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A NOTE ON STABILITY

OF THE DOUGLAS SPLITTING METHOD

WILLEM HUNDSDORFER

Abstract. In this note some stability results are derived for the Douglas
splitting method. The relevance of the theoretical results is tested for an
advection-reaction equation.

1. Presentation of the results

Consider the initial value problem for a system of ODEs

u′(t) = F (t, u(t))(1.1)

with 0 ≤ t ≤ T and given initial value u(0). We shall consider numerical schemes
with step size τ yielding approximations un to the exact solution u(tn) at time
levels tn = nτ for n = 0, 1, 2, · · · , starting with u0 = u(0).

For problems that arise by spatial discretization of multi-dimensional PDEs it
is often possible to decompose the function F into a number of simpler component
functions,

F (t, w) = F1(t, w) + F2(t, w) + · · ·+ Fs(t, w).(1.2)

Splitting methods use this decomposition by treating in each stage at most one
of the components implicitly. The best known method of this type is the ADI-
Peaceman-Rachford method, but this method can only deal with 2-component
splittings, see [5]. In this paper we shall consider the related second-order method
of Douglas [1], also known as the method of Stabilizing Corrections [4],

v0 = un + τF (tn, un),

vi = vi−1 + 1
2τ
(
Fi(tn+1, vi)− Fi(tn, un)

)
(i = 1, 2, · · · , s),

un+1 = vs,

(1.3)

with internal vectors vi.
A big advantage of (1.3) over many other splitting methods [4, 5] is that all

internal vectors vi are consistent approximations to the exact solution, namely
at time tn+1. This implies that if we are in a steady state F (u) = 0, with F
independent of t, then this steady state is also a stationary point of the scheme
(1.3).
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We shall present some stability results for the scalar complex test equation where

Fj(t, w) = λjw(1.4)

with λj ∈ C. In applications for PDEs the λj will represent eigenvalues for the
various components, found by inserting Fourier modes. Let zj = τλj . For the test
equation the method reduces to

un+1 = Run(1.5)

with growth factor

R = 1 +
( s∏
j=1

(1 − 1
2zj)

)−1 s∑
j=1

zj.(1.6)

This R corresponds to the stability function for standard one-step methods. Ideally,
one would have |R | ≤ 1 for arbitrary λj in the left half-plane C− without restriction
on the time step. As we shall see, for R given by (1.6), this is not true if s ≥ 3.

It is easy to verify that |R | ≤ 1 when all zj are real and negative (unconditional
stability for purely parabolic equations, see Douglas [1]). On the other hand, it
can also be shown that if s ≥ 3 and all zj = iy, then |R | > 1 for any y 6= 0
(unconditional instability for purely hyperbolic equations, see Warming and Beam
[6] and also Remark 2.1). In this paper we shall present some intermediate results
which are applicable to advection-diffusion and advection-reaction equations. It
will be assumed that the zj belong to the wedge Wα = {ζ ∈ C : |arg(−ζ)| ≤ α} in
the left half-plane. We consider the statement
(A) · · · |R | ≤ 1 for all zj ∈ Wα.

Theorem 1. Let R be given by (1.6) with s ≥ 2. We have

(A) ⇐⇒ α ≤ 1

s− 1

π

2
.

For s = 2 we thus get stability for α ≤ π/2, which allows the zj to range over
the whole left half-plane. However, for s = 3 we get the condition α ≤ π/4, which
is already quite restrictive. One may expect the situation to become better if some
zj are real and negative. In the following theorem we assume that there are r such
zj < 0. Consider the statement
(B) · · · |R | ≤ 1 for arbitrary z1, ..., zs−r ∈Wβ , zs−r+1, ..., zs < 0.

Theorem 2. Let R be given by (1.6), and let 1 ≤ r ≤ s− 1. We have

(B) ⇐⇒ β ≤ 1

s− r

π

2
.

It is somewhat surprising that for r = 1 we get the same condition as in Theo-
rem 1. So again, already for s = 3 we may get a quite restrictive condition, unless
there are two zj that are real and negative. If s = 3 with arbitrary z1, z2 ∈ C−,
then we have stability if z3 = 0, but letting z3 < 0 may destroy this stability.

The proof of these results will be given in the next section. In Section 3 some
numerical results will be presented for an advection-reaction equation.

Remark. For linear problems, where Fj(t, w) = Ajw + gj(t), the stability results
can be applied provided the matrices Aj are normal and commuting. Some results
for non-commuting matrices were given by Douglas and Gunn [2] under very strict
conditions on the step size.
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2. Proofs

2.1. Proof of Theorem 1. In the following, all summations will be from 1 to s,
unless indicated otherwise. Let

ξ = R − 1 and η = −|
∑
j

zj |2
(1

ξ
+

1

2

)
.

Clearly |R | ≤ 1 is equivalent with the following

|1 + ξ| ≤ 1 ⇐⇒ Re
1

ξ
≤ −1

2
⇐⇒ Re η ≥ 0.

The last criterion will be used in this proof. By some calculations it is seen that

η = −
(∑

j

z̄j

)(
1 + (− 1

2 )2
∑
j<k

zjzk + (− 1
2 )3

∑
j<k<l

zjzkzl + · · ·+ (− 1
2 )sz1z2...zs

)
.

(2.1)

To verify the statement of the theorem it is, according to the maximum modulus
theorem, sufficient to consider zj on the boundary of Wα. In the following, let
tj ≥ 0 be arbitrary, 0 ≤ q ≤ 1

2s and

zj = −eiαtj (1 ≤ j ≤ s− q), zj = −e−iαtj (s− q < j ≤ s).

First, consider q = 0. Then we obtain

η =
(
e−iα

∑
j

tj

)(
1 + (1

2 )2e2iα
∑
j<k

tjtk + · · ·+ (1
2 )sesiαt1t2...ts

)
,

Re η =
(∑

j

tj

)(
cos(α) + (1

2 )2 cos(α)
∑
j<k

tjtk + · · ·+ (1
2 )s cos((s− 1)α)t1t2...ts

)
.

It follows that Re η ≥ 0 for all tj ≥ 0 if and only if cos(kα) ≥ 0 (k = 1, 2, ..., s−1),
that is,

(s− 1)α ≤ π

2
.(2.2)

Next, suppose that q = 1. Then (2.1) gives

η =
(∑
j<s

e−iαtj + eiαts

)(s−1∑
k=0

pke
ikα
)

with pk ≥ 0 depending on the tj. The actual expressions easily follow from (2.1).
In particular we find

ps−1 = (1
2 )s−1t1t2...ts−1,

ps−3 ≥ (1
2 )s−1t1t2...ts−1

( 1

t1
+

1

t2
+ · · ·+ 1

ts−1

)
ts.

Assuming (2.2), it follows that

Re η ≥ (1
2 )s−1 cos(sα)t1t2...ts + (1

2 )s−1(s− 1) cos((s− 4)α)t1t2...ts.

Further, (2.2) implies cos(sα) + (s− 1) cos((s− 4)α) ≥ 0. Hence, also for this case
q = 1, we see that (2.2) implies |R | ≤ 1.
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Finally, suppose that q ≥ 2. Then

η =
( ∑
j≤s−q

e−iαtj +
∑

j>s−q
eiαtj

)( s−q∑
k=−q

qke
ikα
)

with qk ≥ 0. Therefore, Re η is a sum of cos(kα) terms with −(q+1) ≤ k ≤ s−q+1
and nonnegative coefficients, and again it follows that (2.2) is sufficient to have
|R | ≤ 1.

Remark 2.1. If we have s = 3 and zj = iy for j = 1, 2, 3, then Re η = − 3
8y

4 < 0
for any y 6= 0. Hence, for any C > 0, we have max{|R | : zj = i yj, |yj | ≤ C} > 1.
This instability result was already obtained by Warming and Beam [6] for a class
of multistep splitting methods, containing the Douglas method as a special case.

2.2. Proof of Theorem 2. First we consider the case where one of the zk is real
and negative, say zs < 0. The other zj are assumed to lie in the wedge Wβ . It will
be shown that

(s− 1)β ≤ π

2
(2.3)

is necessary to guarantee that |R | ≤ 1 if zs → −∞. By Theorem 1 we already
know that this is a sufficient condition for arbitrary zs < 0.

In the limit zs → −∞ we have R→ S with

S = 1− 2
(∏
j<s

(1 − 1
2zj)

)−1

.

It is easily seen that |S | ≤ 1 is equivalent with

Re
∏
j<s

(1− 1
2zj) ≥ 1.

Take zj = −eiβtj (1 ≤ j ≤ s− 1) with tj > 0. Then

Re
∏
j<s

(1− 1
2zj)

= Re
(
1 + (− 1

2 )
∑
j<s

zj + (− 1
2 )2

∑
j<k<s

zjzk + · · ·+ (− 1
2 )s−1z1z2...zs−1

)
= 1 + 1

2 cos(β)
∑
j<s

tj

+ (1
2 )2 cos(2β)

∑
j<k<s

tjtk + · · ·+ (1
2 )s−1 cos((s− 1)β)t1t2...ts−1.

Thus we see that (2.3) is necessary if t1, ..., ts−1 are sufficiently large.
Next we consider the general situation z1, ..., zs−r ∈ Wβ , zs−r+1, ..., zs < 0

with 1 ≤ r ≤ s− 1. We now have to show that

(s− r)β ≤ π

2
(2.4)

is necessary and sufficient for |R | ≤ 1.
Note that R is fractional linear in all zj with denominator 1− 1

2zj. Considering
fixed z1, ..., zs−r, it follows that we have

|R | ≤ 1 for all zs−r+1, ..., zs < 0
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iff this holds for zs−r+1, ..., zs equal to 0 or ∞. This amounts to verification of the
two inequalities∣∣∣ 1 +

( ∏
j≤s−r

(1− 1
2zj)

)−1 ∑
j≤s−r

zj

∣∣∣ ≤ 1,
∣∣∣ 1− 2

( ∏
j≤s−r

(1 − 1
2zj)

)−1 ∣∣∣ ≤ 1.

From the above results, with s−r replacing s and s−1, respectively, it follows that
this will be satisfied for arbitrary z1, ..., zs−r ∈Wβ if and only if (2.4) holds.

3. Example

In this section we shall present some numerical tests for an advection-reaction
equation. For comparison we also consider the following method,

v0 = un,

vi = vi−1 + 1
2τFi(tn, vi−1) (i = 1, 2, · · · , s),

vs+i = vs+i−1 + 1
2τFs+1−i(tn+1, vs+i) (i = 1, 2, · · · , s),

un+1 = v2s.

(3.1)

This method has been tested in [3], where it was called the trapezoidal splitting
method. It is also a second-order method but the internal vectors vj are not con-
sistent approximations to the exact solution. It is more stable than the Douglas
scheme, however. If we apply (3.1) to the scalar test equation (1.4) we get the
growth factor

R =

s∏
j=1

(1 − 1
2zj)

−1(1 + 1
2zj),(3.2)

and thus with this method we have |R | ≤ 1 for arbitrary zj in the left half-plane
C−, irrespective of s.

To verify the relevance of the results for the scalar test equation (1.4), we consider
the following advection equation with a linear reaction term,

ut = aux + buy + Gu on Ω = [0, 1]2.

The velocities are given by a(x, y, t) = 2π(y − 1
2 ), b(x, y, t) = 2π(1

2 − x). Further,

u(x, y, t) =

(
u1(x, y, t)
u2(x, y, t)

)
, G =

( −k1 k2

k1 −k2

)
.

We take k1 = 1. The second reaction constant k2 will be used to vary the stiffness
of this reaction term. Note that the matrix G has eigenvalues 0 and −(k1 + k2).
We have a chemical equilibrium if u1/u2 = k2/k1.

The initial condition is chosen as

u1(x, y, 0) = c, u2(x, y, 0) = (1 − c) + µ exp(−80(x− 1
2 )2 − 80(y − 3

4 )2)

with c = k2/(k1 + k2). To avoid a strong transient phase, we take µ = 100/k2.
So, if k2 increases we start closer to the chemical equilibrium to maintain some
smoothness.

The exact solution is given by

u1(x, y, t) = c
(
e−(k1+k2)t + (1− e−(k1+k2)t)d(x, y, t)

)
,

u2(x, y, t) = d(x, y, t)− u1(x, y, t),
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with

d(x, y, t) = 1 + µ exp(−80ξ2 − 80(η − 1
4 )2),

ξ = cos(2πt)(x − 1
2 )− sin(2πt)(y − 1

2 ), η = sin(2πt)(x − 1
2 ) + cos(2πt)(y − 1

2 ).

After a mild transient phase this is purely an advection problem, and the velocity
field gives a rotation around the center of the domain. At t = 1 one rotation is
completed.

Dirichlet conditions are prescribed at the inflow boundaries. At the outflow
boundaries we shall use an upwind discretization in space, in the interior second-
order central differences are used. We consider splitting with F1, F2 the finite
difference operators for advection in the x and y direction, respectively, and with
F3 for the linear reaction term. The test has been performed on a fixed 80 × 80
grid, and with τ = 1/80 and 1/160. The spatial difference operators will have
eigenvalues close to the imaginary axis.

Although we are not in a model situation with commuting, normal operators,
application of a standard von Neumann analysis (ignoring boundary conditions and
freezing the coefficients) yields local growth factors R with z1, z2 on the imaginary
axis between −i C and i C with local Courant numbers C, which are maximally
80πτ , and with z3 = 0 or −τ(k1 + k2).

On the basis of Theorem 2 we expect the Douglas scheme to be stable only if k2 is
not large. The following table shows that this scheme becomes indeed unstable for
large k2, whereas the trapezoidal splitting remains stable. Note however that the
transition from stable to unstable is very hesitant. Several rotations are sometimes
needed to give a significant instability.

Table 3.1. Maximum errors for the Douglas method (1 rotation
and 4 rotations) and trapezoidal splitting (4 rotations). The entry
*** denotes overflow.

Douglas, 1 rot. Douglas, 4 rot. TrapSplit, 4 rot.

k2 = 500 τ = 1/80 4.5 10−2 1.0 10−1 1.0 10−1

τ = 1/160 2.9 10−2 8.3 10−2 8.3 10−2

k2 = 1000 τ = 1/80 2.2 10−2 8.1 10+8 5.0 10−2

τ = 1/160 1.4 10−2 4.1 10−2 4.1 10−2

k2 = 2000 τ = 1/80 8.4 7.6 10+22 2.5 10−2

τ = 1/160 7.2 10−3 7.5 2.1 10−2

k2 = 4000 τ = 1/80 1.9 10+3 5.6 10+30 1.2 10−2

τ = 1/160 1.4 10+3 *** 1.0 10−2

The reason for the fact that the transition from stability to instability is not
clear-cut with the Douglas method lies in the fact that the growth factors do not
become large. In the following figure the modulus |R | is plotted for z1, z2 fixed on
the imaginary axis and z3 < 0 varying. Although we have |R | > 1 if z3 << 0,
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Figure 1. Modulus |R | versus x ∈ [0, 100]. Top picture with
z1 = z2 = 1

2 i, z3 = −x. Bottom picture with z1 = z2 = 2i, z3 =
−x.

the value does not become large (it can be shown that for z1, z2 on the imaginary
axis and z3 < 0, the case z1 = z2 = 2i, z3 → ∞ gives the maximal growth factor,
namely

√
2). Therefore, it takes some time for the instability to become visible.

It is also clear from the above table and figures that a mild stiffness in the
reaction term is allowed. This is quantified in the following theorem. We consider
the statement
(C) · · · |R | ≤ 1 for all zj = iyj (j = 1, 2), z3 = −x with |yj| ≤ γ (j =
1, 2), 0 ≤ x ≤ δ.
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Theorem 3. Let R be given by (1.6) with s = 3. We have

(C) ⇐⇒ δ ≤ 6 + 8γ−2.

Proof. Consider η defined by (2.1). Here we have

Re η = (1− 1
4y1y2 − 1

8y1y2x)x + 1
4 (y1 + y2)

2x.

So, for x > 0 we have Re η ≥ 0 iff

x ≤ 8 + 2(y2
1 + y1y2 + y2

2)

y1y2

in case y1y2 > 0, whereas there is no restriction for y1y2 ≤ 0. By some straightfor-
ward analysis the result follows.

In conclusion it can be said that the Douglas method seems only suited for
multi-dimensional PDEs if either
• advection dominates only in one direction, or
• advection dominates in two directions but the other components are nonstiff.
On the other hand, in situations where the method is stable, it is in general more

accurate than a method like (3.1), due to the fact that the internal stages are all
consistent approximations to the exact solution.

It is an open question whether multi-component splitting methods exist for s ≥ 3
which are internally consistent and stable for all zj ∈ C−.
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