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IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT

METHODS FOR NONLINEAR PARABOLIC PROBLEMS

GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS

Abstract. We approximate the solution of initial boundary value problems
for nonlinear parabolic equations. In space we discretize by finite element
methods. The discretization in time is based on linear multistep schemes.
One part of the equation is discretized implicitly and the other explicitly.
The resulting schemes are stable, consistent and very efficient, since their im-
plementation requires at each time step the solution of a linear system with
the same matrix for all time levels. We derive optimal order error estimates.
The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn-
Hilliard equations in one dimension, as well as to a class of reaction diffusion
equations in Rν , ν = 2, 3.

1. Introduction

In this paper we construct and analyze implicit-explicit multistep schemes for
the time discretization of a class of nonlinear parabolic problems of the form: Given
T > 0 and u0 ∈ H , find u : [0, T ] → D(A) such that

u′(t) +Au(t) = B(u(t)), 0 < t < T,

u(0) = u0,
(1.1)

whereA is a linear, selfadjoint, positive definite operator on a Hilbert space (H, (·, ·))
with domain D(A) dense in H, and B : D(A) → H is a (possibly nonlinear) differen-
tiable operator. Considering a finite dimensional subspace Vh of V, V := D(A1/2),
we are led to a semidiscrete problem approximating (1.1): We seek a function uh,
uh(t) ∈ Vh, defined by

u′h(t) +Ahuh(t) = Bh(uh(t)), 0 < t < T,

uh(0) = u0
h;

(1.2)

here u0
h ∈ Vh is a given approximation to u0, and Ah, Bh are appropriate operators

on Vh with Ah linear, selfadjoint and positive definite.
Following an idea of Crouzeix, [3], for the time discretization of parabolic equa-

tions with time dependent coefficients, we combine implicit and explicit multistep
schemes to discretize (1.2) in time: Implicit schemes are used for discretizing the
left-hand side of the o.d.e. in (1.2), and explicit schemes for the nonlinear right-
hand side. Thus, letting k be a (constant) time step, tn = nk, n = 0, . . . , N,
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T = Nk, we define a sequence of approximations Un, Un ∈ Vh, to un = u(tn), by

q∑
i=0

αiU
n+i + k

q∑
i=0

βiAhU
n+i = k

q−1∑
i=0

γiBh(U
n+i).(1.3)

A scheme of this form is characterized by three polynomials α, β and γ,

α(ζ) =

q∑
i=0

αiζ
i , β(ζ) =

q∑
i=0

βiζ
i , γ(ζ) =

q−1∑
i=0

γiζ
i .

We note that, when Bh vanishes, the scheme (1.3) reduces to the implicit linear
multistep method (α, β) (or (ρ, σ) in the notation of Dahlquist) for the equation
u′h(t) + Ahuh(t) = 0; similarly if Ah vanishes, the scheme (1.3) reduces to the
linear multistep method (α, γ), which is explicit since γq = 0, for the equation
u′h(t) = Bh(uh(t)). The scheme (1.3) is a combination of the methods (α, β) and
(α, γ); it is linearly implicit and nonlinearly explicit. We shall refer to it as the
(α, β, γ) scheme.

We shall assume in the sequel that the method (α, β) is strongly A(0)−stable;
this implies, in particular, that αqβq is positive, which in turn ensures invertibility
of the operator αqI + kβqAh. Thus, given U0, . . . , U q−1 in Vh, U

q, . . . , UN are well
defined by the (α, β, γ) scheme. We will assume in the sequel, without loss of
generality, that both αq and βq are positive.

For the analysis of the scheme (1.3) we will need some additional assumptions for
the operators A and B as well as for the finite dimensional spaces Vh; the operators
Ah and Bh will then be appropriately defined. Let, thus, | · | denote the norm of H,
and introduce in V the norm ‖ · ‖ by ‖v‖ = (A1/2v,A1/2v)1/2. We identify H with
its dual, and denote by V ′ the dual of V , again by (·, ·) the duality pairing on V ′

and V, and by ‖ · ‖? the dual norm on V ′. We assume that B can be extended to
an operator from V into V ′, which is differentiable, and an estimate of the form

|(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω| ∀v, w, ω ∈ V(1.4)

holds with a constant λ < 1 and a functional µ(v) which is bounded for v bounded
in V. Indeed, depending on the particular (α, β, γ) scheme, we shall need to assume
that the constant λ is appropriately small. Further, the assumption that µ(v)
is bounded for v bounded in V will suffice to derive our results under some mild
meshconditions; these conditions can be weakened if µ(v) is bounded for v bounded
in some appropriate weaker norms, and even avoided if µ(v) is bounded for v
bounded in H.

We will assume in the sequel that (1.1) possesses a solution which is sufficiently
regular for our results to hold. Uniqueness of smooth solutions follows easily in
view of (1.4).

For the space discretization we use a family Vh, 0 < h < 1, of finite dimensional
subspaces of V. In the sequel the following discrete operators will play an essential
role: Define Po : V ′ → Vh, Rh : V → Vh, Ah : V → Vh, and the nonlinear operator
Bh : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh,

(ARhv, χ) = (Av, χ) ∀χ ∈ Vh,

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh,

(Bh(ϕ), χ) = (B(ϕ), χ) ∀χ ∈ Vh.
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Then, obviously, AhRh = PoA and Bh = PoB .
In the error analysis we shall use the approximation properties of the “elliptic

projection” Rh. We assume that Rhv is an approximation to v of order r, provided
that v is sufficiently regular,

|v −Rhv|+ hd/2‖v −Rhv‖ ≤M(v)hr,(1.5)

where r and d are two integers, 2 ≤ d ≤ r, and M(v) is bounded if an appropriate
norm of v is bounded. We further assume that

‖B(v)−B(Rhv)‖? ≤M(v)hr.(1.6)

We emphasize that the condition (1.6) serves consistency purposes only. It is
needed to prove consistency of the (α, β, γ) scheme—and, in fact, already of the
semidiscrete problem (1.2)—for Rhu of optimal order with respect to h. It is
somehow restrictive though, since it essentially means that, if A is a differential
operator of order d, then B may contain derivatives of up to order d/2 only. For
some concrete differential equations, however, one can get by with a less stringent
condition by taking into account in the definition of Rh the terms of B of order
higher than d/2.

The scheme (1.3) is very efficient since its implementation requires at every time
step solving a linear system with the same matrix for all time levels. If the order of
both the implicit and the explicit scheme is p, then under some mild meshconditions
and for appropriately small λ, and appropriate starting values U0, . . . , U q−1, we
derive the optimal order error estimate

max
0≤n≤N

|u(tn)− Un| ≤ c(kp + hr).

An outline of the paper is as follows: Section 2 is devoted to the analysis of a
simple one step semiexplicit scheme of first order accuracy; its purpose is to motivate
the analysis, in section 3, of more general multistep schemes of higher accuracy.
Finally, in the last section, we apply our abstract results to three examples, namely
the Kuramoto-Sivashinsky equation and the Cahn-Hilliard equation in one space
dimension, and to a class of reaction diffusion equations in Rν , ν = 2, 3.

2. An implicit-explicit one step scheme

As a motivation for the analysis of multistep schemes, we study in this section
the simplest implicit-explicit scheme which is a combination of the backward Euler
and the Euler method.

Let U0 ∈ Vh be given. We define fully discrete approximations Un ∈ Vh to u(tn),
recursively by

Un+1 − Un

k
+AhU

n+1 = Bh(U
n) , n = 0, . . . , N − 1.(2.1)

Our main concern in this section is to analyze the approximation properties of the
sequence {Un}. As an intermediate step, we shall show consistency of the scheme
(2.1) for the elliptic projection of the solution u of (1.1). Let

W (t) = Rhu(t), W (t) ∈ Vh, 0 ≤ t ≤ T .



460 GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS

We note for later use that, in view of the definition of Rh, ‖W (t)‖ is obviously
bounded by ‖u(t)‖, and thus bounded uniformly in h and t,

sup
h

sup
t
‖W (t)‖ ≤ C .(2.2)

Consistency. The consistency error En of the scheme (2.1) for W is given by

kEn = (Wn+1 −Wn) + kAhW
n+1 − kBh(W

n), n = 0, 1, . . . , N − 1 .(2.3)

Using the relation AhRh = PoA and the definition of Bh, we rewrite En as

kEn = Rh(u
n+1 − un) + kPoAu

n+1 − kPoB(Rhu
n),

and thus, in view of (1.1), En = En
1 + En

2 , where

kEn
1 =(Rh − Po)(u

n+1 − un) + Po(u
n+1 − un − ku′(tn+1) )

+ kPo(B(un+1)−B(un) ),
(2.4)

and

En
2 = Po(B(un)−B(Rhu

n) ).(2.5)

Obviously

max
0≤n≤N−1

|En
1 | ≤ C(k + hr).(2.6)

Further, in view of (1.6),

max
0≤n≤N−1

‖En
2 ‖? ≤ Chr.(2.7)

Next, we show optimal order rate of convergence of our approximations to the
(sufficiently regular) solution of (1.1), provided that the initial approximation U0 ∈
Vh satisfies

|u0 − U0|+ hd/2‖u0 − U0‖ ≤ c(u)hr .(2.8)

We first introduce some more notation: For v ∈ V and b > 0, let

|||v|||b :=
{
|v|2 + bk‖v‖2

}1/2
,

and set |||v||| := |||v|||1. Further, let

m := sup{µ(v) : ‖v‖ ≤ sup
t
‖u(t)‖+ 1}(2.9)

with µ(v) as in (1.4).
The main result in this section is given in the following theorem:

Theorem 2.1. Assume that k and h2rk−1 are sufficiently small. Then, we have
the local stability estimate

|||Wn − Un|||λ ≤ emtn
{
|||W 0 − U0|||λ + k

n−1∑
j=0

|Ej
1 |

+
1√

2(1− λ)

(
k
n−1∑
j=0

‖Ej
2‖2

?

)1/2}
,

(2.10)

and the error estimate

max
0≤n≤N

|u(tn)− Un| ≤ C(k + hr).(2.11)
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Proof. Let ρn = un −Wn and ϑn = Wn − Un, n = 0, . . . , N . Then, according to
(1.5),

max
0≤n≤N

|ρn| ≤ Chr.(2.12)

Further, in view of (1.5) and (2.8),

|||ϑ0|||λ ≤ |ϑ0|+ k1/2‖ϑ0‖
≤ Chr + Ck1/2hr−d/2,

i.e., since d ≤ r,

|||ϑ0|||λ ≤ C(k + hr) .(2.13)

Now, if we assume that (2.10) holds, using (2.13), (2.6) and (2.7), we obtain

max
0≤n≤N

|||ϑn|||λ ≤ C(k + hr) ,(2.14)

and then (2.11) follows in view of (2.12). Thus, it remains to prove (2.10). To this
end, we proceed as follows: From (2.1) and (2.3) we obtain an error equation for
ϑn,

ϑn+1 + kAhϑ
n+1 =ϑn + k(Bh(W

n)−Bh(U
n)) + kEn

=ϑn + k

∫ 1

0

B′h (Wn − sϑn)ϑn ds+ kEn , n = 0, . . . , N − 1.

According to (2.13), (2.6) and (2.7), there exists a constant C? such that

emT
{
|||W 0 − U0|||λ + k

N−1∑
j=0

|Ej
1 |+

1√
2(1− λ)

(
k

N−1∑
j=0

‖Ej
2‖2

?

)1/2}
≤ C?(k + hr) .

(2.15)

Next, we split the error ϑn as ϑn = ϑn1 + ϑn2 . Here ϑ0
1 = ϑ0, ϑ0

2 = 0, and ϑni ,
n = 1, . . . , N, are recursively defined by

ϑn+1
i + kAhϑ

n+1
i = ϑni + k

∫ 1

0

B′h (Wn − sϑn)ϑni ds+ kEn
i , i = 1, 2.(2.16)

We shall show inductively that, for n = 0, . . . , N,

|||ϑn1 |||λ ≤ emtn
{
|||ϑ0

1|||λ + k

n−1∑
j=0

|Ej
1 |
}

(2.17)

and

|||ϑn2 |||λ ≤ emtn
1√

2(1− λ)

(
k
n−1∑
j=0

‖Ej
2‖2

?

)1/2
.(2.18)

Obviously, (2.10) follows from (2.17) and (2.18). The estimates (2.17) and (2.18)
are of course valid for n = 0. Assume that they hold for some n, 0 ≤ n ≤ N − 1.
Then, according to (2.15) and to (2.10), which also holds for n, we have, for k and
k−1h2r small enough,

‖ϑn‖ ≤ 1√
λ
C?(k

1/2 + k−1/2hr) ≤ 1,
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i.e.,

sup
0<s<1

µ (Wn − sϑn) ≤ m.(2.19)

Taking in (2.16) the inner product with ϑn+1
i and using the definition of Ah and

Bh, we obtain

|||ϑn+1
i |||2 = (ϑni , ϑ

n+1
i ) + k

∫ 1

0

(
B′h (Wn − sϑn)ϑni , ϑ

n+1
i

)
ds+ k(En

i , ϑ
n+1
i ) ,

and thus, in view of (1.4) and (2.19),

|||ϑn+1
i |||2 ≤ (1 +mk)|ϑni | |ϑn+1

i |+ λk‖ϑni ‖ ‖ϑn+1
i ‖+ k(En

i , ϑ
n+1
i ) , i = 1, 2.(2.20)

Therefore,

|||ϑn+1
1 |||2λ ≤ (1 +mk)

(
|ϑn1 | |ϑn+1

1 |+ λk‖ϑn1‖ ‖ϑn+1
1 ‖

)
+ k|En

1 | |ϑn+1
1 |

≤ (1 +mk)|||ϑn1 |||λ|||ϑn+1
1 |||λ + k|En

1 | |||ϑn+1
1 |||λ ,

i.e.,

|||ϑn+1
1 |||λ ≤ (1 +mk)|||ϑn1 |||λ + k|En

1 | .(2.21)

From (2.21) and the induction hypothesis, it easily follows that (2.17) holds also
for n+ 1. Similarly,

|||ϑn+1
2 |||2 ≤ 1

2
(1 +mk)2|ϑn2 |2 +

1

2
|ϑn+1

2 |2 +
1

2
λk‖ϑn2 ‖2 +

1

2
λk‖ϑn+1

2 ‖2

+
1

4(1− λ)
k‖En

2 ‖2
? + (1− λ)k‖ϑn+1

2 ‖ ,

i.e.,

|||ϑn+1
2 |||2λ ≤ (1 +mk)2|ϑn2 |2 + λk‖ϑn2‖2 +

1

2(1− λ)
k‖En

2 ‖2
? ,

and, therefore,

|||ϑn+1
2 |||2λ ≤ (1 +mk)2|||ϑn2 |||2λ +

1

2(1− λ)
k‖En

2 ‖2
? .(2.22)

From (2.22) and the induction hypothesis, it easily follows that (2.18) holds for
n+ 1 as well, and the proof is complete.

Remark 2.1. The weak meshcondition “k−1h2r small” is used in the proof of The-
orem 2.1 only to show that ‖ϑn‖ ≤ 1 which implies (2.19). If µ(v) is bounded for
v bounded in a weaker norm, one can get by with an even weaker meshcondition.
Assume, for instance, that µ(v) is bounded for v bounded in a norm ‖·‖?, for which
an inequality of the form

‖v‖? ≤ |v|+ |v|1−a‖v‖a, v ∈ V,(2.23)

holds for some constant a, 0 ≤ a < 1. Then, assuming that (2.17) and (2.18) hold
for some n, 0 ≤ n ≤ N − 1, according to (2.15) and (2.10), which is also valid for
n, we have

‖ϑn‖? ≤ |ϑn|+ |ϑn|1−a‖ϑn‖a

≤ C?(k + hr) + C?λ
−a/2k−a/2(k + hr),

and thus a condition of the form “k and k−ah2r sufficiently small” guarantees that
‖ϑn‖? is small, bounded by 1 say, and this in turn implies that (2.19) is satisfied
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for an appropriately defined constant m. In particular, if µ(v) is bounded for v
bounded in H, no meshcondition is required for the results of Theorem 2.1 to hold;
we only have to assume that k and h are sufficiently small. These remarks apply
equally well to the more general multistep schemes which will be investigated in
the next section.

In the applications in Section 4, in the case of the Kuramoto-Sivashinsky equation
µ(v) will be bounded for v bounded in H, and no meshcondition will be needed; for
the Cahn-Hilliard equation, µ(v) will be bounded for v bounded in a norm ‖ · ‖? for
which (2.23) holds with a = 1

2 , and thus we only have to assume that k and k−1h4r

are sufficiently small.
Similarly, the same idea can be applied also when µ(v) is bounded for v bounded

in a stronger norm. Then, in special cases, the convergence result of Theorem 2.1
is still valid but under a stronger meshcondition. A particular example, where this
can be done, is analyzed in section 4.

Remark 2.2. The assumption Vh ⊂ V is not essential in our analysis. One can
treat the case Vh * V by redefining the discrete operator Bh and appropriately
modifying the assumptions (1.4) and (1.6). We shall not dwell on this.

3. Multistep schemes

In this section we shall analyze implicit-explicit multistep schemes of higher order
accuracy.

Let (α, β) be an implicit multistep scheme and α(·), β(·) be the corresponding
polynomials introduced in section 1. We order the roots ζj(x), 1 ≤ j ≤ q (resp.
ζj(∞) ) of the polynomial $x(·) = α(·) + xβ(·) (resp. β(·) ) in such a way that the
functions ζj(·) are continuous on [0,+∞] and that the roots ξj := ζj(0), j = 1, . . . , s,
satisfy |ξj | = 1 ; these unimodular roots are called the principal roots of α(·) and

the complex numbers λj =
β(ξj)

ξjα′(ξj)
are called the growth factors of ξj . We assume

that the method (α, β) is strongly A(0)−stable, that means,

for all 0 < x ≤ ∞ and for all j = 1, . . . , q, there holds |ζj(x)| < 1,(i)

and

the principal roots of α are simple and satisfy: Re λj > 0, j = 1, . . . , s .(ii)

We also consider an explicit multistep scheme (α, γ) and we assume that both
methods (α, β) and (α, γ) are of order p, i.e., (with the convention 00 = 1)

q∑
i=0

i`αi = `

q∑
i=0

i`−1βi = `

q−1∑
i=0

i`−1γi, ` = 0, 1, . . . , p .(iii)

An example of a class of (α, β, γ) methods satisfying the above assumptions with
the order p = q is given by the polynomials

α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j , β(ζ) = ζq , and γ(ζ) = ζq − (ζ − 1)q .

The corresponding implicit (α, β) schemes are the well-known B.D.F. methods
which are strongly A(0)−stable for 1 ≤ q ≤ 6.
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Remark 3.1. The hypothesis (iii) may be written in the equivalent form

α(ex) = xβ(ex) +O(xp+1) = xγ(ex) +O(xp+1), as x→ 0,

which implies

β(y)− γ(y) = O((y − 1)p), as y → 1.(3.1)

Since β − γ is a polynomial of degree q, we necessarily have p ≤ q ; recall that, cf.
Cryer [5], the strong A(0)−stability of the (α, β) scheme implies also that p ≤ q . In
the same paper Cryer (see also Grigorieff and Schroll [8]) shows that for any q there
exists an (α, β) q-step A(0)−stable method of order q. Following the proof given in
Hairer and Wanner, [9, Thm. 2.2, p. 270], it can be seen that these methods can
be chosen to be strongly A(0)−stable. On the other hand, given an (α, β) method
of order p = q, and since the degree of γ is ≤ q − 1, we deduce from (3.1) that the
(α, γ) scheme will be of order q if and only if γ(ζ) = β(ζ) − βq(ζ − 1)q .

In the sequel assume that we are given approximations U0, U1, . . . , U q−1 ∈ Vh
to u0, . . . , uq−1 such that

q−1∑
j=0

(
|W j − U j|+ k1/2‖W j − U j‖

)
≤ c(kp + hr).(3.2)

We define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme (1.3). We shall
prove in this section that the method (1.3) is stable, and we shall show convergence
of the approximations Un to u(tn), as h and k tend to zero. In particular, under a
mild meshcondition and for λ sufficiently small, we derive the optimal order error
estimate

max
0≤n≤N

|u(tn)− Un| ≤ c(kp + hr).

As in the previous section, we shall first show consistency of the scheme (1.3) for
the projection W, W (t) = Rhu(t), 0 ≤ t ≤ T .

Consistency. The consistency error En of the scheme (1.3) for W is given by

kEn =

q∑
i=0

αiW
n+i + k

q∑
i=0

βiAhW
n+i − k

q−1∑
i=0

γiBh(W
n+i),

n = 0, . . . , N − q.

(3.3)

Using the relations AhRh = PoA and Bh = PoB, we can rewrite (3.3) as

kEn = Rh

q∑
i=0

αiu
n+i + kPo

q∑
i=0

βiAu
n+i − kPo

q−1∑
i=0

γiB(Rhu
n+i),

and thus, in view of (1.1), we split En as En = En
1 + En

2 , where

kEn
1 =(Rh − Po)

q∑
i=0

αiu
n+i + Po

q∑
i=0

(
αiu

n+i − kβiu
′(tn+i)

)
+ kPo

( q∑
i=0

βiB(un+i)−
q−1∑
i=0

γiB(un+i)
)(3.4i)
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and

En
2 = Po

q−1∑
i=0

γi
(
B(un+i)−B(Rhu

n+i)
)
.(3.4ii)

First, we will estimate En
1 . Using (1.5) and the fact that α1 + · · ·+αq = 0, we easily

see that ∣∣∣(Rh − Po)

q∑
i=0

αiu
n+i

∣∣∣ ≤ Ckhr .(3.5i)

Further, in view of the consistency properties of (α, β),∣∣∣ q∑
i=0

(
αiu

n+i − kβiu
′(tn+i)

) ∣∣∣ ≤ Ckp+1 .(3.5ii)

Moreover,

q∑
i=0

βiB(un+i)−
q−1∑
i=0

γiB(un+i)

=

q∑
i=0

βi

p−1∑
`=0

(ik)`

`!

∂`

∂t`
B(u)(tn)−

q−1∑
i=0

γi

p−1∑
`=0

(ik)`

`!

∂`

∂t`
B(u)(tn) + ϕn

=

p−1∑
`=0

k`

`!

( q∑
i=0

βii
` −

q−1∑
i=0

γii
`
) ∂`
∂t`

B(u)(tn) + ϕn

= ϕn,

where the last equality holds in view of the consistency properties of (α, β) and
(α, γ), and, obviously, |ϕn| ≤ ckp. This relation and (3.5i,ii) yield

max
0≤n≤N−q

|En
1 | ≤ C(kp + hr) .(3.6)

Finally, using (1.6), we obtain

max
0≤n≤N−q

‖En
2 ‖? ≤ Chr ,(3.7)

which completes the estimate of En.

Convergence of the multistep scheme. Let ϑn = Wn − Un, n = 0, . . . , N .
Then (3.3) and (1.3) yield the error equation for ϑn

q∑
i=0

αiϑ
n+i + k

q∑
i=0

βiAhϑ
n+i = k

q−1∑
i=0

γi{Bh(W
n+i)−Bh(U

n+i)}+ kEn.(3.8)

According to the splitting of En, we introduce ϑj1 and ϑj2, cf. section 2, by

q∑
i=0

αiϑ
n+i
j + k

q∑
i=0

βiAhϑ
n+i
j =k

q−1∑
i=0

γi

∫ 1

0

B′h(W
n+i − sϑn+i) ds ϑn+i

j

+ kEn
j , j = 1, 2, n = 0, . . . , N − q,

(3.9)

with initial values ϑj1 = ϑj and ϑj2 = 0 for j = 0, . . . , q − 1. Then, obviously,
ϑn = ϑn1 + ϑn2 .
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In the sequel we shall use the notation

Θn
j =

ϑ
n+q−1
j

...
ϑnj

 , Enj =


En
j

0
...
0

 , δi(x) = − αi + βix

αq + βqx
,

∆i = δi(kAh), Γin = γi

∫ 1

0

B′h(W
n+i − sϑn+i) ds,

Λ = Λ(kAh) =


∆q−1 ∆q−2 . . . ∆0

I 0 0
. . .

. . .

0 I 0

 , Γn =


Γq−1
n . . . Γ0

n

0 . . . 0
...

...
0 . . . 0

 ,

and

(αq + kβqAh)Θn
j =

(αq + kβqAh)ϑn+q−1
j

...
(αq + kβqAh)ϑ

n
j

 .

Equation (3.9) can then be written in the form

(αq + kβqAh)Θ
n+1
j = (αq + kβqAh) ΛΘn

j + k ΓnΘn
j + k Enj , j = 1, 2.(3.10)

We quote the following result from Crouzeix, [3]:

Lemma 3.1. There exist a constant η, with 0 ≤ η < 1, and a continuous map
H : R̄+ → Cq×q such that for all x ≥ 0 the matrix H(x) is invertible and the
Euclidean norm ‖ · ‖2 of the matrix L(x),

L(x) =
αq + βqx

αq + ηβqx
H(x)−1Λ(x)H(x),

is less or equal to one for all x ≥ 0.

Let

H = H(kAh), L = L(kAh),

and

Y n
j = H−1Θn

j , Γ̃n = H−1Γn, Ẽnj = H−1Enj ;

then, we can rewrite (3.10) as

(αq + kβqAh)Y
n+1
j = (αq + kηβqAh) LY n

j + kΓ̃nHY n
j + kẼnj , j = 1, 2.(3.11)

In view of the fact that ‖H(x)‖2, ‖H(x)−1‖2 are uniformly bounded, see relations
(3.27) and (3.28) in [3], it suffices to estimate Y n. We adjust in this section the
definition of ||| · ||| to the scheme under consideration by setting

|||v||| := (αq|v|2 + βqk‖v‖2)1/2, v ∈ V.



MULTISTEP METHODS FOR NONLINEAR PARABOLIC EQUATIONS 467

Further, for V = (v1, . . . , vq)
T and W = (w1, . . . , wq)

T in Hq or in V q we shall use
the notation

(V,W ) :=

q∑
i=1

(vi, wi), |V | :=
( q∑
i=1

|vi|2
)1/2

,

‖V ‖ :=
( q∑
i=1

‖vi‖2
)1/2

, |||V ||| :=
( q∑
i=1

|||vi|||2
)1/2

, ‖V ‖? :=
( q∑
i=1

‖vi‖2
?

)1/2

,

and, for a linear operator M : Hq → Hq, we set |M | := supV ∈Hq ,V 6=0
|MV |
|V | .

The main result in this paper is given in the following theorem:

Theorem 3.1. Assume that the constant λ in (1.4) is appropriately small (depend-
ing on the particular scheme) and that k and h2rk−1 are sufficiently small. Then,
we have the local stability estimate

|ϑn|+ k1/2‖ϑn‖ ≤ CecmT
{ q−1∑
j=0

(
|ϑj |+ k1/2‖ϑj‖

)
+ k

n−q∑
j=0

|Ej
1 |

+
(
k

n−q∑
j=0

‖Ej
2‖2

?

)1/2}
, n = q − 1, . . . , N,

(3.12)

and the error estimate

max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).(3.13)

Proof. Let ρn = un −Wn, n = 0, . . . , N. Then, according to (1.5),

max
0≤n≤N

|ρn| ≤ Chr.(3.14)

Now, if we assume that (3.12) holds, using (3.2), (3.6) and (3.7), we obtain

max
0≤n≤N

|ϑn| ≤ C(kp + hr) ,(3.15)

and (3.13) follows immediately from (3.14) and (3.15). Thus, it remains to prove
(3.12). According to (3.2), (3.6) and (3.7), there exists a constant C? such that the
right-hand side of (3.12) can be estimated by C?(k

p + hr),

CecmT
{ q−1∑
j=0

(
|ϑj |+ k1/2‖ϑj‖

)
+ k

n−q∑
j=0

|Ej
1 |+

(
k

N−q∑
j=0

‖Ej
2‖2

?

)1/2}
≤ C?(k

p + hr) .

(3.16)

We will estimate ϑn by estimating Y n
j . In fact, we shall show that for some ε =

ε(λ, (α, β, γ) ), 0 < ε < (1− η2)βq with η as in Lemma 3.1,

|||Y n
1 ||| ≤ ecmtn

{
|||Y 0

1 |||+
k

√
αq

n−1∑
j=0

|Ẽj1 |
}

(3.17)

and

|||Y n
2 ||| ≤ ecmtn

1√
ε

(
k

n−1∑
j=0

‖Ẽj2‖2
?

)1/2
.(3.18)

Then, (3.12) follows, and the proof will be complete. We shall use induction: The
estimates (3.17) and (3.18) are valid for n = 0. Assume that they hold for 0, . . . , n,



468 GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS

0 ≤ n ≤ N − q. Then, according to (3.16) and (3.12), which is then valid for
0, . . . , n+ q − 1, we have, for k and k−1h2r small enough,

max
0≤j≤n+q−1

‖ϑj‖ ≤ C?(k
p−1/2 + k−1/2hr) ≤ 1,

i.e.,

sup
0<s<1

max
0≤j≤n+q−1

µ
(
W j − sϑj

)
≤ m.(3.19)

Taking in (3.11) the inner product with Y n+1
j , we have

|||Y n+1
j |||2 = ((αq + kηβqAh)LY n

j , Y
n+1
j ) + k(Γ̃nHY n

j , Y
n+1
j )

+ k(Ẽnj , Y n+1
j ), j = 1, 2.

(3.20)

First, we shall estimate the second term on the right-hand side of (3.20). Let

X,Y ∈ V q and X ′ = H−1X, Y ′ = HT Y, and recall that Γ̃n = H−1Γn. Then, if
xi, yi are the components of X and Y, respectively, we have

(Γ̃nX,Y
′) = (ΓnX,Y ) =

q−1∑
i=0

γi

∫ 1

0

(B′h(W
n+i − sϑn+i)xi, y1) ds .

Using here the induction hypothesis, which ensures (3.19), the assumption (1.4)
and the fact that ‖H(x)‖2 and ‖H(x)−1‖2 are uniformly bounded, we see that
there exists a constant M1 such that

|(Γ̃nX,Y ′)| ≤M1(λ‖X ′‖‖Y ‖+m|X ′| |Y |) .
Therefore,

|(Γ̃nHY n
j , Y

n+1
j )| ≤M1(λ‖Y n

j ‖‖Y n+1
j ‖+m|Y n

j | |Y n+1
j |), j = 1, 2 .(3.21)

Next, we shall estimate the first term on the right-hand side of (3.20). Lemma 3.1
implies that

|L| ≤ 1.(3.22)

We also have

((αq + kηβqAh)LY n
j , Y

n+1
j ) = αq(LY n

j , Y
n+1
j ) + kηβq(L (A

1/2
h Y n

j ), A
1/2
h Y n+1

j ),

i.e., in view of (3.22),

|((αq + kηβqAh)LY n
j , Y

n+1
j )| ≤ αq|Y n

j | |Y n+1
j |+ ηβqk‖Y n

j ‖ ‖Y n+1
j ‖,

j = 1, 2.
(3.23)

From (3.20), (3.21) and (3.23), we obtain

|||Y n+1
j |||2 ≤αq|Y n

j | |Y n+1
j |+ (λM1 + ηβq)k‖Y n

j ‖ ‖Y n+1
j ‖

+M1mk|Y n
j | |Y n+1

j |+ k(Ẽnj , Y n+1
j ), j = 1, 2.

(3.24)

Therefore, with λ =
(1−η)βq
M1

and c = M1

αq
,

|||Y n+1
1 |||2 ≤(1 + cmk)αq|Y n

1 | |Y n+1
1 |+ βqk‖Y n

1 ‖ ‖Y n+1
1 ‖+ k|Ẽn1 | |Y n+1

1 |
≤(1 + cmk)(αq|Y n

1 | |Y n+1
1 |+ βqk‖Y n

1 ‖ ‖Y n+1
1 ‖) + k|Ẽn1 | |Y n+1

1 |,
i.e.,

|||Y n+1
1 ||| ≤ (1 + cmk)|||Y n

1 |||+
k

√
αq
|Ẽn1 |.(3.25)
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From (3.25) and the induction hypothesis, it easily follows that (3.17) holds also for
n+1. Similarly, with λ = 1

M1

{
[βq(βq − ε)]1/2 − ηβq

}
for some ε, 0 < ε < (1−η2)βq,

and c = M1

αq
,

|||Y n+1
2 |||2 ≤(1 + cmk)αq|Y n

2 | |Y n+1
2 |+ [βq(βq − ε)]1/2k‖Y n

2 ‖ ‖Y n+1
2 ‖

+
1

2ε
k‖Ẽn2 ‖2

? +
ε

2
k‖Y n+1

2 ‖2.

Thus,

|||Y n+1
2 |||2 ≤1

2
(1 + cmk)2αq|Y n

2 |2 +
1

2
αq|Y n+1

2 |2 +
1

2
βqk‖Y n

2 ‖2

+
1

2
βqk‖Y n+1

2 ‖2 +
1

2ε
k‖Ẽn2 ‖2

?,

i.e.,

|||Y n+1
2 |||2 ≤ (1 + cmk)2|||Y n

2 |||2 +
k

ε
‖Ẽn2 ‖2

?.(3.26)

From (3.26) and the induction hypothesis, it easily follows that (3.18) holds for
n+ 1 as well, and the proof is complete.

Remark 3.2. Initial approximations. Assume that the data of the problem are
smooth enough such that one can compute the time derivatives u(j)(0), j = 1, . . . ,
p − 1, of the exact solution at t = 0. Then, it is easily seen that U0 = W 0 and
Um = RhT

p
mu(0), m = 1, . . . , q − 1, with

T p
mu(0) = u0 +mku(1)(0) + · · ·+ (mk)p−1

(p− 1)!
u(p−1)(0), m = 1, . . . , q − 1,

satisfy (3.2).

4. Applications

In this section we shall apply our abstract results to two examples in one space
dimension, namely the periodic initial value problems for the Kuramoto-Sivashinsky
equation and the Cahn-Hilliard equation, and to a class of reaction diffusion equa-
tions in Rν , ν = 2, 3.

4.1 The Kuramoto-Sivashinsky equation. We consider the periodic initial
value problem for the Kuramoto-Sivashinsky (KS) equation: For T, ν > 0 we seek
a real-valued function u defined on R× [0, T ], 1-periodic in the space variable and
satisfying

ut + uux + uxx + νuxxxx = 0 in R× [0, T ](4.1)

and

u(·, 0) = u0 in R,(4.2)

where u0 is a given, smooth 1-periodic function.
The periodic initial value problem (4.1)–(4.2) is well-posed, cf. [13], [17]. For

numerical methods to this problem see, e.g., [1] and the references therein. The
KS equation is related to turbulence phenomena in chemistry and combustion, and
arises also in plasma physics and in two-phase flows in cylindrical geometries, see
[18] and [14].
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For s ∈ N0, let Hs
per denote the periodic Sobolev space of order s, consisting

of the 1-periodic elements of Hs
loc (R), and let ‖ · ‖Hs be the norm over a period

in Hs
per. The inner product in H := L2

per = H0
per is denoted by (·, ·), and the

induced norm by | · |. Let A : H4
per → H be defined by Av = ν(vxxxx + v). Then

V := D(A1/2) = H2
per, and the norm in V is given by ‖v‖ = ν1/2(|vxx|2 + |v|2)1/2.

Let B : V → H be given by B(v) = −vxx − vvx + νv. Then,

B′(v)w = −wxx − (vw)x + νw ,

and thus by periodicity

(B′(v)w, ω) = (wx, ωx) + (v, wωx) + ν(w, ω) .

Therefore, in view of the inequality ‖w‖L∞ ≤ |w|+ |w′|, w ∈ H1
per,

|(B′(v)w, ω)| ≤|wx| |ωx|+ |v|‖w‖L∞ |ωx|+ ν|w| |ω|
≤(1 + |v|)|wx| |ωx|+ ν|w| |ω|+ |v| |w| |ωx|,

and thus, using the inequality |ux|2 ≤ |u| |uxx|, u ∈ V, we easily see that the
condition (1.4) is satisfied for any λ > 0,

|(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω|, ∀v, w, ω ∈ V,(4.3)

with µ(v) := 1
2λν

[
1 + 2λν2 + 2|v|(1 + |v|)

]
. We note that, since λ can be taken

arbitrarily small, our results hold for this problem for all implicit-explicit schemes
satisfying our stability and consistency assumptions; further, since µ is bounded for
v bounded in H, the meshcondition of Theorems 2.1 and 3.1 is not needed here, cf.
Remark 2.1.

For the space discretization, we let 0 = x0 < x1 < · · · < xJ = 1 be a partition of
[0, 1], and h := maxj(xj+1 − xj). Setting xjJ+s := j + xs, j ∈ Z, s = 0, . . . , J − 1,
this partition is periodically extended to a partition of R. For integer r ≥ 4, let
Vh denote a space of at least once continuously differentiable, 1-periodic splines
of degree r − 1, in which approximations to the solution u(·, t) of (4.1)–(4.2) will
be sought for 0 ≤ t ≤ T . The following approximation property of the family
{Vh}0<h<1 is well known, cf., e.g., [16],

inf
χ∈Vh

2∑
j=0

hj‖v − χ‖Hj ≤ chs‖v‖Hs , v ∈ Hs
per, 2 ≤ s ≤ r.(4.4)

We define the elliptic projection operator Rh : V → Vh by

((v −Rhv)
′′, χ′′) + (v −Rhv, χ) = 0 ∀χ ∈ Vh.(4.5)

It is easily seen that

2∑
j=0

hj‖v −Rhv‖j ≤ chs‖v‖Hs , v ∈ Hs
per , 2 ≤ s ≤ r;(4.6)

thus, in particular, the estimate (1.5) holds in this case with d = 4. Next, we will
verify (1.6). For v, ω ∈ V, and w := Rhv, we have

(B(v) −B(w), ω) = −(v − w, ω′′) +
1

2
((v + w)(v − w), ω′) + ν(v − w, ω),

and, by (4.6),

|(B(v) −B(w), ω)| ≤ C(1 + ‖v‖H2)‖v‖Hrhr‖ω‖,
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i.e.,

‖B(v)−B(Rhv)‖? ≤ C(1 + ‖v‖H2)‖v‖Hrhr ,(4.7)

and thus (1.6) holds. Let W (t) := Rhu(t), and assume that we are given approxi-
mations U0, . . . , U q−1 ∈ Vh to u0, . . . , uq−1 such that

q−1∑
j=0

(
|W j − U j|+ k1/2‖W j − U j‖

)
≤ c(kp + hr).(4.8)

Then, we define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme

q∑
i=0

αi(U
n+i, χ) + kν

q∑
i=0

βi
{
(Un+i

xx , χ′′) + (Un+i, χ)
}

=k

q−1∑
i=0

γi
{
(Un+i

x , χ′)− (Un+iUn+i
x , χ) + ν(Un+i, χ)

}
∀χ ∈ Vh, n = 0, . . . , N − q,

(4.9)

where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is strongly
A(0)−stable. Then, Theorem 3.1 yields, for sufficiently small k and h, the error
estimate

max
n
|un − Un| ≤ c(kp + hr).(4.10)

As already mentioned, (4.10) holds for all (α, β, γ) schemes satisfying our stability
and consistency properties.

Remark 4.1. It is not difficult to verify that the estimate (4.10) remains valid if the
approximations Un ∈ Vh, n = q, . . . , N, are defined by

q∑
i=0

αi(U
n+i, χ) + kν

q∑
i=0

βi(U
n+i
xx , χ′′)

= k

q−1∑
i=0

γi
{
(Un+i

x , χ′)− (Un+iUn+i
x , χ)

}
∀χ ∈ Vh, n = 0, . . . , N − q.

(4.9′)

4.2 The Cahn-Hilliard equation. We consider the periodic initial value problem
for the Cahn-Hilliard (CH) equation: For T > 0 we seek a real-valued function u
defined on R× [0, T ], 1-periodic in the space variable and satisfying

ut + uxxxx − (u3 − u)xx = 0 in R× [0, T ](4.11)

and

u(·, 0) = u0 in R,(4.12)

where u0 is a given, smooth 1-periodic function.
The problem (4.11)–(4.12) is well-posed, see Temam [18] and the references

therein. For numerical methods for this problem we refer to, e.g., [6], [12]. The CH
equation describes the dynamics of pattern formation through phase transition, cf.,
e.g., [18].

We shall use the same Hilbert spaces, and approximating spaces as in subsection
4.1. We let A : H4

per → H be defined by Av = vxxxx + v. Thus, the norm in V,
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V := D(A1/2) = H2
per , is given by ‖v‖ := (|vxx|2 + |v|2)1/2. Let B : V → H be

given by B(v) = (v3 − v)xx + v. Then,

B′(v)w = 3(v2w)xx − wxx + w .

In this case we can show that

|(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω|, ∀v, w, ω ∈ V,(4.13)

with µ(v) := 1+ 1
2
√

2λ
{(1+ 3‖v‖2

L∞ +6‖v‖L∞|vx|)2 +36‖v‖2
L∞|vx|2}. We note that

µ is bounded for v bounded in H1
per. Further, since

‖v‖H1 ≤ |v|+ |v|1/2‖v‖1/2, ∀v ∈ V,(4.14)

we conclude that a condition of the form (2.23) holds in this case with a = 1
2 .

The projection Rh is also in this case defined by (4.5). In particular, in view of
(4.6) the condition (1.5) is satisfied. Moreover, it is easily seen that

‖B(v)−B(Rhv)‖? ≤ C(1 + ‖v‖2
H2)‖v‖Hrhr ,(4.15)

and thus (1.6) holds in this case. Let W (t) := Rhu(t) and assume that we are given
approximations U0, U1, . . . , U q−1 ∈ Vh satisfying (4.8). Then we define Un ∈ Vh,
n = q, . . . , N, recursively by the (α, β, γ) scheme

q∑
i=0

αi(U
n+i, χ) + k

q∑
i=0

βi
{
(Un+i

xx , χ′′) + (Un+i, χ)
}

=k

q−1∑
i=0

γi
{
( (Un+i)3 − Un+i, χ′′) + (Un+i, χ)

}
∀χ ∈ Vh, n = 0, . . . , N − q,

(4.16)

where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is strongly
A(0)−stable. Then, taking into account (4.14) and Remark 2.1, an application of
Theorem 3.1 yields, for k and h4rk−1 sufficiently small, the error estimate

max
n
|un − Un| ≤ c(kp + hr).(4.17)

4.3 A reaction diffusion equation. In this subsection we shall apply our results
to a class of reaction diffusion equations: Let Ω ⊂ Rν , ν = 2, 3, be a bounded
domain with smooth boundary ∂Ω. For T > 0 we seek a real-valued function u,
defined on Ω̄× [0, T ], satisfying

ut −∆u = f(u) in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],(4.18)

u(·, 0) = u0 in Ω,

where u0 is a given smooth function and f : R → R is a smooth function. We are
interested in approximating smooth solutions of this problem, and assume therefore
that the data are smooth and compatible such that (4.18) gives rise to sufficiently
regular solutions.

We shall distinguish two cases. Assuming that f satisfies a polynomial growth
condition of order at most ρ, see (4.19) below, and provided that ρ ≤ 4 for ν = 3,
we show that the abstract theory of sections 2 and 3 is directly applicable and
yields, without any additional assumptions on the discretization spaces, optimal
order error estimates for all (α, β, γ) schemes considered in this paper. For general
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f our results apply as well, provided that meshconditions stronger than those of
Theorem 3.1 are fulfilled.

Reaction diffusion equations model various physical phenomena related, for in-
stance, to phase transitions, chemical reactions, pattern formation, cf., e.g., [2],
[7], [10] and their references. The Allen-Cahn model (ρ = 3), which in the limit
describes evolution by mean curvature, [2], [7], and generalized Ginzburg-Landau
equations, [10], are reaction diffusion equations of particular interest with polyno-
mial nonlinearity.

Let Hs = Hs(Ω) be the usual Sobolev space of order s, and ‖ · ‖Hs be the norm
of Hs. The inner product in H := L2(Ω) is denoted by (·, ·), and the induced norm
by | · |; the norm of Ls(Q), 1 ≤ s ≤ ∞, is denoted by ‖ · ‖Ls(Q) and simply by ‖ · ‖Ls
for Q = Ω. Obviously, V = H1

0 (Ω) = H1
0 and the norm in V is equivalent to the

H1 norm.
We now consider the case that f satisfies the following growth condition: there

exists L ∈ R such that

|f ′(ξ)| ≤ L(1 + |ξ|ρ−1) ∀ξ ∈ R .(4.19)

In the sequel, we shall use the Sobolev inequality

‖v‖Ls ≤ C‖v‖H1 , 1 ≤ s <∞ for ν = 2, and 1 ≤ s ≤ 6 for ν = 3 ,(4.20)

as well as its consequence

‖v‖L4 ≤ C‖v‖1−ν/4
L2 ‖v‖ν/4H1 , ν = 2, 3.(4.21)

Let B : V → V ′, B(v) = f(v). First, we note that B is well defined. Indeed, for
v, w ∈ V,

(f(v), w) =
( ∫ 1

0

f ′(sv)v ds, w
)

+ (f(0), w),

and, therefore, by (4.19) and Hölder’s inequality,

|(f(v), w)| ≤ C
[ (∫

Ω

|v|ρ6/5dx
)5/6

‖w‖L6 + (1 + ‖v‖L2) ‖w‖L2

]
,(4.22)

and thus, in view of (4.20), we see that f(v) ∈ V ′, provided ρ ≤ 5 for ν = 3.
Further, by (4.19), for v, w, ω ∈ V,

|(f ′(v)w, ω)| ≤ C

∫
Ω

|v|ρ−1|w||ω|dx + C‖w‖L2‖ω‖L2

≤ C
( ∫

Ω

|v|2(ρ−1)dx
)1/2

‖w‖L4‖ω‖L4 + C‖w‖L2‖ω‖L2 ,

i.e., in view of (4.21),

|(f ′(v)w, ω)| ≤ C‖v‖ρ−1

L2(ρ−1) |w|
4−ν
4 |ω| 4−ν4 ‖w‖ ν

4 ‖ω‖ ν
4 + C|w| |ω| .(4.23)

Thus, B is differentiable. Furthermore, (4.23) and Young’s inequality (ab ≤ ε
qa

q +

ε−q
′/q
q′ bq

′
, 1
q + 1

q′ = 1 ) yield

|(B′(v)w, ω)| ≤ C ν
4 ε‖w‖ ‖ω‖

+ C
(
1 + 4−ν

4 ε−
ν

4−ν
(
‖v‖L2(ρ−1)

) 4(ρ−1)
4−ν

)
|w| |ω| .

(4.24)
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Therefore, by Sobolev’s inequality, we see that, for ρ ≤ 4 when ν = 3 (and for any
ρ when ν = 2), the assumption (1.4) is satisfied with λ = C ν

4 ε,

µ(v) = C + C 4−ν
4 ε−

ν
4−ν

(
‖v‖L2(ρ−1)

) 4(ρ−1)
4−ν ,

and µ(v) is bounded for v bounded in V. Again, λ can be taken arbitrarily small
and thus our theory applies to all (α, β, γ) schemes satisfying our stability and
consistency assumptions.

We further analyze the case that f satisfies the growth condition (4.19), with
ρ ≤ 4 for ν = 3, by introducing the discretization spaces Vh; the case of general f
shall be discussed at the end of this section. For simplicity, let Vh be the subspace
of V defined on a finite element partition Th of Ω, and consisting of piecewise
polynomial functions of degree at most r − 1, r ≥ 2. Let hK denote the diameter
of an element K ∈ Th, and h = maxK∈Th hK . We define the elliptic projection
operator Rh, Rh : V → Vh, by

(∇Rhv,∇χ) = (∇v,∇χ) ∀χ ∈ Vh.

We assume that (we do not attempt here to deal with problems that may arise in
the case of a curved boundary ∂Ω concerning the requirement Vh ⊂ V, cf. Remark
2.2)

|v −Rhv|+ h‖v −Rhv‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1
0 ;(4.25)

then, in particular, the estimate (1.5) will hold in this case with d = 2. Next, we
will verify (1.6). We shall further assume that

sup{‖Rhv‖L∞ : 0 < h < 1} ≤ C‖v‖Hr , v ∈ Hr ∩H1
0 .(4.26)

For v ∈ Hr ∩H1
0 , we have

B(v)−B(Rhv) =

∫ 1

0

f ′(v − τ(v −Rhv))dτ (v −Rhv);

using here the Sobolev inequality ‖v‖L∞ ≤ C‖v‖Hr (r ≥ 2) and (4.26), we conclude,
in view of (4.25),

|B(v) −B(Rhv)| ≤ ChrM̃(v)‖v‖Hr ,(4.27)

with M̃(v) bounded for v ∈ Hr ∩H1
0 bounded in Hr. Thus, (1.6) is satisfied.

Now, let W (t) := Rhu(t), and assume that we are given approximations U0, . . . ,
U q−1 ∈ Vh to u0, . . . , uq−1 such that

q−1∑
j=0

(
|W j − U j|+ k1/2‖W j − U j‖

)
≤ c(kp + hr).(4.28)

Then, we define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme

q∑
i=0

αi(U
n+i,χ) + k

q∑
i=0

βi(∇Un+i,∇χ)

=k

q−1∑
i=0

γi(f(Un+i), χ) ∀χ ∈ Vh, n = 0, . . . , N − q,

(4.29)
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where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is strongly
A(0)−stable. Then, Theorem 3.1 yields, for sufficiently small k and k−1h2r, the
error estimate

max
n
|un − Un| ≤ c(kp + hr).(4.30)

Remark 4.2. By (4.24), we see that (1.4) holds for any λ > 0 with µ(v) bounded
for v bounded in L2(ρ−1). Using this fact, Sobolev’s inequality

‖v‖Ls ≤ C|v|1−a‖v‖a,

a = ν s−2
2s , ν = 2, 3, (with s ≤ 6, of course, for ν = 3) and Remark 2.1, it is

easily seen that the meshcondition k−1h2r ≤ c, under which (4.30) holds, can be
weakened. We shall not dwell on this.

We close this subsection by briefly considering the case of a general smooth
function f, as well as the case that f satisfies (4.19) for ν = 3 but with ρ > 4.
First, we note that in our analysis it suffices to assume that B is well defined and

differentiable on a subspace Ṽ of V ∩ L∞ containing Vh, for all h. By tracing back
the proof of (4.24) we see that in this case µ(v) is bounded, provided that∫

Ω

|f ′(v(x))|2 dx

is bounded. Note that the assumption k−1h2r ≤ c, for appropriate c, of The-
orem 3.1 is only used to show that ‖ϑn‖ ≤ 1, which implies (3.19), i.e., that
µ(W j − sϑj), s ∈ (0, 1), is bounded by a constant. In the case under investigation,
by using appropriate inverse inequalities, we show that if stronger meshconditions
are satisfied, then sup0<s<1

∫
Ω |f ′(W j − sϑj)|2 dx is bounded by a constant inde-

pendent of h and k, and thus µ(W j − sϑj) will be bounded by an appropriately
defined constant m, i.e., (3.19)—and, consequently, the error estimate of Theorem
3.1—will remain valid. We will distinguish the following cases: ν = 2 and general
f, ν = 3 and f satisfies (4.19) with ρ > 4, and ν = 3 and general f.
i. ν = 2 and general f. First, we note that

‖χ‖L∞ ≤ C| log(h)|1/2‖χ‖H1 ∀χ ∈ Vh,

with h = minK∈Th hK , cf. [19, p. 67]. Obviously,
∫
Ω |f ′(χ(x))|2 dx is bounded if

‖χ‖L∞ is bounded. Now,

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C| log(h)|1/2 max
0≤j≤n+q−1

‖ϑj‖,

and thus, according to (3.16),

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C?C| log(h)|1/2(kp−1/2 + k−1/2hr).

Therefore, if k and h are chosen such that | log(h)|k2p−1 and | log(h)|k−1h2r are
sufficiently small, then µ(W j − sϑj) will be bounded, and the convergence results
hold.
ii. ν = 3 and f satisfies (4.19) with ρ > 4. If s ≥ 6, we have

‖χ‖Ls(Ω) ≤ Ch−
s−6
2s ‖χ‖H1(Ω) ∀χ ∈ Vh.(4.31)
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Indeed, employing standard homogeneity arguments, one can show that for an
arbritrary element K ∈ Th,

‖χ‖Ls(K) ≤ Ch
− s−6

2s
K

(
‖∇χ‖L2(K) + ‖χ‖L6(K)

)
,

and (4.31) follows in view of (4.20). Hence,

max
0≤j≤n+q−1

‖ϑj‖L2(ρ−1) ≤ Ch−
ρ−4

2(ρ−1) max
0≤j≤n+q−1

‖ϑj‖.

Therefore, if k and h are such that h
−ρ−4
ρ−1 k2p−1 and k−1h

−ρ−4
ρ−1 h2r are sufficiently

small, then, as before,

max
0≤j≤n+q−1

‖ϑj‖L2(ρ−1) ≤ C?h
− ρ−4

2(ρ−1) (kp−1/2 + k−1/2hr) ≤ 1,

µ(W j − sϑj) will be bounded in view of (4.24) and (4.26), and our convergence
results hold.
iii. ν = 3 and general f. In this case,

‖χ‖L∞ ≤ Ch−1/2‖χ‖H1 ∀χ ∈ Vh,

as one can see by modifying the proof of the two dimensional case. By the same
arguments as for ν = 2, the convergence results of this paper hold, provided that
h−1k2p−1 and k−1h−1h2r are sufficiently small.
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