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APPROXIMATION PROPERTIES OF
MULTIVARIATE WAVELETS

RONG-QING JIA

ABSTRACT. Wavelets are generated from refinable functions by using multires-
olution analysis. In this paper we investigate the approximation properties of
multivariate refinable functions. We give a characterization for the approxi-
mation order provided by a refinable function in terms of the order of the sum
rules satisfied by the refinement mask. We connect the approximation prop-
erties of a refinable function with the spectral properties of the corresponding
subdivision and transition operators. Finally, we demonstrate that a refinable
function in Wffl(RS) provides approximation order k.

1. INTRODUCTION

We are concerned with functional equations of the form

(1.1) $=Y a(a)p(M - —a),
a€Zs
where ¢ is the unknown function defined on the s-dimensional Euclidean space R,
a is a finitely supported sequence on Z°, and M is an s X s integer matrix such that
lim,, oo M~™ = 0. The equation (1.1) is called a refinement equation, and the
matrix M is called a dilation matrix. Correspondingly, the sequence a is called
the refinement mask. Any function satisfying a refinement equation is called a
refinable function.
If a satisfies

(1.2) Z ala) =m :=|det M|,
a€Zs

then it is known that there exists a unique compactly supported distribution ¢
satisfying the refinement equation (1.1) subject to the condition ¢(0) = 1. This
distribution is said to be the normalized solution to the refinement equation with
mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in
[7, Chap. 5] for the case in which the dilation matrix is 2 times the s x s identity
matrix I. The same proof applies to the general refinement equation (1.1).
Wavelets are generated from refinable functions. In [20], Jia and Micchelli dis-
cussed how to construct multivariate wavelets from refinable functions associated
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with a general dilation matrix. The approximation and smoothness properties of
wavelets are determined by the corresponding refinable functions.

In [9], DeVore, Jawerth, and Popov established a basic theory for nonlinear
approximation by wavelets. In their work, the refinement mask was required to
be nonnegative. In [15], Jia extended their results and, in particular, removed the
restriction of non-negativity of the mask.

Our goal is to characterize the approximation order provided by a refinable
function in terms of the refinement mask. This information is important for our
understanding of wavelet approximation.

Before proceeding further, we introduce some notation. A multi-index is an s-

tuple p = (p1,. .. , ps) with its components being nonnegative integers. The length
of wis |p| == 1 + -+ + ps, and the factorial of p is p! = py!--- pg!. For two
multi-indices p = (p1,... ,ps) and v = (v1,...,vs), we write v < p if v; < p; for

j=1,...,s. If v < p, then we define

()= o=

For j =1,...,s, D; denotes the partial derivative with respect to the jth coordi-
nate. For p = (u1,...,us), D" is the differential operator D" - - D¥=. Moreover,
p, denotes the monomial given by

pul) = ol ate,  m=(o1,...,3,) ER.

The total degree of p,, is |p|. For a nonnegative integer k, we denote by IIj, the linear
span of {p, : |u| < k}. Then II := (J;- , II;, is the linear space of all polynomials of
s variables. We agree that I1_; = {0}.

The Fourier transform of an integrable function f on R? is defined by

J©= [ f@efde,  EeR,

where z - £ denotes the inner product of two vectors x and £ in R®. The domain of
the Fourier transform can be naturally extended to include compactly supported
distributions.

We denote by ¢(Z?) the linear space of all sequences on Z*, and by £y(Z*) the
linear space of all finitely supported sequences on Z°. For o € Z°, we denote by
8o the element in £o(Z*) given by 6,(c) = 1 and 6,(8) = 0 for all g € Z*\ {a}.

In particular, we write 6 for ¢p. For j =1,...,s, let e; be the jth coordinate unit
vector. The difference operator V; on ¢(Z°) is defined by Vja := a — a(- — e;),
a € £(Z%). For a multi-index g = (p1,...,us), V# is the difference operator
A\ RRERA /SN

For a compactly supported distribution ¢ on R® and a sequence b € ¢(Z*), the
semi-convolution of ¢ with b is defined by

ox'b = Z o(- — a)b(a).
a€Zs

Let S(¢) denote the linear space {¢+'b : b € ¢(Z%)}. We call S(¢) the shift-
invariant space generated by ¢. More generally, if ® is a finite collection of
compactly supported distributions on R?, then we use S(®) to denote the linear
space of all distributions of the form 3, 4 ¢+'by, where by € ((Z°) for ¢ € D.

Here is a brief outline of the paper. In Section 2 we clarify the relationship
between the order of approximation provided by S(¢) and the accuracy of ¢, the
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order of the polynomial space contained in S(¢). In Section 3 we introduce the so-
called sum rules and give a characterization for the accuracy of a refinable function
in terms of the order of the sum rules satisfied by the refinement mask. In Section 4,
several examples are provided to illustrate the general theory. Section 5 is devoted
to a study of the subdivision and transition operators and their applications to
approximation properties of refinable functions. Finally, in Section 6, we show that
a refinable function in W} (R?®) associated with an isotropic dilation matrix has
accuracy at least k + 1.

2. APPROXIMATION ORDER AND POLYNOMIAL REPRODUCIBILITY

Let ¢ be a compactly supported function in L,(R®) (1 < p < 00). In this section
we clarify the relationship between the order of approximation provided by S(¢)
and the degree of the polynomial space contained in S(¢). The reader is referred
to [17] for a recent survey on approximation by shift-invariant spaces.

The norm in L,(IR?) is denoted by ||-||,. For an element f € L,(R®) and a subset
G of L,(R?), the distance from f to G, denoted by dist,(f, G), is defined by

dist,(f,G) = inf [|f = gllp.

Let S := S(¢)N L,(R®). For h > 0, let S™ := {g(-/h) : g € S}. For a real number
Kk > 0, we say that S(¢) provides approximation order « if for each sufficiently
smooth function f in L,(R®), there exists a constant C' > 0 such that

dist,(f,S") < Ch®  Vh>0.

We say that S(¢) provides density order « (see [3]) if for each sufficiently smooth
function f in L,(R?®),

Jim dist,,(, Sy /hE = 0.

Let k be a positive integer. Suppose S(¢) D IIy—1. Does S(¢) always provide
approximation order k7 The answer is a surprising no. The first counterexample
was given by de Boor and Hoéllig in [4] by considering bivariate C!-cubics. Their
results can be described in terms of box splines.

For a comprehensive study of box splines, the reader is referred to the book [5]
by de Boor, Héllig, and Riemenschneider. For our purpose, it suffices to consider
the box splines M, 5 ; given by

- 1oe in\7 /1 —e 2\s,] — e iE1+E2)\ ¢t 9
Mral6) = ( S ) ( &2 ) ( i(&1 + &2) ) 7 (=t e R
where 7, 5, and ¢ are nonnegative integers. It is easily seen that M, ; € LOO(RQ) if
and only if min{r + S, S + t,t + T} Z 1. Let (bl = M2)172 and ¢2 = M172)2. In [4],
de Boor and Hollig proved that S(¢1, ¢2) 2D I3 but S(¢1, ¢2) does not provide Loo-
approximation order 4. In fact, the optimal L-approximation order provided by
S(¢1, ¢2) is 3. In [21], Ron showed that there exists a compactly supported function
¥ in S(¢1, ¢2) such that I3 C S(¢). Since S(¢p) C S(¢h1, P2), the approximation

order provided by S() is at most 3.
In [6], de Boor and Jia extended the results in [4] in the following way. For
p=1,2,..., let k be an integer such that 2p4+2 <k < 3p+ 1. Let

®:={M, € C*(R*) :r+s+t<k+2}
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Then S(®) D IIx, but the optimal Ly,-approximation order (1 < p < o) provided
by S(®) is k, not k + 1.

However, if S(¢) provides approximation order k, then S(¢) contains II;_;. This
was proved by Jia in [16]. Under the additional condition that $(0) # 0, it was
proved by Ron [21] that S(¢) provides Lo-approximation order k if and only if S(¢)
contains II;_;. In general, we have the following results, which were established in
[16].

Theorem 2.1. Let 1 < p < oo, and let ¢ be a compactly supported function in
L,(R?®) with $(0) # 0. For every positive integer k, the following statements are
equivalent:

(a) S(¢) provides approximation order k.

(b) S(¢) provides density order k — 1.

(c) S(@) contains Ij_1.

(d) D ¢(2nB3) = 0 for all p with || <k —1 and all § € 22\ {0}.

We remark that the implications (a) = (b) = (¢) = (d) are valid without the
assumption ¢(0) # 0. Indeed, (a) = (b) is obvious, (b) = (c) was proved in [16],
and the implication (¢) = (d) was established in [2].

Suppose ¢ is the normalized solution of the refinement equation (1.1). If ¢ lies
in L,(IR®) for some p, 1 < p < oo, then Theorem 2.1 applies to ¢, because qAS(O) =1.
Thus, there are two questions of interest. The first question is how to determine
whether ¢ lies in L,(R®), and the second problem is how to characterize the highest
degree of polynomials contained in S(¢). The first question was discussed by Han
and Jia in [12]. In this paper, we concentrate on the second question. When we
speak of polynomial containment, ¢ is not required to be an integrable function.
Thus, we say that a compactly supported distribution ¢ on R® has accuracy k, if
S(¢) D Ik_1 (see [13] for the terminology of accuracy).

We point out that the equivalence between (¢) and (d) in Theorem 2.1 remains
true for every compactly supported distribution ¢ on R*.

If ¢ is a compactly supported continuous function on R®, and if ¢ satisfies con-
dition (d), then it was proved in [14] that

(2.1) ¢px'p=d(—iD)p  Vpellq,

where ¢ is the imaginary unit and ¢E(—z’D) denotes the differential operator given
by the formal power series

> D"6(0) (—iD)".

|
o M

For a given polynomial p, D#p = 0 if |u| is sufficiently large. Thus, qAS(—iD) is
well defined on II. We indicate that (2.1) is also valid for a compactly supported
distribution ¢ on R* satisfying condition (d). To see this, choose a function p €
C2°(R?) such that p(0) = 1 and D¥p(0) = 0 for all v with 0 < |v| < k — 1. Let
pn = p(-/n)/n® for n = 1,2,.... Then for each n, ¢, := ¢*p,, the convolution of
¢ with py, is a function in C2°(R®). Moreover, the sequence (¢p)n=12, .. converges
to ¢ in the sense that

T (g, f) = (.)€ CE(R).
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See [1, p. 97] for these facts. Thus, we have ¢, (£) = ¢(€)pn(€) for £ € R, Since
¢ satisfies condition (d), by using the Leibniz formula for differentiation, we get
D#¢,(2m3) = 0 for |u| <k —1and 8 € Z* \ {0}. Hence (2.1) is applicable to ¢,
and

(bn*lp = an(—iD)p Vpellg_q.

Letting n — oo in the above equation, we obtain ¢+'p = é(—iD)p for all p € ITj_;.
Consequently, the linear mapping ¢+’ given by p — ¢*'p maps II;_1 to II,_;. If,
in addition, qAS(O) # 0, then this mapping is one-to-one, and hence it is onto. This
shows that (d) = (c) is valid for every compactly supported distribution ¢ on R?
with ¢(0) # 0.

Next, we show that (c) = (d) for every compactly supported distribution ¢ on
R*. If ¢ is a compactly supported continuous function on R?®, this was proved
in [2] and [14]. Let ¢ be a compactly supported distribution on R®. For a fixed
element § € Z° \ {0}, choose a function p € C°(R®) such that p(0) # 0 and
p(2mB) # 0. Then the convolution ¢*p is a function in C°(R?®) and its Fourier
transform is (;3[). Note that the mapping p* given by q — pxq maps IIx_; to IIx_1.
Since p(0) # 0, this mapping is one-to-one; hence it is onto. Thus, for p € TI;_q,
we can find ¢ € TIy_q such that p = p*q. Since S(¢) D II;_1, there exists some
b € £(Z®) such that ¢ = ¢«’'b. Tt follows that p = px(¢d*'d) = (p*¢)+’b. This shows
that S(¢#p) D IIx_1. By what has been proved, D”(({Sﬁ)(Qwﬂ) = 0 for all p with
lu| < k —1. Since p(273) # 0, we can write ¢ = (¢p)(1/p) in a neighborhood of
27 3. By applying the Leibniz formula for differentiation to this equation, we obtain
DrG(2m3) = 0 for |u| < k — 1. This shows that (¢) = (d) for every compactly
supported distribution ¢ on R?.

To summarize, a compactly supported distribution ¢ on R?® with ¢E(O) # 0 pos-
sesses accuracy k if and only if D#¢(273) = 0 for all p with |u| < k — 1 and all

8 ez \{0}.

3. CHARACTERIZATION OF ACCURACY

The purpose of this section is to give a characterization for the accuracy of a
refinable function in terms of the refinement mask.

For an s x s dilation matrix M, let I' be a complete set of representatives of
the distinct cosets of Z°/M7Z?, and let 2 be a complete set of representatives of
the distinct cosets of Z*/M7T7*, where M denotes the transpose of M. Evidently,
#I' = #Q = |det M|. Without loss of any generality, we may assume that 0 € T’
and 0 € Q.

Suppose a is a finitely supported sequence on Z° satisfying (1.2). Let ¢ be the
normalized solution of the refinement equation (1.1). Taking Fourier transform of
both sides of (1.1), we obtain

(3.1) o(&) = H(MT) ') s((MT) ), €eRe,

where

(3.2) H(¢) = Z ala)e™ ¢ /m, £ e R’
a€Zs

Note that H is a 27-periodic function and H(0) = 1.
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For a compactly supported distribution ¢ on R®, define

N(¢) := {€ € R*: (6 +2nB) = 0 V3 € Z°}.

If ¢ is a compactly supported function in L,(R®) (1 < p < o0), then the shifts of ¢
are stable if and only if N(¢) is the empty set (see [19]).

Theorem 3.1. Let a be a finitely supported sequence on Z° satisfying (1.2), and
let H be the function given in (3.2). If

(3.3) DMH(2n(MT)"'w) =0 Vwe Q\{0} and |p| <k -1,

then the normalized solution ¢ of the refinement equation (1.1) has accuracy k.
Conversely, if ¢ has accuracy k, and if N(¢) N (2n(MT)=1Q) =0, then (3.3) holds

true.
Proof. Suppose that (3.3) is satisfied. Since H is 2m-periodic, (3.3) implies
(3.4) DFH(2r(MT)™'8) =0 VB e€Z*\ (MTZ%) and |u| <k — 1.
Let f and g be the functions given by

F©=H(M")7'¢) and g(&)=o(M")'¢), (eR".

For |u| <k —1and g € Z° \ {0}, applying the Leibniz formula for differentiation
to (3.1), we obtain

(3.5) Dr(2nB) =S (5) D f(2n3) D*~"g(2n).
v<p

By using the chain rule, we see that DY f(273) is a linear combination of terms of
the form D*H (2r(MT)~1f3), where o < v. In light of (3.4), these terms are equal
to 0 if B € Z* \ (MTZ*). This shows that Dt¢(2r8) = 0 for § € Z° \ (MTZ*).

We shall prove that, for » = 0,1,..., D*¢(2r3) = 0 for 3 € (MT)'Z) \
((MT)r+17Z%). This will be done by induction on . The case 7 = 0 was established
above. Suppose 7 > 1 and our claim has been verified for r—1. Let 3 € (M7T)"Z*)\
((MT)r+17%). Then we have (MT)™13 € (MT)"=1Z%)\ (MT)"Z*). Hence, by
the induction hypothesis, D ¢(2m(MT)=18) = 0 for |u| < k — 1. Consequently,
D#g(2w3) = 0 for all p with |u] < k— 1. This in connection with (3.5) tells us that
DMQZ/A)(Qﬂ'ﬂ) = 0 for |u| < k — 1, thereby completing the induction procedure. The
sufficiency part of the theorem has been established.

Conversely, suppose ¢ has accuracy k and N(¢) N (2r(MT)~1Q) = (. Then

DFp(2rB) =0 VB eZ*\{0} and |u| <k—1.

Let w € Q\ {0}. Since N(¢) N (2r(MT)~1Q) = 0, there exists some 3 € Z° such
that ¢(v) # 0 for v := 273 + 2r(MT)~w. Thus, the following identity is valid for
¢ in a neighborhood of ~:

H(€) = o(MTE)[1/6(6)].

Let h be the function given by & — ¢(MT¢), ¢ € R*. By using the Leibniz formula
for differentiation, we obtain

D) = X (1) 0hio) D (1700

v<p
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By the chain rule, D"h(~) is a linear combination of terms of the form D*¢(M7T~),
where o« < v. Note that

MTy = MT2r8 + 2r(MT) " w) = 27(MT) 8 + 27w € 27Z° \ {0}.

Hence DG(MT~) = 0 for |a| < k — 1, because ¢ has accuracy k. Therefore we
obtain D*H (273 + 2m(MT)~'w) = 0 for |u| < k — 1. But H is 27-periodic. This
shows that D*H (2r(M7T)lw) =0 for all w € Q\ {0} and |u| < k — 1, as desired.
The proof of the theorem is complete. O

In the rest of this section we shall show that (3.3) is equivalent to saying that,
for all p € II;_1,

(3.6) > a(MB)p(MB) =Y a(MB+~)p(MB+7) Vel
Bezs BEZs

For this purpose, we first establish the following lemma.
Lemma 3.2. The matriz

L ei27\'M71’7'UJ
(3.7) NGk )

yel,we
is a unitary one.

Proof. Let~y € T'\{0}. We claim that there exists some w’ € ) such that M ~1y-w' ¢
Z. Any element 3 € Z°® can be represented as M ” a+w for some o € Z* and w € Q.
Note that (M~'5)-(MTa) = y-a € Z for all a € Z*. Hence M ~'y-w' € Z for all
w' € Q implies that M ~1v-3 € Z for all 3 € Z°. In other words, M 'y € Z*, and
hence v € MZ*, which contradicts the assumption v € T'\ {0}. This verifies our
claim.

For a fixed element + in T\ {0}, let

o= Z ei2mM Ty w
weN
Choose w’ € Q such that M ~1y-w’ ¢ Z. We have

. —1 ’ . —1 ’ . —1
ez27rM QR - E 61271'(M 7 (wtw') E e127rM T — g

weN we

Since 2™ '@’ £ 1 it follows that o = 0. This shows that

(3.8) S emMTre g vy el {0}
we

Similarly, we can prove that

(3.9) SetMTre g Ywe 0\ {0}
~el’

Finally, the matrix in (3.7) is unitary if and only if for every pair of elements
!/
7,7 €l

i Z 2T M (=) w 1 ify=+,
m ‘= 0 ify#£4.

For v = 7/, this comes from the fact #Q = m; for v # 4/, this follows from (3.8). O
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Lemma 3.3. Let a be a finitely supported sequence satisfying (1.2), and let H be
the function given in (3.2). Then the following two conditions are equivalent for
every polynomial p:

(a) p(iD) H(2r(MT)~w) =0 for all w € 2\ {0}.

(b) D pezs a(MB)p(MB) =3 5ez: a(MB+)p(MB+7) for ally €.

Proof. By (3.2) we have

mp(iD)H(&) = Y a(a)p(a)e™™¢,  E€R".
agZs

An element o € Z*® can be written uniquely as M + v with f € Z° and v € T.
Observe that, for ¢ := 2r(MT)~1

—io-é = —i(MB+7)2r (M) lw = —i 21w — i 2my-(MT) " lw
Hence we have

(3.10) mp(iD)H (2r(MT) w) = Y b(y)e 2 () e
~el’

)

where
b(y) = > a(MB+7)p(MB+7).
BeZs

Condition (b) says that b(y) = b(0) for all v € I". Hence by (3.9) we deduce from
(3.10) that

mp(iD)H (2r(MT)~* (0) Y emizmr M) e
yel

for all w € 2\ {0}. This shows that (b) = (a).
Conversely, (3.10) tells us that condition (a) implies

Z b(v)e‘iZ”MﬂV"" =0 Vwe N\ {0}.
~el’
Let n be an element of I". Then it follows that
Z eiQﬂM71n~w Z b(")/)e_i2ﬂM717.w — Z b(")/)
we ~el’ ~el’
On the other hand,

Do M N p(y)e M = N () N M 0w ),

weN yel’ yel’ weN

since > cq e2mM T (n—)w =  for v # 1, by Lemma 3.2. This shows mb(n) =
> erb(7). Therefore b(n) = b(0) for all n € I'. In other words, (a) implies
(b). O

If an element a € ¢o(Z*®) satisfies (3.6) for all p € II;_1, then we say that a
satisfies the sum rules of order k. The results of this section can be summarized
as follows: If the refinement mask a satisfies the sum rules of order k, then the
normalized solution ¢ of the refinement equation with mask a has accuracy k.
Conversely, if ¢ has accuracy k, and if N(¢) N (2n(M7T)~1Q) = (), then a satisfies
the sum rules of order k.
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4. EXAMPLES

In this section we give several examples to illustrate the general theory.
The symbol of a sequence a € {y(Z?) is the Laurent polynomial a(z) given by

i(z):= Y al@)z",  z€(C\{0}),
agZs

where z% 1= 27" - 2% for z = (21,...,25) € C° and o = (aq,... ,a5) € Z°. If a
is supported on [0, N]* for some positive integer N, then a(z) is a polynomial of z.

In the univariate case (s = 1), if a satisfies the sum rules of order k, then a(z)
is divisible by (1 + 2)* (see, e.g., [8]). In the multivariate case (s > 1), this is no
longer true.

Example 4.1. Let s =2 and M = 2I, where I is the 2 x 2 identity matrix. Let a
be the sequence on Z? given by its symbol
a(z) := z12 + 20 + 2129 + zlzg.
Then a satisfies the sum rules of order 1. But the polynomial a(z) is irreducible.
It is easy to verify that a satisfies the sum rules of order 1. Let us show that

a(z) is irreducible. Suppose to the contrary that a(z) is reducible. Then a(z) can
be factored as

a(z) = f(z)g(2),

where f and g are polynomials of (total) degree at least 1. Since the degree of a(z)
is 3, the degree of either f or g is 1. Suppose the degree of f is 1 and

f(z1,22) = Az1 + pze + v,
where A, u, v are complex numbers and either A # 0 or u # 0. If A #£ 0, then for all
290 € C, f(—(uza +v)/A 22) =0, and so
a(—(pz2 +v)/X, 22) =0 Yz € C.

If 4 # 0, then a(—(uz2 +v)/A, z2) is a polynomial of 29 of degree 3 with —u /A being
its leading coefficient. Hence 1 = 0. But it is also impossible that a(—v/\, z2) =0
for all zo € C. Thus, we must have A = 0, and hence a(z1, —v/u) = 0 for all z; € C.
However, a(z1,—v/u) is a polynomial of z; of degree 2 with 1 being its leading
coefficient. This contradiction shows that a(z) is irreducible.

Let a be the sequence given as above, and let ¢ be the normalized solution of
the refinement equation

o= al@)e(2-—a).
a€Z?

Then ¢ lies in Lo(R?). This can be verified by using the results in [12]. Let b be
the element in o(Z?) given by its symbol

b(z) == |a(z)|?/4 for |z1] =1 and |z2] = 1.
We have
4b(z) =4+ + 27 F 4 25 4+ sz + 27 2yt

-1 -1 -2 -1,2 2,-1 -2
+ 2129 "+ 2y 2ot 2127+ 2 2 212y 2 2.
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Let B be the linear operator on £y(Z?) given by
Bu(a) = Z b(2a — B)v(B), o€ 72,

pez?

where v € €9(Z?). Let W be the B-invariant subspace generated by —&_., +28 —é.,
and —0_e, + 26 — b.,. Then the spectral radius p of the linear operator B|y is 3/4.
Since p < 1, by [12, Theorems 3.3 and 4.1], the subdivision scheme associated with
a is Lo-convergent. Therefore, ¢ € Ly(R?) and the shifts of ¢ are orthonormal (see
[11]). We conclude that the optimal order of approximation provided by S(¢) is 1.

If the refinement mask a satisfies the sum rules of order &, then the normalized
solution ¢ of the refinement equation with mask a has accuracy k. However, if
the condition N(¢) N (2m(MT)~1Q) = 0 is not satisfied, then ¢ could have higher
accuracy. For instance, the function ¢ on R given by ¢(x) = 1/2 for 0 < x < 2 and
¢(x) =0 for z € R\ [0, 2) satisfies the refinement equation

= ala)p(2 —a),
a€Z
where the symbol of the mask a is @(z) = 1 + 2z2. Then a does not satisfy the sum
rules of order 1. But ¢ has accuracy 1, and S(¢) provides Loo-approximation order
1. The following is an example in the two-dimensional case.

Example 4.2. Let ¢ be the Zwart-Powell element defined by its Fourier transform

?(&1,€2) = g(&1) 9(§2) 9(&1 + &2) g(—&1 + &2), (&1,62) € R?,

where g is the function on R given by & — (1 —e~%)/(i€), ¢ € R. Then ¢ is a com-
pactly supported continuous function on R? and S(¢) provides L..-approximation
order 3. On the other hand, ¢ is refinable but the corresponding mask does not
satisfy the sum rules of order 3.

For the first statement the reader is referred to [5, p. 72]. Let us verify the second
statement. From [5, p. 140] we know that the Zwart-Powell element ¢ is refinable
and the corresponding mask a is given by a(a) = 0 for a € Z2 \ [-1,2] x [0, 3] and

0 1

11
(a(aa, 0‘2))_15a152,05a2§3 ~ 11

DN DN =
=)

2
2
01 10

Evidently, the mask a satisfies the sum rules of order 2, but a does not satisfy the
sum rules of order 3. Note that (7w, 7) € N(¢) in this case.

Example 4.3. Let M be the matrix

1 -1
1 1)’
and let a be the sequence on Z? such that a(a) = 0 for a € Z? \ [-2,2]? and

0 -1 0 -1 0
T U (U
(a(oa,az))_z,gamsz,:3—2 ? 1% zlag 1% (1)
0 -1 0 -1 0
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Let ¢ be the normalized solution of the refinement equation (1.1) with mask a and
dilation matrix M given as above. Then ¢ is a compactly supported continuous
function on R?, and the optimal approximation order provided by S(¢) is 4.

Let us verify that a satisfies the sum rules of order 4. We observe that a =
(a1, @) lies in M7? if and only if a1 + g is an even integer. Hence the sum rule
for a polynomial p of two variables reads as follows:

S pa@= Y pBald).

a1+a2 €27 B1+B2¢2Z
that is,

32p(0,0) =10 Z plag, ag) — Z plag, asz).

lay[+]az|=1 |y [+]az|=3

We can easily verify that this condition is satisfied for all p € II3, but it is not
satisfied for the monomial p given by p(z1,z2) = 2323, (z1,72) € R% Therefore
the refinement mask a satisfies the sum rules of order 4, but not of order 5.

In the present case, Q := {(0,0),(1,0)} is a complete set of representatives of
the distinct cosets of Z2/MTZ% We have 2r(M7T)~1Q = {(0,0), (7, 7)}. Since
$(0,0) = 1, in order to verify the condition N(¢) N (2r(MT)~1Q) = 0, it suffices
to show that ¢E(7r, m) # 0. For this purpose, we observe that

o) =[[H(MT)F¢),  ¢er?

k=1

where

H(&) = [32+20(cos &1 + cos&z) — 4cos (261 + &) — 4cos (& + 262)] /64,
£=(6,6) R
We have (MT)~Y(r,m)T = (0,7)T and H(0,7) > 0. Suppose
(m,m2)" = (MT)~F(m,m)"

for some integer k > 2. Then |m| < 7/2 and |n2| < 7/2, so H(ni,m2) > 0. It
follows that q@(ﬂ', 7) # 0. Consequently, the exact accuracy of ¢ is 4.

By using the methods in [12], we can easily prove that the subdivision scheme
associated with mask a and dilation matrix M converges uniformly. Consequently,

¢ is a continuous function. We conclude that the optimal approximation order
provided by S(¢) is 4.

5. THE SUBDIVISION AND TRANSITION OPERATORS

We introduce two linear operators associated with a refinement equation. One
is the subdivision operator, and the other is the transition operator. When the
dilation matrix M is 2 times the identity matrix, the spectral properties of the
subdivision and transition operators were studied in [10] and [18]. In this section,
we extend the study to the case in which M is a general dilation matrix.

Let X and Y be two linear spaces, and T a linear mapping from X to Y. The
kernel of T, denoted by ker (T'), is the subspace of X consisting of all x € X such
that Tx = 0.
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Let a be an element in £y(Z*®) and let M be a dilation matrix. The subdivision
operator S, is the linear operator on ¢(Z?) defined by

Squ(a) == Z alo — MB)u(B), a €z,
pezs
where u € ¢(Z*®). The transition operator T is the linear operator on £y(Z°)
defined by

Tow(a) == ) a(Ma—p(B),  acZ’,
BezZs
where v € {y(Z?).
The following theorem shows that the subdivision operator S, and the transition
operator T, have the same nonzero eigenvalues. We use I and I, to denote the
identity mapping on ¢(Z*) and ¢y(Z*), respectively.

Theorem 5.1. The transition operator T, has only finitely many nonzero eigen-
values. For o € C\ {0}, the linear spaces ker (S, — ol) and ker (T,, — oly) have
the same dimension. In particular, o is an eigenvalue of S, if and only if it is an
eigenvalue of T,.

Proof. For N = 1,2,..., let Ey denote the cube [—-N, N]*. Choose N such that
En_1 contains suppa = {a € Z° : a(a) # 0}. Let K := >~ M "Eyn. In
other words, = belongs to K if and only if z = Y 2 | M~ "y, for some sequence
of elements y, € En. Let ¢(K) denote the linear space of all (finite) sequences on
K NZs. Consider the linear mapping A on ¢(K) given by

Av(a) := Z a(Ma — B)v(B), ae KNZ°,
BEKNZ*
where v € £(K). The dual mapping A’ of A is given by
Au(B):= > ul@)aMa—-p), BeKNZ,
aeKNZs

where u € ((K). Let Ix denote the identity mapping on ¢(K). Since ¢(K) is finite
dimensional, we have

dim (ker (A — 0lk)) = dim (ker (A" — o1k)).

Thus, in order to establish the theorem, it suffices to prove the following two rela-
tions:

(5.1) dim (ker (T, — 0lp)) = dim (ker (A — olg))
and
(5.2) dim (ker (Sq — o)) = dim (ker (4" — olk)).

For this purpose, we introduce the sets K; (j =0,1,...) as follows:
Kj=M""'E,+---+FE +K.

In particular, Ko = K. Evidently, K; C K;4; for j =0,1,..., and R® = U;io K;.
Moreover,

(5.3) M~YK; +suppa) C K;_1, j=1,2,....
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Indeed, we have M~1K + M~'Ey = K, and hence

M~YK; +suppa) C M??Ey +-- -+ By + M 'Ey + M 'K + M 'Ex_4
CKj_1.

Suppose o # 0 and v € ker (T, — 0ly). Then suppv C K; for some j > 1. We
observe that T,v(«) # 0 implies Ma — 8 € supp a for some 3 € K. It follows that
a € M~ (suppa+K;) C K;_1, by (5.3). In other words, supp (T,v) C K;_1. Using
this relation repeatedly, we obtain supp (T7v) C K. But v = T,v/0 = (TIv) /0.
Therefore, suppv C K, and v|gnzs belongs to ker (A — oIk ). This shows that
the restriction mapping P : v — v|gnzs maps ker (T, — oly) to ker (A — olk).
Moreover, v|gnzs = 0 implies v = 0. So P is one-to-one. Let us show that P is also
onto. Suppose Aw = ow for some w € ¢(K). Define v(a) := w(a) for « € K NZ*
and v(«) := 0 for @ € Z° \ K. Then T,v = ov. Thus, P is one-to-one and onto,
thereby establishing (5.1).

In order to prove (5.2), we consider the mapping @ : u — u*|xnzs, where u* is
the sequence given by u*(«) := u(—a), a € Z*. Suppose u € ker (S, — o). Then

1
u(a) = — E ala — MB)u(B), aeZ’.
o
BELS
It follows that

u*(a):% Z u*(B)a(MpB — a), a € ZP.

BEZ*

Fora € K; (j > 1), a(MB—a) #0only if 3€ M~ (suppa+ K;) C K;_;. Hence

(5.4) u(a) =

SHE

Yo w(BaMp—a) for a€K;NZ'.
ﬂEKjflﬁZS

This shows that u*|xnzs belongs to ker (A" — oIk ). Thus, @ maps ker (S, — o) to
ker (A’ — 0Ik). Moreover, if u*(«) = 0 for o € K NZ?, then it follows from (5.4)
that u*(o) =0 fora € K; NZ% j=1,2,.... But R* = U;’il Kj; hence u*(a) =0
for all @« € Z*®. Thus, the mapping @) is one-to-one. It is also onto. Indeed, if
w € ker(A’ — olk), then

w(a) = 1 Z w(Ba(MpB — a), ae KNZ°.

o
BeKNZs

For a« € KNZ% let u*(a) := w(a); for a € (K; \ K;—1)NZ* (j =1,2,...), let
u*(a) be determined recursively by (5.4). Then u € ker (S, — o) and Qu = w.
Thus, @ is one-to-one and onto, so that (5.2) is valid. The proof of the theorem is
complete. O

A sequence u on Z* is called a polynomial sequence if there exists a polynomial
p such that u(a) = p(a) for all o € Z*. The degree of w is the same as the degree
of p. For a nonnegative integer k, let P be the linear space of all polynomial
sequences of degree at most k, and let

Vi = {v € 6(Z°) : Z p(a)v(a) =0Vp e Hk}.

a€ZS
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For u € ¢(Z*) and v € £y(Z*), we define
(u,v) = Z u(e)v(a).
a€’Zs

Theorem 5.2. Let M be an s x s dilation matriz and  a complete set of repre-
sentatives of the distinct cosets of Z°/MTZ*. For any a € {o(Z*), the following
statements are equivalent:

(a) The sequence a satisfies the sum rules of order k + 1.

(b) Vi is invariant under the transition operator T,.

(¢) Py is invariant under the subdivision operator S,.

(d) DFH(2rn(MT)=1w) =0 for all |u| < k and all w € 2\ {0}.

Proof. (a) = (b): Let p € Il and v € Vj,. We have
> ple)Tuvi@) = S [ pla)a(Ma — 5)]v(8).
a€Ls BEZ® aels
Let g(z) := p(M~'x), x € R®. Then p(z) = q(Mz), x € R*. By Taylor’s formula,
we have
¢(Ma) = g(Ma—B+8)= > q.(Ma—pB)s",
lul <k
where g, := D#q/p! € II;. Hence
> ple)a(Ma =) =) | q(Ma)a(Ma - )= ) c,f",
a€Zs a€Zs lp|<k
where
Cp = Z gu(Ma — B)a(Mao — ()
a€Zs
is independent of 3, by condition (a). Thus, we obtain
D p@Tav(@) = Y eu Y B*(B) =0,
a€Ls lp|<k BELS

because v € V. This shows that T,v € Vj, for v € Vi. In other words, Vj is
invariant under T,.

(b) = (c): Suppose p € P,. We wish to show that u := Syp lies in P,. We claim
that (u,v) =0 for all v € Vj,. Indeed,

(w0) =Y ul@(@) =Y Y ala— MB)p(B)v(a)

[A=YA Q€L BELS
= 3" p(=8) D a(Mp - ay(-a) = Y p(-Bw(p),
BEZs Q€S BeZ?

where w := T,v* with v* given by v*(a) = v(—a), a € Z®. Since V}, is invariant
under T, and v* € Vi, we have w € Vj. It follows that
(u,0) = > p(=Bw(B) =0.
BELs

For a multi-index p with |u] = k + 1, we have V#§, € Vj for all a € Z*. Hence
(u, V#6,) = 0. In other words, V*u(a) = 0 for all @ € Z* and |u| = k + 1. This
shows that v is a polynomial sequence of degree at most k.
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(c) = (a): For p € Iy, let q(7) := > 5cz. a(MB+v) p(MB + ) for v € Z°. We
claim that ¢ is a polynomial sequence. Indeed, by using Taylor’s formula, we have

p(MB+7) = > tu(MB)Y",

|l <k
where ¢, :== DFp/ul. Set q,,(8) := t,(—Mp) for 3 € Z*. Then for vy € Z°,

g(v) = > a(MB+~) p(MB+7)

BEZs
=D > a(v+ MB) qu(=B" = D (Sagu) (7)™
Bz |ul<k <k

Note that ¢, is a polynomial sequence of degree at most k. By condition (c), S.q,
is a polynomial sequence; hence so is q. We observe that g(y + Mn) = q(v) for all
n € Z° and v € Z*, that is, q is a constant sequence on the lattice v+ MZ?® for each
v € Z*. Hence q itself must be a constant sequence. This verifies condition (a).
Finally, the equivalence between (a) and (d) was proved in Lemma 3.3. (]

We remark that the equivalence between (c¢) and (d) was proved in [7, p. 98] for
the case when the dilation matrix M is 2 times the identity matrix.

6. SMOOTHNESS AND APPROXIMATION ORDER

In this section we discuss the relationship between approximation and smooth-
ness properties of a refinable function.

Suppose ¢ satisfies the refinement equation (1.1) with the dilation matrix M
being 2 times the identity matrix. It was proved by Jia in [18] that ¢ € WF(R®)
and (;3(0) 2 0 imply that II;, C S(¢) and S(¢) provides approximation order k + 1.
This result improves an earlier result of Cavaretta, Dahmen, and Micchelli about
polynomial reproducibility of smooth refinable functions (see [7, p. 158]).

The above results can be extended to the case in which the dilation matrix is
isotropic. Let M be an sx s matrix with its entries in C. We say that M is isotropic
if M is similar to a diagonal matrix diag{\1,... , A} with [A;| = --- = |As]. For
example, for a,b € R, the matrix

a —b
)

is isotropic. Obviously, a matrix M is isotropic if and only if its transpose M7 is
isotropic.
Lemma 6.1. Let M be an isotropic matrix with spectral radius o. For any vec-
tor norm || - || on R®, there exist two positive constants Cy and Cy such that the
inequalities

Cro™|vll < [[M™ o] < Cao™||v]]
hold true for every positive integer n and every vector v € R®.
Proof. Since M is isotropic, we can find a basis {v1, ... ,vs} for C* such that Mv; =
Ajvj with [A1]| = - -+ = |As| = 0. Recall that two norms on a finite-dimensional linear
space are equivalent. Hence there exist two positive constants C; and Cs such that

S S

S
C1Y ol <ol < C2 > lasl for v="Y_ajuv;.
j=1

j=1 j=1
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But for v = 377_, aju; we have M"v =37_, a;\}v;. It follows that

j=1
S S
M 0] < Co Y lajA}] = Ca0™ Y laj| < CoCy o™ |lv]|
j=1 j=1
and
S S
[M™0]| > Cy Y la Ay = Cio™ Y aj| > CLCy o™ |o]].
j=1 j=1
This completes the proof of the lemma. O

Lemma 6.2. Let M be an isotropic matriz with spectral radius . For an infinitely
differentiable function f on R®, let

fal€) == fF(MTYE),  €€R®, n=0,1,2,....

Then, for each positive integer r, there exists a positive constant C' depending only
on r and the matriz M such that

(6.1) ‘m‘ax‘D“fn(fM <Co™ Im‘ax|D”f((MT)"§)} V¢ e RS,
H|=T v|=r
Proof. Let B = (bpg)1<p,q<s be the matrix (MT)". By the chain rule, for j =
1,...,s, we have
Djfa(€) = (biyD1+ -+ by D) f(MT)"E),  EE€R™.
Hence, for a multi-index g = (u1,... , us) with |u] = r,

D fu() = T D4 £u(€) = [T 01, D1 + - + by DI# F(MT)"E), €€ R,
j=1 j=1
By Lemma 6.1, there exists a constant C; > 0 depending only on the matrix M
such that |bye| < Cio™ for all p,q. We may express szl(blle +--+bg;Ds)H as
ZM:T ¢, DY, where each ¢, is a linear combination of products of r factors of the

bpe’s. Hence there exists a positive constant C' depending only on r and the matrix
M such that |c,| < Co™ for all |v| = r. This proves (6.1). O

Now we are in a position to establish the main result of this section.

Theorem 6.3. Suppose M is an s X s isotropic dilation matriz, and a is an ele-
ment in Lo(Z°) satisfying (1.2). Let ¢ be the normalized solution of the refinement
equation (1.1). If ¢ € WE(R®), then T, C S(¢) and S(¢) provides approzimation
order k + 1.

Proof. Since ¢(0) = 1, in order to prove S(¢) D I, it suffices to show that for
lul < K,

(6.2) DFG(2mB) =0 VB eZ\ {0}

The proof proceeds with induction on |u|, the length of .
Let H be the function given in (3.2). A repeated application of (3.1) yields that,
forn=1,2,...,

o0 = [[[ (@M= |drng.  cere

j=1
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It follows that
(6.3) S((MT)"E) = ha(£)(E),  E€R?,

where hy(§) = H?Zl H((MT)i=1¢). Note that H is 2m-periodic and H(0) = 1.
Thus, we have

o(2m(M™)"3) = [H H(2n(MT)~16)| $(26m) = §(26m), B ez

Jj=1

If ¢ € L1(R®), then by the Riemann-Lebesgue lemma we obtain

$(26m) = lim o(2r(MT)"3) =0 VB eZ\ {0}

This establishes (6.2) for pu = 0.
Let 0 < r < k. Assume that (6.2) has been proved for |u| < r. We wish to
establish (6.2) for |u| = r. For this purpose, we deduce from (6.3) that

B() = fal€) [L/hn(€)], € E€RS,

where f,,(€) := ¢((MT)"¢), € € R®. By using the Leibniz formula for differentiation,
we get

(6:4) DIG(€) = (5) D" fu(&) D" 1/hn)(€), £ ER,

v<p
But, for 8 € Z° \ {0} and |v| < r, we have D" f,(2x3) = 0, by the induction
hypothesis. When v = u, we have [1/h,](273) = 1. Hence it follows from (6.4)
that

(6.5) D'¢(2mB) = D" f,(2xB), B €Z°\{0}.
By Lemma 6.2, we have
(6.6) |D* f,(27B)| < C o™ mi}ﬂD”q@((MT)"Qwﬁ) . Bez\ {0},

where C' > 0 is a constant independent of n.

In what follows, we use v; to denote the jth coordinate of a vector v in R®. For a
multi-index v = (v, ... ,vs), let ¢, be the function given by ¢, (x) = (—iz)" ¢(z),
x € R?. Then D"¢ = ¢, and

((=iD;)"6u)"(6) =D 9(€), €= (&, &) ER®.
Since ¢ € W{(R?), we have (—iD;)"¢, € L1(R?®). Thus, by the Riemann-Lebesgue

lemma, we obtain

lim ((MT)"B); D"¢(2n(MT)"8) =0 for §€2Z°\{0}.

This is true for j = 1,... ,s; hence it follows that
lim [(MT)"B|"D*é(2r(MT)"3) =0  for B € Z°\ {0},
where || - || is a vector norm on R®. By Lemma 6.1, there exists a positive constant

C1 > 0 independent of n such that
Cro™|1B]l < (7).
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Therefore

lim 0" DY¢(2r(MT)"B) =0  for € Z*\ {0}

n—oo

This in connection with (6.5) and (6.6) tells us that D*¢(273) = 0 for |u| = r and
B € Z° \ {0}. The proof of the theorem is complete. |

Recall that € is a complete set of representatives of the distinct cosets of
7°/M7TZ?. Thus, as a consequence of Theorem 6.3, we conclude that if the nor-
malized solution ¢ of the refinement equation (1.1) lies in W{(R*®), and if N(¢) N
(2r(MT)~1Q) = (), then the refinement mask a satisfies all the conditions in The-
orem 5.2.
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