w), we have for all i ∈ {1, . . . , α}
zi ≤ z′i.

2.3. Supersolutions and a-supersolutions.

Definition 2. A vector y ∈ E is a supersolution (a subsolution) if F (y) ≤ y
(F (y) ≥ y).

Definition 3. A vector y ∈ Rn
+ is an a-supersolution (an a-subsolution) if a(y) ≥ 0

(a(y) ≤ 0).

Proposition 2. If y is an a-supersolution, then y is a supersolution.

Proof. It follows from (2.7) and (2.8) that for all i ∈ {1, . . . , α}, we have

ai(Fi(y), y) = 0 ≤ ai(y).

By the inverse isotonicity of ai we have

Fi(y) ≤ yi.

Remark 1. In general the converse is false. For example, consider the case where a
is a linear mapping. Let A be the associated matrix, then it follows from assumption
(2.2) that A is an M -matrix. We have

ai(y) =

α∑
j=1

Aijyj ,

where {Aij} results from the block decomposition ofA. The block diagonal matrices
Aii, are necessarily M -matrices. We have also

yi − Fi(y) = yi +
∑
j 6=i

A−1
ii Aijyj .

In particular, we note that yi−Fi(y) > 0, does not imply Aii(yi−Fi(y)) = ai(y) > 0.

Indeed, consider the case where Ei = R2 and Aii =
∣∣ 1 −0,5
−0,5 1

∣∣; then for yi−Fi(y) =

{ 1
10 , 1}T , we find that

Aii(yi − Fi(y)) = ai(y) =

{
−2

5
,
19

20

}T

.

However in the linear case if F corresponds to the Jacobi mapping associated with
a point decomposition of the M -matrix A (i.e. α = n and Ej = R, j ∈ {1, . . . , n}),
then w ≥ F (w) is equivalent to Aw ≥ 0.

Proposition 3. Let a be an M -function and w ∈ Rn an a-supersolution. Let
s ⊂ {1, . . . , n} and v ∈ Rn, be such that v ≤ w, ai(vi;w) ≥ 0, for all i ∈ s and
vi = wi, for all i /∈ s, then v is an a-supersolution.
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Proof. For all i ∈ {1, . . . , n} we have ai(vi;w) ≥ 0, since w is an a-supersolution.
Thus by the off-diagonal antitonicity of a we find that

ai(vi; v) ≥ ai(vi;w) ≥ 0.

Proposition 4. Let a be an M -function, v and w two a-supersolutions. Then
v ∧ w = {min{v1, w1}, . . . ,min{vr, wr}, . . . ,min{vn, wn}} is an a-supersolution.

Proof. We use the following notation: a(v ∧ w) = {a1(v ∧ w), . . . , ar(v ∧ w), . . . ,
an(v ∧w)}, where ar corresponds here to a point decomposition of the mapping a.
For all r ∈ {1, . . . , n}, we have

ar(v ∧ w) = ar(vr ∧ wr; v ∧w).

By the off-diagonal antitonicity of a, we have for all r ∈ {1, . . . , n},
ar(wr; v ∧ w) ≥ ar(w) ≥ 0, and ar(vr; v ∧ w) ≥ ar(v) ≥ 0.

Thus, ar(v ∧w) ≥ 0.

3. Asynchronous iterations with order intervals

In Section 2 we have considered a fixed point mapping associated with the exact
solution of the subproblems (2.7). In this section we study fixed point mappings
associated with approximate solutions. Such mappings are introduced for the so-
lution of problem (2.5) via parallel asynchronous iterative methods with flexible
communication.

3.1. Supermappings and a-supermappings associated with F . Throughout
the paper we adopt the following notation for order intervals. Let xi, yi ∈ Ei, be
such that xi ≤ yi; then an order interval in Ei is denoted by

〈xi, yi〉i = {zi ∈ Ei | xi ≤ zi ≤ yi}.
Similarly, let x, y ∈ E, be such that x ≤ y; then an order interval in E is denoted
by

〈x, y〉 = {z ∈ E | x ≤ z ≤ y}.

Definition 4. Let a be an M -function. Then the mapping F a with components
F a
i is an a-supermapping associated with F if for all i ∈ {1, . . . , α} and y elements

of the domain of definition of F a
i : {y ∈ E | ai(y) ≥ 0}, we have F a

i (y) ≤ yi,
ai(F

a
i (y), y) ≥ 0, and F a

i (y) 6= yi if Fi(y) 6= yi.

Definition 5. Let a be an M -function. Then the mapping F a with components
F a
i is a supermapping associated with F if for all i ∈ {1, . . . , α} and y element of

the domain of definition of F a
i : {y ∈ E | ai(y) ≥ 0}, we have F a

i (y) ∈ 〈Fi(y), yi〉i
and F a

i (y) 6= yi if Fi(y) 6= yi.

Proposition 5. If F a is an a-supermapping associated with F , then F a is a su-
permapping associated with F .

Proof. From (2.7), (2.8), and Definition 4 it follows that

ai(Fi(y); y) = 0 ≤ ai(F
a
i (y); y).

Then

Fi(y) ≤ F a
i (y),

since ai is inverse isotone.
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Remark 2. The converse of Proposition 5 is in general false. This result can be
shown using an argument similar to the one developed in Remark 1.

Remark 3. We can analogously define submappings and a-submappings associated
with F by reversing the inequalities.

3.2. A new class of parallel asynchronous iterations. In this section we define
a general class of iterative methods which contains in particular sequential relax-
ation methods like Jacobi or Gauss-Seidel and parallel iterative methods whereby
components are updated simultaneously by concurrent processors without any or-
der nor synchronization. The new class of asynchronous iterations presented here
allows also flexible communication between processors. We introduce first the con-
cepts of steering and sequence of delays.

Definition 6. A steering S of components of the iteration vector, is a sequence
{s(p)} where p ∈ N , the set of natural integers, such that

for all p ∈ N, s(p) ∈ {1, . . . , α}.(3.1)

Definition 7. A sequence {r(p)} (or R) of maximal delays in the access to the
updated components of the iteration vector, is defined by

r(p) = {r1(p), . . . , ri(p), . . . , rα(p)} ∈ Nα for all p ∈ N,

where for all i ∈ {1, . . . , α} and p ∈ N , 0 ≤ ri(p) ≤ p and ri(p) = 0 if i = s(p).

We note that the latest condition has been introduced in order to simplify the
analysis of the algorithms. This assumption is more restrictive than the one used
in the classical model, however it is natural since it implies that each processor has
access to its own working space without delay. In particular, this condition has
been used in the framework of interval arithmetic (see [19]).

We introduce the functions ρi : N → N, i ∈ {1, . . . , α}, defined by ρi(p) =
p− ri(p) and satisfying for all i ∈ {1, . . . , α} and p ∈ N :

0 ≤ ρi(p) ≤ p,(3.2)

ρi(p) = p, if i = s(p).(3.3)

In the sequel, we will denote by ρ(p) the mapping from Nα into itself, with compo-
nents ρi(p), i ∈ {1, . . . , α}. We introduce now the sequences {Kp

i }, p ∈ N , defined
by

Kp
i = {k ∈ N | s(k) = i, 0 ≤ k < p}, i ∈ {1, . . . , α}, p ∈ N.(3.4)

The elements of the set Kp
i correspond to the iteration numbers between 0 and p

at which the ith block component of the iteration vector is updated. We note that

{Kp
i } is a denumerable sequence of finite elements of the set of parts of N .(3.5)

Moreover {Kp
i } is nested:

Kp
i ⊆ Kp+1

i .(3.6)

Definition 8. Asynchronous iterations with order intervals associated with the a-
supermapping F a are sequences {yp} defined recursively as follows. For all p ∈ N ,{

yp+1
i = F a

i (ỹp), if i = s(p),

yp+1
i = ypi , if i 6= s(p),

(3.7)
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where ỹp is implicitly defined by

ỹ0 = y0, an a-supersolution(3.8)

and

ỹp ∈ 〈yp, yρ(p) ∧ ỹq〉, if p ≥ 1,(3.9)

where the block-components of the vector yρ(p) ∈ E are the subvectors y
ρi(p)
i , i ∈

{1, . . . ,
α}, and q = maxk∈Kp

s(p)
k.

We note that ỹp ∈ 〈yp, yρ(p)〉 if Kp
i = ∅, i = 1, . . . , α, where ∅ denotes the

empty set.

Remark 4. Asynchronous iterations defined by (3.7)–(3.9) are general iterative
methods whereby iterations are carried out in parallel by α processors in arbitrary
order and possibly without any synchronization. Flexible communication between
processors is the main feature of this class of algorithms. Indeed we note that the
block components ỹpj of the iteration vector used at the time of the updating of

yp+1
i are taken anywhere in the order interval 〈ypj , y

ρ(p)
j ∧ ỹqj 〉j , where ỹqj denotes

the value used at the time of the last updating of the block-component yi and

y
ρ(p)
j is related to the non-deterministic behaviour of the iterative scheme. The

introduction of order intervals permits us to take into account data coming from
computations which are in progress and which are not explicitly labelled by an
iteration number. So, there is a better coupling between communication and com-
putation and we may expect a faster convergence. Moreover each communication
of a block subvector is not necessarily associated with a given iteration number.
The exchanged values of the components of each block subvector can be relative
to different iteration numbers. We note that the model presented in this study
permits us to analyse asynchronous block iterative methods directly in the block
decomposition framework. So, it is not necessary to introduce a model defined with
respect to individual components that would be artificial and cumbersome in the
context of this study. The use of a-supermappings which approximate the solution
of subproblems is another important feature of the parallel methods presented here.

Proposition 6. Let a be a continuous surjective M -function, F the fixed point
mapping defined by (2.7) and (2.8), F a an a-supermapping associated with F ,
y0 ∈ E an a-supersolution, S, and R a steering and a sequence of delays, respec-
tively. Then the asynchronous iteration {yp} given by (3.7)–(3.9) is well defined
and satisfies

y∗ ≤ · · · ≤ yp+1 ≤ yp ≤ · · · ≤ y0,

and limp→∞ yp = y∗, where y∗ is an a-supersolution of problem (2.5).

Proof. We proceed by induction. It follows from the equality (3.8) that

as(0)(ỹ
0) = as(0)(y

0) ≥ 0.(3.10)

Thus, the relations (3.7) and (3.10) imply the existence of a unique y1 ∈ E. By the
definition of the a-supermapping F a, it follows from (3.7) and (3.8) that

y1
s(0) ≤ ỹ0

s(0) = y0
s(0).(3.11)
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Moreover, it follows from (3.7) and (3.11) that

y1 ≤ y0.(3.12)

It follows from the definition of the a-supermapping F a, (3.7) and (3.8) that

ai(y
1) = ai(y

1
i ; y

0) ≥ 0, if i = s(0).(3.13)

Moreover, by the off-diagonal antitonicity of a it follows from (3.7), (3.12), and
(3.8) that

ai(y
1) = ai(y

0
i ; y

1) ≥ ai(y
0) ≥ 0, if i 6= s(0).(3.14)

The inequalities (3.13) and (3.14) imply

a(y1) ≥ 0.(3.15)

The relations (3.10), (3.12), and (3.15) give the first step of the induction. We
assume now that for some p there exists a unique ym ∈ E, for all m, 0 < m ≤ p
and a unique ỹm ∈ E, for all m, 0 ≤ m < p, such that

as(m)(ỹ
m) ≥ 0,(3.16)

yp ≤ · · · ≤ ym ≤ ym−1 ≤ · · · ≤ y0,(3.17)

a(ym) ≥ 0.(3.18)

It follows from (3.17), (3.3), and (3.9) that

ỹms(m) = yms(m), for all m ≤ p.(3.19)

From the relations (3.4) and (3.7) we have

yps(p) = y0
s(p), if Kp

s(p) = ∅.(3.20)

It follows from the relations (3.17), (3.9), and (3.2) that

ỹp ≤ y0, if Kp
s(p) = ∅.(3.21)

By the off-diagonal antitonicity of a it follows from the relations (3.19)–(3.21) that

as(p)(ỹ
p) = as(p)(y

0
s(p); ỹ

p) ≥ as(p)(y
0) ≥ 0, if Kp

s(p) = ∅.(3.22)

Consider now the case where Kp
s(p) 6= ∅. From (3.7) and (3.4) we have

yps(p) = yq+1
s(q) , if Kp

s(p) 6= ∅,(3.23)

where

q = max
k∈Kp

s(p)

k.(3.24)

Thus, from the equalities (3.19) and (3.23) we have

ỹps(p) = yps(p) = yq+1
s(q) , if Kp

s(p) 6= ∅.(3.25)

Moreover, from the relation (3.9) we find that

ỹp ≤ ỹq, if Kp
s(p) 6= ∅.(3.26)

By the off-diagonal antitonicity of a and the definition of the a-supermapping F a,
it follows from the relations (3.25), (3.26), and (3.16) that

as(p)(ỹ
p) = as(q)(y

q+1
s(q) ; ỹ

p) ≥ as(q)(y
q+1
s(q) ; ỹ

q) ≥ 0, if Kp
s(p) 6= ∅.(3.27)

We note that the relations (3.22) and (3.27) extend the inequality (3.16) to rank
p+ 1. The relations (3.7)–(3.9), (3.22), and (3.27) imply the existence of a unique
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yp+1. By the definition of the a-supermapping F a, it follows from the relations
(3.7) and (3.19) that

yp+1
s(p) ≤ ỹps(p) = yps(p).(3.28)

Thus, it follows from the relations (3.7) and (3.28) that

yp+1 ≤ yp.(3.29)

We note that (3.29) extends the inequality (3.17) to rank p+1. By the off-diagonal
antitonicity of a and the definition of the a-supermapping F a, it follows from the
relations (3.29), (3.9), and (3.7) that

as(p)(y
p+1) ≥ as(p)(y

p+1
s(p) ; y

p) ≥ as(p)(y
p+1
s(p) ; ỹ

p) ≥ 0.(3.30)

Moreover, by the off-diagonal antitonicity of a it follows from (3.7), (3.29), and
(3.18) that

aj(y
p+1) = aj(y

p
j ; y

p+1) ≥ aj(y
p) ≥ 0, if j 6= s(p).(3.31)

The inequalities (3.30) and (3.31) imply

a(yp+1) ≥ 0.(3.32)

The inequality (3.32) extends (3.18) to rank p+1. Thus, the induction is complete.
By the surjectivity of a, there exists ȳ ∈ E such that

a(ȳ) = 0.(3.33)

Moreover, we have

a(yp) ≥ 0, for all p.(3.34)

By the inverse isotonicity of a it follows from the relations (3.33) and (3.34) that
ȳ ≤ yp, for all p.

Hence, there exists y∗ such that ȳ ≤ y∗, y∗ ≤ yp for all p, and

lim
p→∞ yp = y∗.(3.35)

By the continuity of the mapping a it follows from the relations (3.34) and (3.35)
that

a(y∗) ≥ 0.

Thus, y∗ is an a-supersolution.

4. Two classes of a-supermappings and associated

convergence results

4.1. a-supermappings of the first kind.

Definition 9. Let F a and F b be two a-supermappings associated with F with
components F a

i and F b
i respectively, defined on the domain {y ∈ E | ai(y) ≥ 0}.

Then F a and F b satisfy the relation

F aαF b,

if for all i ∈ {1, . . . , α} and y element of the domain {y ∈ E | ai(y) ≥ 0}, we have

F b
i (y) ∈ 〈F a

i (y), yi〉i.(4.1)
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Definition 10. The mapping F a with components F a
i is an a-supermapping of the

first kind associated with F if F a is an a-supermapping associated with F , there
exists an a-supermapping F b associated with F such that F aαF b, and

yp ↓ y∗, p→∞ implies F b
i (yp) ↓ F b

i (y∗), p→∞ for all i ∈ {1, . . . , α},(4.2)

where the notation yp ↓ y∗, p→∞ means that

y∗ ≤ · · · ≤ yp+1 ≤ yp ≤ · · · ≤ y0 and lim
p→∞ yp = y∗.

Remark 5. The relation (4.2) can be interpreted as a property of continuity of F b

related to the partial ordering.

Proposition 7. Let the assumptions of Proposition 6 hold. Let F a be an a-super-
mapping of the first kind associated with F and assume that the steering S satisfies

for all i ∈ {1, . . . , α}, the set {p ∈ N | s(p) = i} is infinite and(4.3)

for all i ∈ {1, . . . , α}, lim
p→∞ ρi(p) = +∞.(4.4)

Then the sequence {yp} defined by (3.7)–(3.9) satisfies yp ↓ ȳ, where ȳ is the unique
solution of problem (2.5).

Proof. It follows from (3.3), (3.4), and (3.7) that for all p ≥ 1 such that s(p) = i
and Kp

i 6= ∅, we have

y
ρi(p)
i = ypi = · · · = yq+1

i = F a
i (ỹq),(4.5)

where

q = max
k∈Kp

s(p)

k.(4.6)

We introduce now the sequence {zm} such that for all i ∈ {1, . . . , α},
z2m
i = ypi , m ≥ 0,(4.7)

z2m−1
i = F b

i (ỹq), m ≥ 1,(4.8)

where m = cardKp
i , s(p) = i, and q = maxk∈Kp

i
k. It follows from Proposition 6

and (4.7) that

z2m
i ↓ y∗i ,m→∞ for all i ∈ {1, . . . , α},(4.9)

where y∗ is an a-supersolution. It follows from the relations (4.8), (4.1), (3.19),
(4.5), and (4.7) that for all i ∈ {1, . . . , α} and m ≥ 1, we have

z2m−1
i = F b

i (ỹq) ∈ 〈F a
i (ỹq), yqi 〉i = 〈z2m

i , z2m−2
i 〉i.(4.10)

Consider now the following notation. For all i ∈ {1, . . . , α} and l ∈ N ,

zli =

{
z2m
i if l = 2m,

z2m−1
i if l = 2m− 1.

(4.11)

The relations (4.9)–(4.11) imply that

zli ↓ y∗i , l→∞, for all i ∈ {1, . . . , α}.(4.12)

We note that limp→∞ cardKp
i = +∞ since

Kp
i = {k ∈ N | s(k) = i and 0 ≤ k < p} ⊂ {k ∈ N | s(k) = i},
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and the set {k ∈ N | s(k) = i} is infinite from (4.3). Hence q = maxk∈Kp
i
k → +∞,

if m = cardKp
i → +∞. So, it follows from the relations (4.12) and (4.8) that for

all i ∈ {1, . . . , α},

y∗i = lim
m→∞ z2m−1

i = lim
q→∞F b

i (ỹq).(4.13)

It follows from (3.9) and (4.4) that

ỹq ↓ y∗, q →∞.(4.14)

Thus, the relations (4.13), (4.14), and (4.2) imply

y∗i = lim
q→∞F b

i (ỹq) = F b
i (y∗), for all i ∈ {1, . . . , α}.

It follows from Definition 4 that F b
i (y∗) = y∗i implies Fi(y

∗) = y∗i , for all i ∈
{1, . . . , α}. Hence, y∗ = ȳ which is the unique solution of problem (2.5).

4.2. a-supermappings of the second kind.

Definition 11. The mapping F a with components F a
i is an a-supermapping of

the second kind associated with F if F a is an a-supermapping associated with F
and for all i ∈ {1, . . . , α} and y element of the domain of definition of F a

i : {y ∈ E |
ai(y) ≥ 0}, there exists δ > 0 such that

‖yi − F a
i (y)‖i ≥ δ‖yi − Fi(y)‖i,(4.15)

where ‖ · ‖i is a norm defined in Ei.

Proposition 8. Let the assumptions of Proposition 7 hold and assume that F a is
an a-supermapping of the second kind associated with F . Then the sequence {yp}
defined by (3.7)–(3.9) satisfies yp ↓ ȳ, where ȳ is the unique solution of problem
(2.5).

Proof. It follows from Proposition 6 that yp ↓ y∗. Then for all i ∈ {1, . . . , α} and
ε > 0, there exists p(ε) ∈ N , such that for all p ≥ p(ε) with s(p) = i, we have

‖ypi − y∗i ‖i ≤
ε

2
.δ and ‖yp+1

i − y∗i ‖i ≤
ε

2
.δ.

Then

‖ypi − yp+1
i ‖i ≤ ε.δ.(4.16)

It follows from (4.16), (3.7), (3.3), (3.9), and (4.15) that for all i ∈ {1, . . . , α} and
ε > 0, there exists p(ε) ∈ N , such that for all p ≥ p(ε) with s(p) = i, we have

‖ỹpi − Fi(ỹ
p)‖i ≤ ε.(4.17)

It follows from Proposition 6, (3.9), and (4.4) that

ỹp ↓ y∗, p→∞.(4.18)

Let i = s(p). We now introduce the following notation: up(i) = {. . . , upj (i), . . . },
where

upj (i) =

{
ỹpj if j 6= i,

Fi(ỹ
p) if j = i.
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From (2.7) and (2.8) we find that

ai(u
p(i)) = 0, for all p ∈ N and i ∈ {1, . . . , α} such that i = s(p).(4.19)

It follows from (4.17) and (4.18) that for all i ∈ {1, . . . , α}, we have

lim
p→∞ up(i) = y∗.(4.20)

By the continuity of a it follows from (4.19) and (4.20) that

ai(y
∗) = 0, for all i ∈ {1, . . . , α}.

5. Application to a class of nonlinear simultaneous equations

We consider in this section an M -function obtained by a diagonal monotone
perturbation of an M -matrix A

a(x) = Ax− b+ ϕ(x),(5.1)

where b ∈ Rn, ϕ(x) = diag{. . . , ϕi(xi), . . . }, and the point-to-point functions ϕi
are monotone increasing. Moreover, the functions ϕi are also continuous. Consider
now the solution of the following nonlinear simultaneous equations

a(x) = 0,(5.2)

by asynchronous iterations with order intervals derived from the Schwarz alternat-
ing subdomain method.

Remark 6. The results of this section can be extended to the case where ϕ(x) is a
diagonal monotone maximal and possibly multivalued operator (see [1]). Then we
must solve the following nonlinear algebraic problem

b−Ax ∈ ϕ(x).(5.3)

5.1. Connection with the discrete Schwarz alternating procedure. To sim-
plify the presentation we consider in this subsection the case of two discrete subdo-
mains that may overlap. We introduce m1,m2 and n which are three integers, n is
the number of discretized points, m1 denotes the last index of the first subdomain,
and m2 the first index of the second subdomain, then

1 < m2 < m1 < n.

We introduce also the sets

T1 = {1, . . . ,m1}, T2 = {m2, . . . , n}, T ′ = T1 ∩ T2 = {m2, . . . ,m1}.

Let δm = m1−m2 + 1 and m = n+ δm. We will consider in the sequel augmented
vectors of Rm and use the following notations:

T̃1 = {1, . . . ,m1}, T̃2 = {m1 + 1, . . . ,m},
T̃ ′1 = {m2, . . . ,m1}, T̃ ′2 = {m1 + 1, . . . ,m1 + δm},

where T̃ ′1 and T̃ ′2 correspond to the overlapping. We define the mappings p̃1, p̃2 : Rn

→ Rm as follows. For all u ∈ Rn, the mappings p̃1(u), p̃2(u), with components
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p̃1
l (u), p̃2

l (u), respectively, are given by

p̃1
l (u) =


ul ∀ l ∈ T̃1,

0, ∀ l ∈ T̃ ′2 ,
ul−δm, ∀ l ∈ T̃2 	 T̃ ′2 ,

p̃2
l (u) =


ul, ∀ l ∈ T̃1 	 T̃ ′1 ,
0, ∀ l ∈ T̃ ′1 ,
ul−δm, ∀ l ∈ T̃2.

We define also the mappings r1, r2 : Rm → Rn as follows: for all ũ ∈ Rm, the
mappings r1(ũ), r2(ũ) with components r1l (ũ), r2l (ũ), respectively, are given by

r1l (ũ) =

{
ũl, ∀ l ∈ T1,

ũl+δm, ∀ l ∈ T2 	 T ′,

r2l (ũ) =

{
ũl, ∀ l ∈ T1 	 T ′,
ũl+δm, ∀ l ∈ T2.

Remark 7. For all i ∈ {1, 2} and u ∈ Rn, we have ri(p̃i(u)) = u. The mappings
p̃1, p̃2(r1, r2) transform a vector of size n (m) into a vector of size m (n).

We consider now the following system of equations

ã(ũ) = 0,(5.4)

where the mapping ã from Rm into Rm with components ãk(ũ), k = 1, . . . ,m, is
defined as follows: {

ãk(ũ) = ak(r
1(ũ)), ∀ k ∈ T̃1,

ãk(ũ) = ak−δm(r2(ũ)), ∀ k ∈ T̃2.
(5.5)

Proposition 9 (see [17]). Let A ∈ L(Rn;Rn) be an M -matrix. Then the matrix

Ã ∈ L(Rm;Rm) which results from the above augmentation process is also an M -
matrix.

Remark 8. The nonlinear diagonal operator ϕ from Rn onto itself can be extended
similarly.

Corollary 1. Under the assumptions of this section, the mapping ã defined by
(5.5) is a surjective M -function.

Remark 9. The cases with α subdomains (α > 2) where no components belong to
more than two subdomains can be reduced to the case where α = 2 by considering
a banded subdomain decomposition with red-black ordering.

5.2. Application to the solution of nonlinear partial differential equa-
tions. An illustration of the above theoretical study is given in this subsection.
We consider two examples.

Example 1. Nonlinear diffusion problem. We shall primarily be concerned with
the following problem.

Find u such that{
−∆u+ a∂u

∂x + b∂u∂y + ecu = f everywhere in Ω,

u/∂Ω = 0,
(5.6)
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where Ω is an open domain of R2 (or R3), ∂Ω is the boundary of Ω, a, b, c are
real numbers, and c is positive. We consider the discretization of the problem (5.6)
using five-point difference equations for the Laplace operator and only one-sided
backward or forward difference equations, according to the sign of a and b, for the
first derivatives of u. Then we have the system

α∑
j=1

Aijxj + ϕi(xi) = bi, for all i ∈ {1, . . . , α},(5.7)

where xi, bi ∈ Ei, and

ϕi(xi) is isotone, convex, and continuously differentiable.(5.8)

We note that the matrix A is block-partitioned. Moreover it follows from the above
discretization that A is an M -matrix.

Remark 10. We can obtain a discretized system with the same properties using
suitable P1 finite element methods.

The problem (5.7) is similar to (2.5). Let ai(zi;w) = Aiizi+ϕi(zi)+
∑

j 6=iAijwj−
bi. We can define implicitly a fixed point mapping F from Rn into Rn satisfying
(2.8) and associated with problem (5.7).

Let w, x0, and z0 be three vectors of Rn such that

ai(w) ≥ 0, z0
i = wi, and x0

i = zi = Fi(w), for all i ∈ {1, . . . , α}.
Under the above assumptions the mapping ai is an M -function on the order interval
〈x0

i , z
0
i 〉i.

We introduce the block-diagonal matrix C(w), derived from Newton’s method,
with diagonal blocks Ci(w) given by

Ci(w) = Aii + ϕ′i(w).

The matrix Ci(w) is an M -matrix since ϕi is convex and the matrix Aii is an
M -matrix. Consider now the mappings F a with components F a

i defined by

F a
i (w) = zki , for all i ∈ {1, . . . , α},(5.9)

where k is an integer, z0
i = wi, and zki is the kth iteration of the following algorithm:

zk+1 = zk − C−1(zρ
′(k)) · a(zk), k = 0, 1, . . . ,(5.10)

where 0 ≤ ρ′(k) ≤ k. We first consider the mapping F b with components F b
i given

by F b
i (w) = z1

i , for all i ∈ {1, . . . , α}.

Proposition 10. The mapping F b is an a-supermapping associated with F .

Proof. It follows from the definition of z0 that a(z0) ≥ 0. Moreover C−1(z0) ≥ 0
since C(z0) is an M -matrix. Then

z1 − z0 = −C−1(z0)a(z0) ≤ 0.

It follows from the convexity of ϕ (see [31, p. 448]) that

a(z0)− a(z̄) ≤ C(z0)(z0 − z̄).(5.11)

Thus if z̄ is the solution of the problem a(z) = 0, then

z̄ = z̄ − C−1(z0)a(z̄) = z1 − (z0 − z̄) + C−1(z0)(a(z0)− a(z̄))
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and

z1 − (z0 − z̄) + C−1(z0)(a(z0)− a(z̄)) ≤ z1 − (I − C−1(z0) · C(z0))(z0 − z̄) = z1.

Thus

z̄ ≤ z1.

Moreover it follows from the convexity of ϕ that

0 = a(z0) + C(z0)(z1 − z0) ≤ a(z1).

We can show analogously by induction (see [37]) that

z̄ ≤ · · · ≤ zk ≤ zk−1 ≤ · · · ≤ z0 and a(zk) ≥ 0.(5.12)

Thus the mappings F a are a-supermappings associated with F . Moreover it follows
from (5.10), (5.12), and Definition 9 that

F aαF b.

We recall that F b
i (w) = z1

i = w − C−1(w) · a(w), where C(w) is a block-diagonal
matrix with blocks Ci(w) = Aii + ϕ′i(w). It follows from (5.8) that the mapping
a(w) given by

a(w) = Aw + ϕ(w) − b,

is continuous. Moreover we have

(Aii + ϕ′i(wi))
−1 ≤ A−1

ii ,

since A is an M -matrix and ϕ′ is positive (see [31, p. 55]). It follows that the
spectral radius of C−1(w) is less than or equal to the spectral radius of the inverse
of the block-diagonal matrix with blocks Aii which is an M -matrix. Thus the linear
application associated with the matrix C−1(w) is Lipschitz continuous and C−1(w)
is uniformly Lipschitz continuous. By the continuity of a(w), C(w) and the fact
that C−1(w) is uniformly Lipschitz continuous, we find that the mapping F b is
continuous. So, the mappings F a defined by (5.9) are a-supermappings of the first
kind associated with F .

Remark 11. Taking into account the norm convergence properties of Newton’s
method quoted in subsection 13.3.4 of [31], we can show that the above a-supermap-
pings F a and F b are also a-supermappings of the second kind associated with F .

Example 2. The discretized and linearized Hamilton-Jacobi-Bellman problem.
We consider the following problem

Find u such that

max{A1u− f1,A2u− f2} = 0, everywhere in Ω,

u/∂Ω = 0,

(5.13)

where A1 and A2 are two elliptic operators of second order satisfying the Maximum
Principle and f1, f2 are elements of L2(Ω).

Under appropriate discretization of problem (5.13) by finite differences and as-
suming in particular that the incidence matrices B1 and B2 associated with the
discretization matrices are equal, we obtain the following discretized problem{

Find x solution of

max(A1 · x− b1, A2 · x− b2) = 0,
(5.14)
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where b1, b2 ∈ Rn and A1, A2 are matrices of size n×n with entries a1
ij , a

2
ij , respec-

tively, which satisfy

arii > 0, arij ≤ 0, i = 1, . . . , n, j = 1, . . . , n, j 6= i, r = 1, 2,(5.15) ∑
j

arij ≥ 0, i = 1, . . . , n, r = 1, 2,(5.16)

there exists at least one i such that
∑
j

a1
ij > 0 and

∑
j

a2
ij > 0,(5.17)

the matrices A1 and A2 are irreducible.(5.18)

Remark 12. We recall that the incidence matrix B1 (B2) of size n×n is generated
from the matrix A1 (A2) by replacing the entries a1

ij (a2
ij) by 1 if a1

ij 6= 0 (a2
ij 6= 0).

We note that the matrices A1 and A2 are diagonally dominant. Under the above
assumptions A1 and A2 are also M -matrices (see [38]). The problem (5.14) can be
linearized as follows:

a(x) = C(x) · x− b(x) = 0,(5.19)

where b(x) ∈ Rn and C(x) is a matrix of size n × n. If (A1x − b1)i is greater
than (A2x − b2)i, then the ith row of matrix C(x) is equal to the ith row of
matrix A1 else it is equal to the ith row of matrix A2. The vector b(x) is defined
analogously. It follows from the above assumptions that the matrix C(x) is an
irreducible diagonally dominant matrix; moreover C(x) is an M -matrix (see [38]).
Thus a is an M -function.

The mapping ai(zi;w) defined by

ai(zi;w) = max

A1
iizi −

b1i −∑
j 6=i

A1
ijwj

 , A2
iizi −

b2i −∑
j 6=i

A2
ijwj

 = 0,

is a continuous surjective M -function since C(x) is an M -matrix. We can define
a fixed point mapping F from Rn into Rn satisfying (2.8) and associated with
problem (5.19).

Let w, x0, z0 be three vectors of Rn such that

ai(w) = max(
∑
j

A1
ijwj − b1i ,

∑
j

A2
ijwj − b2i ) ≥ 0,

z0
i = wi, and x0

i = zi = Fi(w), for all i ∈ {1, . . . , α}. Let x, z be two vectors of Rn

such that xi, zi ∈ 〈x0, z0〉i, for all i ∈ {1, . . . , α}. Consider the following notation:
for all i ∈ {1, . . . , α},

ai(x) = max
t∈{1,2}

(Atx− bt)i = (Arx− br)i,

ai(z) = max
t∈{1,2}

(Atz − bt)i = (Asz − bs)i.

We have for all i ∈ {1, . . . , α}, (Asx− bs)i ≤ ai(x). Then

(Asx− bs)i − (Arx− br)i ≤ 0.(5.20)

Hence we have

(Asz − bs)i − (Arx− br)i − (As(z − x))i ≤ 0.(5.21)
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Thus for all i ∈ {1, . . . , α},
ai(z)− ai(x) ≤ (C(z)(z − x))i,(5.22)

since the ith line of C(z) is the ith line of As(z). So the mapping a is order-convex.
We now define the mapping F a with components F a

i as follows:

F a
i (w) = zki , for all i ∈ {1, . . . , α},

where k is an integer and the vector zk is given by the following algorithm:

zk+1 = zk − C−1(zρ(k))a(zk),(5.23)

which is derived from the fixed point equation z = z−C−1(z)a(z). We analogously
define the mapping F b with components F b

i as follows:

F b
i (w) = z1

i , for all i ∈ {1, . . . , α}.
By using an argument similar to the one developed in the proof of Proposition
10 it follows from (5.22) that the mappings F a and F b are two a-supermappings
associated with F which satisfy

F aαF b.

The continuity of the mapping F b follows from the continuity of the mapping a since
the convex hull of continuous functions of Rn is continuous. Thus the mapping F a

is an a-supermapping of the first kind associated with F .

Remark 13. The reader is referred to [23] for the solution of the Hamilton-Jacobi-
Bellman problem via several sequential algorithms. The first two algorithms pro-
posed in [23] when used for the solution of the subproblems presented above can
lead to a-supermappings of the first kind; in particular the second algorithm cor-
responds exactly to the linearization method (5.19). Note also that the methods
presented in [23] are not related to relaxation or subdomain methods.

Remark 14. The obstacle stationary problem associated to a second order elliptic
operator satisfying the maximum principle can classically be written as a Hamilton-
Jacobi-Bellman problem, moreover the algorithms presented in this paper can be
used for the numerical solution of this problem. Nevertheless the above study can-
not be applied to this case since assumption (5.18) is not satisfied. The obstacle
problem is important, but we have restricted attention to the case treated in Ex-
ample 2 in order to a give a short presentation. The reader is referred to [37] for a
detailed study of the obstacle stationary problem.

5.3. Numerical experiments. In this subsection we briefly present computa-
tional experience using a shared memory multiprocessor IBM 3090 with up to six
vector processors.

We have considered the two problems presented in subsection 5.2 (i.e. the non-
linear diffusion problem and the discretized Hamilton-Jacobi-Bellman equations).
The Schwarz alternating procedure with overlapping has been used. The efficiency
of parallel iterative algorithms is reported in Table 1 using the classical definition
of efficiency: e = t1

tp
· 1
p , where tp denotes the computing time using p processors.

Results are given for discretized domains with 25000 points. From Table 1 it can
be seen that the efficiency of asynchronous iterations with order intervals is better
than the efficiency of parallel synchronous iterations. Idle time due to synchro-
nization and overheads of synchronization reduce the efficiency of parallel iterative
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methods. Moreover the efficiency decreases as the number of processors increases.
Details of the implementation and other computational results can be found in [37].

Table 1. Efficiency of parallel algorithms

nonlinear diffusion problem Hamilton-Jacobi-Bellman problem
number of synchronous asynchronous synchronous asynchronous
processors algorithms algorithms algorithms algorithms

3 0.87 0.99 0.86 0.90
6 0.65 0.81 0.85 0.90
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Grenoble (1978).

[10] D. El Baz, M-functions and parallel asynchronous algorithms, SIAM J. Numer. Anal. 27
(1990), 136–140. MR 91e:65165

[11] D. El Baz, Asynchronous gradient algorithms for a class of convex separable network flow
problems, Computational Optimization and Applications 5 (1996), 187–205. CMP 96:12

[12] D. El Baz, Asynchronous implementation of relaxation and gradient algorithms for convex
network flow problems, Parallel Computing 19 (1993), 1019–1028.

[13] D. El Baz, Nonlinear systems of equations and parallel asynchronous iterative algorithms,
Advances in Parallel Computing 9, North-Holland, Amsterdam, 1994, 89–96.

[14] D. El Baz, P. Spiteri, and J.-C. Miellou, Distributed asynchronous iterative methods with
order intervals for a class of nonlinear optimization problems, Journal of Parallel and Dis-
tributed Computing 38 (1996), 1–15.

[15] M. N. El Tarazi, Some convergence results for asynchronous algorithms, Numerical Math.
39 (1982), 325–340. MR 84a:65041

[16] M. N. El Tarazi, Algorithmes mixtes asynchrones, Etude de la convergence monotone, Numer.
Math. 44 (1984), 363–369. MR 86c:65042

[17] D. J. Evans and W. Deren, An asynchronous parallel algorithm for solving a class of nonlinear
simultaneous equations, Parallel Computing 17 (1991), 165–180. MR 92f:65166



A NEW CLASS OF ASYNCHRONOUS ITERATIVE ALGORITHMS 255

[18] A. Frommer, On asynchronous iterations in partially ordered spaces, Numer. Funct. Anal.
and Optimiz. 12 (1991), 315–325. MR 92m:54060

[19] A. Frommer and H. Schwandt, Asynchronous parallel methods for enclosing solutions of
nonlinear equations, J. Comput. Appl. Math. 60 (1995), 47–62. MR 96f:65062

[20] L. Giraud and P. Spiteri, Résolution parallèle de problèmes aux limites non linéaires, RAIRO
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