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DERIVATIVE SUPERCONVERGENT POINTS

IN FINITE ELEMENT SOLUTIONS OF POISSON’S EQUATION

FOR THE SERENDIPITY AND INTERMEDIATE FAMILIES

– A THEORETICAL JUSTIFICATION

ZHIMIN ZHANG

Abstract. Finite element derivative superconvergent points for the Poisson
equation under local rectangular mesh (in the two dimensional case) and local
brick mesh (in the three dimensional situation) are investigated. All super-
convergent points for the finite element space of any order that is contained
in the tensor-product space and contains the intermediate family can be pre-
dicted. In case of the serendipity family, the results are given for finite element
spaces of order below 7. Any finite element space that contains the complete
polynomial space will have at least all superconvergent points of the related
serendipity family.

1. Introduction

In the development of the finite element method, researchers have observed that
for certain classes of problems, the rate of convergence of the values of the finite
element solution and/or its derivatives at some special points exceeds the possi-
ble global rate. This phenomenon has been termed “superconvergence” and has
been analyzed mathematically because of its practical importance in finite element
computations. For the literature, the reader is referred to [7]. Regarding the finite
element superconvergent points for the Poisson equation, a result can be found from
the early 70’s in [3], where the authors proved that element knots are superconver-
gent points when the tensor product C0 elements are used.

The term superconvergence also includes accelerated convergence achieved by
means of various recovery (or post-processing) techniques.

Our consideration in this study is the natural derivative superconvergent points
when no post-processing is applied. Note that Douglas et al. [3] considered solution
superconvergence, not derivative superconvergence.

In the one dimensional setting, it has been known since the late 70’s that the
Gaussian points, i.e., zeros of Legendre polynomials, are derivative superconvergent
points when using C0 elements to solve two-point boundary value problems [2].
But, in the higher dimensional setting, the situation is more complicated in that
the superconvergent points are very sensitive to the properties of the solutions, the
finite element space, and the geometric pattern of the meshes [1].
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In this paper, we shall study the derivative superconvergent points for the Pois-
son equation under local rectangular meshes in both two and three dimensional
settings. There are three popular polynomial bases for two dimensional rectan-
gular meshes in engineering practice: (1) Tensor-product spaces; (2) Serendipity
families; (3) Intermediate elements. It is well known that for a large class of prob-
lems, superconvergent points for the tensor product space lie along Gaussian lines.
Superconvergent points for intermediate and serendipity families were reported only
recently.

Recently, there were two important works in the field: A purely theoretical in-
vestigation by Schatz, Sloan, and Wahlbin [7] and a “computer-based” proof by
Babuška, Strouboulis et al. [1]. The authors of [5] showed for the scalar second-
order elliptic problem that if the finite element space is locally symmetric about a
point x0 with respect to the antipodal map x 7→ x0 − (x− x0), then derivative su-
perconvergence occurs at x0 when the finite element space is piecewise polynomial
of odd degree under mild conditions on the behavior of the solution outside a neigh-
borhood of x0. The approach in [1] is quite different. The authors claimed that the
existence of superconvergent points can be guaranteed within a given tolerance by
a numerical algorithm. With this approach, they found, with the aid of the com-
puter, all superconvergent points for the Laplace equation, the Poisson equation,
and the linear elasticity equation, on four mesh patterns of triangular elements and
the above three families of rectangular elements of degree n, 1 ≤ n ≤ 7. The main
assumptions in [1] are: (a) there is no roundoff error; (b) the meshes are locally
translation-invariant; (c) the solution is sufficiently smooth locally. The main idea
is to majorize the finite element solution error by a polynomial of one degree higher
than the finite element space being used. Therefore, the search for superconvergent
points is transferred to a search for intersections of some polynomial contours. At
this moment, the computer is used to actually locate those intersections.

In the present work, we shall analytically find those intersections which represent
superconvergent points for the Poisson equation under local rectangular meshes,
and thereby provide a theoretical justification for superconvergence results, in this
case, for the computer-based proof. Furthermore, the analytic approach is capable
of predicting some parallel results for many other rectangular elements and brick
elements (three dimensional rectangular elements) which have not been reported
in the literature. Another advantage of this investigation is the elimination of
Assumption (a) in the computer-based proof.

2. Preliminaries

We shall outline the approach by Babuška et al. [1] in finding superconvergent
points via a computer-based proof. Here we follow the description provided by
Wahlbin [7] (Chapter 12).

Consider the local superconvergent points of the finite element solution uh to the
solution of the Poisson equation u on a master cell c(x0, h) = {y : |y−x0| ≤ h}. Here
| · | denote the L∞-norm of vectors. Assume that the 2h-periodic extension of the
master cell fits two squares Ω1 = {y : |y− x0| ≤ 2H} and Ω0 = {y : |y− x0| ≤ 4H}
exactly, where H = hδ with 0 < δ < 1. As the finite element solution of the Poisson
equation, uh satisfies∫

Ω0

∇(u− uh)∇v = 0, ∀v ∈ Scomp
h (Ω0),
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where Scomp
h (Ω0) is the finite element subspace which has compact support on Ω0.

The basic assumption is

‖u− uh‖L∞(Ω0) ≤ Chn+1−L,(2.1)

with L+ δ < 1.

Remark 2.1. Assumption (2.1) implies that various pollution effects from outside
of Ω0 have been properly treated and the error loss is of order hL.

Let Q be the (n+ 1)th order Taylor-expansion of u at x0. Then

‖u−Q‖W s+1∞ (Ω0) ≤ CHn+1−s, −1 ≤ s ≤ n.(2.2)

Denote by Ih the standard interpolation operator into Sh(Ω0), and let ρ = Q−IhQ.
The key observation in [1] is that ρ is 2h-periodic. Let Sπh (c(x0, h)) be 2h-periodic
functions in Sh(c(x

0, h)), and define PP (ρ) by∫
c(x0,h)

(ρ− PP (ρ)) = 0,

∫
c(x0,h)

∇(ρ− PP (ρ))∇v = 0, ∀v ∈ Sπh (c(x0, h)).

PP (ρ) is also used to represent its 2h-periodic extension. Now let ψ = ρ− PP (ρ),
and we have (cf., [1], [7]):

Theorem 2.1.

∂

∂xi
(u− uh)(x) =

∂ψ

∂xi
(x) +Ri(x), x ∈ Ω0, i = 1, 2,

with

‖Ri‖L∞(Ω1) ≤ C(hn+δ + hn+1−L−δ).

Remark 2.2. Theorem 2.1 is our starting point. It states that the finite element

approximation error in the derivatives can be majorized by
∂ψ

∂xi
, since the remainder

Ri is of order min(δ, 1 − L − δ) higher than the global optimal rate. Therefore,

derivative superconvergent points are those points where
∂ψ

∂xi
(x) = 0. Thus, the

task of finding superconvergent points is narrowed down to the task of identifying,
on the master cell, the critical points of some 2h-periodic piecewise monomials of
degree n + 1 not in the local finite element space Sh(c(x

0, h)). This is equivalent
to finding the critical points of some ψ, periodic monomials of degree n+ 1 on the

reference element K̂ = [−1, 1]2 satisfying ψ /∈ Vn(K̂), and∫
K̂

∇ψ∇v = 0, ∀v ∈ Vn(K̂),

where Vn(K̂) is the image of Sh(c(x
0, h)) under the change of variables x1 = x0

1+hξ,
x2 = x0

2+hη. In [1], the job of locating critical points of some periodic polynomials is
done by the computer, so it is called “computer-based proof”. In the present study,
we shall find them analytically by characterizing the space of periodic polynomials.

Remark 2.3. Theorem 2.1 can be generalized to the three dimensional setting (cf.,
[1]).
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3. Characteristic of periodic polynomials

We shall characterize the space of periodic polynomials of degree not greater

than n on K̂ = [−1, 1]2, denoted as PPn(K̂).

Define P (K̂), the set of periodic functions on K̂, i.e., f(ξ, 1) = f(ξ,−1), f(1, η) =

f(−1, η) for f ∈ P (K̂). Let Pn(K̂) denote the space of polynomials of degree not

greater than n on K̂. Then

PPn(K̂) = Pn(K̂) ∩ P (K̂).

Observe that for any polynomial p of a single variable,

P (K̂) ∩ Span{p(ξ)η, ξp(η)} = {0}.
Therefore,

PPn(K̂) = Sn(K̂) ∩ P (K̂),

where

Sn(K̂) = Pn(K̂) ∪ Span{ξnη, ξηn}.
Note that Sn(K̂) is the serendipity family which contains 4 nodal shape functions,
4(n− 1) side modes, and (n− 3)(n− 2)/2 internal modes (cf., Section 6.1 in [6]).

Dimension of PPn(K̂) can be decided by deleting from Sn(K̂): (a) 3 nodal
freedoms (one node decides the other three by periodicity) and, (b) 2(n − 1) side
modes (two sides decide the remaining two by periodicity), since all internal modes

of Sn(K̂) are automatically periodic. Hence,

dimPPn(K̂) = dimSn(K̂)− 2(n− 1)− 3

=
(n+ 1)(n+ 2)

2
+ 2− 2(n− 1)− 3 =

(n− 1)n

2
+ 2, n ≥ 2.

Letting pk denote the Legendre polynomial of degree k (≥ 0), we define

φk+1(ξ) =

∫ ξ

−1

pk(t)dt, k ≥ 1,

Tn(K̂) = Span{1, φk(ξ), φk(η), k = 2, 3, . . . , n;φi(ξ)φj(η), i + j ≤ n, i, j ≥ 2}.
(3.1)

Using the recurrence relation (page 47 in [4]),

p′k+1(t)− p′k−1(t) = (2k + 1)pk(t), k ≥ 1,

we see that,

φk+1(ξ) =
1

2k + 1
(pk+1(ξ)− pk−1(ξ)), k ≥ 1.(3.2)

Theorem 3.1.

PPn(K̂) = Tn(K̂).

Proof. Obviously Tn(K̂) ⊂ Pn(K̂). Observe that φj(−1) = φj(1) = 0 (j ≥ 2).

Hence Tn(K̂) ⊂ P (K̂) and therefore Tn(K̂) ⊂ Pn(K̂) ∩ P (K̂) = PPn(K̂). Notice
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that all polynomials in (3.1) are linearly independent. Therefore, in order to prove

Tn(K̂) = PPn(K̂), we only need to show that dim Tn(K̂) = dimPPn(K̂). Indeed,

dimTn(K̂) = 1 + 2(n− 1) + 1 + 2 + · · ·+ n− 3

=
(n− 1)n

2
+ 2 = dimPPn(K̂).

Theorem 3.1 characterizes the space of periodic polynomials (on K̂). Further,

we consider the orthogonal decomposition of PPn(K̂) under the Laplace operator.
Towards this end, we define

Ψn(K̂) = {u ∈ PPn(K̂)|
∫
K̂

∇u∇v = 0 ∀v ∈ PPn−1(K̂)}.

Then by the Gram-Schmidt process, we can decompose PPn(K̂) into

PPn(K̂) = PP0(K̂)⊕Ψ2(K̂)⊕ · · · ⊕Ψn−1(K̂)⊕Ψn(K̂).

Note that PP0(K̂) = Span{1} and Ψ1(K̂) = {0}.

4. Derivative superconvergent points for rectangular elements

Suppose that the finite element local space Vn(K̂) contains Pn(K̂), then accord-
ing to Theorem 2.1 and Remark 2.2, the set of derivative superconvergent points
can be characterized as

SPn(ξ) = {(ξ, η) ∈ K̂| ∂ψ

∂ξ
(ξ, η) = 0 ∀ψ ∈ Ψn+1(K̂) \ Vn(K̂)};

SPn(η) = {(ξ, η) ∈ K̂| ∂ψ

∂η
(ξ, η) = 0 ∀ψ ∈ Ψn+1(K̂) \ Vn(K̂)}.

Clearly, SPn(ξ) is the set of superconvergent points for derivatives in the ξ-direction
and SPn(η) is the set of superconvergent points for derivatives in the η-direction.

Case 1. Pn+1(K̂) \ {ξn+1, ηn+1} ⊂ Vn(K̂) ⊂ Qn(K̂), where Qn(K̂) is the space of

polynomials of degree not greater than n in each variable on K̂. This includes the
intermediate family, tensor-product elements and all possible choices in between.

Ψn+1(K̂) \ Vn(K̂) = Span{φn+1(ξ), φn+1(η)}.
Therefore

SPn(ξ) = {(ξ, η) ∈ K̂| ∂φn+1

∂ξ
(ξ) = pn(ξ) = 0} = {(G(n)

i , η), i = 1, . . . , n};

SPn(η) = {(ξ, η) ∈ K̂| ∂φn+1

∂η
(η) = pn(η) = 0} = {(ξ,G(n)

i ), i = 1, . . . , n}.

Here G
(n)
i are zeros of the Legendre polynomial pn, i.e., the Gaussian points of

degree n.

Case 2. Vn(K̂) = Sn(K̂), the serendipity family. This is a more interesting

and also more complicated case where Ψn+1(K̂) ∩ Vn(K̂) = {0} and hence
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Ψn+1(K̂) \ Vn(K̂) = Ψn+1(K̂). The set of derivative superconvergent points are

SPn(ξ) = {(ξ, η) ∈ K̂| ∂ψ

∂ξ
(ξ, η) = 0 ∀ψ ∈ Ψn+1(K̂)};

SPn(η) = {(ξ, η) ∈ K̂| ∂ψ

∂η
(ξ, η) = 0 ∀ψ ∈ Ψn+1(K̂)}.

Therefore, we need to construct Ψn+1(K̂) explicitly by the Gram-Schmidt process.
Toward this end, we introduce:

Theorem 4.1. For k ≥ 4, 2 ≤ i ≤ k − 1, and 2 ≤ j ≤ k − 2,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φk−j(η)]dξdη = 0.(4.1)

For k − 1 > l ≥ 4, 2 ≤ i ≤ k − 1, and 2 ≤ j ≤ l − 2,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φl−j(η)]dξdη = 0.(4.2)

For k ≥ 5, 2 ≤ i ≤ k − 1, and 2 ≤ j ≤ k − 3,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φk−1−j(η)]dξdη(4.3)

=


− 1

(2i−1)(2i−5)‖pi−2‖2‖pk−i‖2 i = j + 2,

− 1
(2k−2i+1)(2k−2i−3)‖pi−1‖2‖pk−1−i‖2 i = j,

0 otherwise.

Proof. We shall utilize the fact that φ′i = pi−1 and the orthogonal properties
(pi, pj) = 0 if i 6= j, (φi, φj) = 0 if i > j + 2, and (φi, φi−1) = 0 (see (3.2)).
We have

(1) When k ≥ 4, 2 ≤ i ≤ k − 1, 2 ≤ j ≤ k − 2,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φk−j(η)]dξdη

=(pi−1, pj−1)(φk+1−i, φk−j) + (φi, φj)(pk−i, pk−j−1) = 0,

since for i = j + 1,

(pi−1, pj−1) = 0 = (φi, φj),

for i = j,

(φk+1−i, φk−j) = 0 = (pk−i, pk−j−1),

and for i < j,

(pi−1, pj−1) = 0 = (pk−i, pk−j−1).

(2) When k − 1 > l ≥ 4, 2 ≤ i ≤ k − 1, and 2 ≤ j ≤ l − 2,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φl−j(η)]dξdη

= (pi−1, pj−1)(φk+1−i, φl−j) + (φi, φj)(pk−i, pl−j−1) = 0,

since for i > j + 2,

(pi−1, pj−1) = 0 = (φi, φj),
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for i = j + 1, j + 2, i < j,

(pi−1, pj−1) = 0 = (pk−i, pl−j−1),

and for i = j,

(φk+1−i, φl−j) = 0 = (pk−i, pl−j−1).

(3) When k ≥ 5, 2 ≤ i ≤ k − 1, and 2 ≤ j ≤ k − 3,∫
K̂

∇[φi(ξ)φk+1−i(η)] · ∇[φj(ξ)φk−1−j(η)]dξdη

=(pi−1, pj−1)(φk+1−i, φk−1−j) + (φi, φj)(pk−i, pk−j−2).

(a) If i = j + 1 or i > j + 2,

(pi−1, pj−1) = 0 = (φi, φj).

(b) If i < j,

(pi−1, pj−1) = 0 = (pk−i, pk−2−j).

(c) If i = j + 2, (pi−1, pj−1) = 0 and

(φi, φj)(pk−i, pk−j−2) = − 1

(2i− 1)(2i− 5)
‖pi−2‖2‖pk−i‖2.

(d) If i = j, (pk−i, pk−j−2) = 0 and

(pi−1, pj−1)(φk+1−i, φk−1−j) = − 1

(2k − 2i+ 1)(2k − 2i− 3)
‖pi−1‖2‖pk−1−i‖2.

Here we have used the formula (3.2). The assertion follows by combining (a)–
(d).

Theorem 4.1 reveals the orthogonal properties (under the Laplace operator)

among the interior basis functions of PPn(K̂). (4.1) indicates that all interior
basis functions of degrees k + 1 are orthogonal to those of degrees k (≥ 4), (4.2)
implies that all interior basis functions of degrees k + 1 (≥ 5) are orthogonal to
those of degrees less than k − 2, and (4.3) says that any interior basis function of
degree k + 1 is not orthogonal to at most two interior basis functions of degrees
k− 1 (≥ 4). These properties will dramatically simplify the Gram-Schmidt process

in constructing Ψn+1(K̂).

The following is a list of Ψn+1(K̂) for n = 1, 2, 3, 4, 5, 6. Note that for n ≤ 2, the

serendipity family Sn(K̂) is the same as the intermediate family.

Ψ2(K̂) = Span{φ2(ξ), φ2(η)};
Ψ3(K̂) = Span{φ3(ξ), φ3(η)};
Ψ4(K̂) = Span{φ4(ξ), p2(ξ)p2(η), φ4(η)};
Ψ5(K̂) = Span{φ5(ξ), φ3(ξ)p2(η), p2(ξ)φ3(η), φ5(η)};
Ψ6(K̂) = Span{φ6(ξ), (p4(ξ)− αp2(ξ))p2(η), φ3(ξ)φ3(η),

p2(ξ)(p4(η)− αp2(η)), φ6(η)};
Ψ7(K̂) = Span{φ7(ξ), (φ5(ξ)− βφ3(ξ))p2(η), (p4(ξ)− γp2(ξ))φ3(η),

φ3(ξ)(p4(η)− γp2(η)), p2(ξ)(φ5(η) − βφ3(η)), φ7(η)}.
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Here

α =
(p′4, p′2)
2‖p′2‖2

, β =
(φ5, φ3)‖p′2‖2

‖p2‖4 + ‖φ3‖2‖p′2‖2
, γ =

(p′4, p′2)‖φ3‖2

‖p2‖4 + ‖φ3‖2‖p′2‖2
.

In order to simplify the notation, we denote

{f(ξ, η) = 0} = {(ξ, η) ∈ K̂| f(ξ, η) = 0}.

Then, we have

SP1(ξ) = {φ′2(ξ) = 0} = {p1(ξ) = 0} = {(0, η)};
SP2(ξ) = {φ′3(ξ) = 0} = {p2(ξ) = 0} = {(± 1√

3
, η)};

SP3(ξ) = {φ′4(ξ) = 0} ∩ {p′2(ξ)p2(η) = 0} = {p3(ξ) = 0} ∩ {ξ = 0, p2(η) = 0}

= {ξ = 0,±
√

3

5
} ∩ {ξ = 0, η = ± 1√

3
} = {(0, η), (±

√
3

5
,± 1√

3
)};

SP4(ξ) = {φ′5(ξ) = 0} ∩ {φ′3(ξ)p2(η) = 0} ∩ {p′2(ξ)φ3(η) = 0}
= {p4(ξ) = 0} ∩ {p2(ξ) = 0, φ′3(η) = 0} ∩ {p′2(ξ) = 0, φ3(η) = 0}
= {p4(ξ) = 0} ∩ {φ′3(η) = 0} ∩ {φ3(η) = 0} = ∅;

since {p4(ξ) = 0} ∩ {p2(ξ) = 0} = ∅, and {p4(ξ) = 0} ∩ {p′2(ξ) = 0} = ∅.

SP5(ξ) = {φ′6(ξ) = 0} ∩ {(p′4(ξ)− αp′2(ξ))p2(η) = 0}
∩ {φ′3(ξ)φ3(η) = 0} ∩ {p′2(ξ)(p4(η) − αp2(η)) = 0}

= {p5(ξ) = 0} ∩ {ξ = 0, p2(η) = 0} ∩ {φ3(η) = 0}
∩ {ξ = 0, p4(η)− αp2(η) = 0}

= {p5(ξ) = 0} ∩ {ξ = 0} ∩ {φ3(η) = 0} ∩ {ξ = 0}
= {ξ = 0} ∩ {φ3(η) = 0} = {(0, 0), (0,±1)};

since

{p5(ξ) = 0} ∩ {p′4(ξ)− αp′2(ξ) = 0} = {ξ = 0},
{p5(ξ) = 0} ∩ {p2(ξ) = 0} = ∅,
{φ3(η) = 0} ∩ {p2(η) = 0} = ∅,

{φ3(η) = 0} ∩ {p4(η)− αp2(η) = 0} = ∅.

SP6(ξ) ⊂ {φ′7(ξ) = 0} ∩ {(φ′5(ξ) − βφ′3(ξ))p2(η) = 0}
∩ {φ′3(ξ)(p4(η)− γp2(η)) = 0}

= {p6(ξ) = 0} ∩ {p4(ξ)− βp2(ξ) = 0, p2(η) = 0}
∩ {p2(ξ) = 0, p4(η)− γp2(η) = 0}

= {p6(ξ) = 0} ∩ {p2(η) = 0} ∩ {p4(η)− γp2(η) = 0} = ∅;
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since

{p6(ξ) = 0} ∩ {p4(ξ)− βp2(ξ) = 0} = ∅,
{p6(ξ) = 0} ∩ {p2(ξ) = 0} = ∅.

The superconvergent points for the other derivative can be obtained similarly. Sum-
ming up, we conclude that:

1. For any finite element space contained in the tensor-product space that con-
tains the intermediate family, all superconvergent points for Poisson’s equation
under the rectangular mesh are along Gaussian lines.

2. For the serendipity family of order n = 3, the superconvergent points (in the

reference element) are along the central line ξ = 0 and at four points (±
√

3

5
,±
√

1

3
)

for
∂u

∂x
; and along the central line η = 0 and at four points (±

√
1

3
,±
√

3

5
) for

∂u

∂y
.

For the serendipity family of order n = 4, 6 (and likely any even order n ≥ 4),
there is no superconvergent point.

For the serendipity family of order n = 5 (and likely any odd order n ≥ 5), there
are three superconvergent points: the element center and mid-points of two parallel
edges.

3. Any finite element space that contains Pn(K̂) will have at least all supercon-
vergent points of the serendipity family.

Remark 4.1. All results in the computer-based proof of [1] for Poisson’s equation
under the rectangular mesh are justified. But, the results here are more general in
the sense that they include all possible choices for the finite element space between
the intermediate family and the tensor-product space and all possible finite element

spaces that contain Pn(K̂), the complete polynomial space of degree n.

Remark 4.2. For the serendipity family, the most interesting case is n = 3, in
which we have theoretically justified the computer-based discovery in [1]. For odd
n ≥ 5, all three superconvergent points have been predicted theoretically in [5].
The contribution here is to verify that they are the only superconvergent points.

Remark 4.3. The superconvergence results in this work are restricted to the Pois-
son equation while the “symmetry” theory is for more general second-order ellip-
tic equations. However, it is possible to extend the findings here to some other
equations. This belief is encouraged by the following fact: While original super-
convergent points in [3] were restricted to the Poisson equation, the result has been
generalized to the equation (see [7], Chapter 6)

−∇(α(x)∇u) −
n∑
i=1

∂

∂xi
(ai(x)u) + a(x)u = f.

5. Derivative superconvergent points for brick elements

In this section, superconvergent points for the three dimensional Poisson equation
under local brick elements will be investigated. This development is based on the
observation in Remark 2.3, therefore a parallel result of Theorem 2.1 in 3-D is our
starting point here. The discussion will be brief. Now the reference element is
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K̂ = [−1, 1]3, and

PPn(K̂) = Span{1, φk(ξ), φk(η), φk(ζ), k = 2, 3, . . . , n;φi(ξ)φj(η), φi(η)φj(ζ),

(5.1)

φi(ζ)φj(ξ), i + j ≤ n, i, j ≥ 2;φi(ξ)φj(η)φk(ζ), i + j + k ≤ n, i, j, k ≥ 2}.

Case 1. Pn+1(K̂) \ {ξn+1, ηn+1, ζn+1} ⊂ Vn(K̂) ⊂ Qn(K̂). This includes the
three dimensional intermediate family and tensor-product elements and all pos-
sible choices in between.

Ψn+1(K̂) \ Vn(K̂) = Span{φn+1(ξ), φn+1(η), φn+1(ζ)}.

Therefore

SPn(ξ) = {(ξ, η, ζ) ∈ K̂| ∂φn+1

∂ξ
(ξ) = pn(ξ) = 0} = {(G(n)

i , η, ζ), i = 1, . . . , n};

SPn(η) = {(ξ, η, ζ) ∈ K̂| ∂φn+1

∂η
(η) = pn(η) = 0} = {(ξ,G(n)

i , ζ), i = 1, . . . , n};

SPn(ζ) = {(ξ, η, ζ) ∈ K̂| ∂φn+1

∂ζ
(ζ) = pn(ζ) = 0} = {(ξ, η,G(n)

i ), i = 1, . . . , n}.

Hence derivative superconvergent points are on the Gaussian planes.

Case 2. Vn(K̂) is the 3-D serendipity family. Now we have,

SPn(ξ) = {(ξ, η, ζ) ∈ K̂| ∂ψ

∂ξ
(ξ, η, ζ) = 0 ∀ψ ∈ Ψn+1(K̂)};

SPn(η) = {(ξ, η, ζ) ∈ K̂| ∂ψ

∂η
(ξ, η, ζ) = 0 ∀ψ ∈ Ψn+1(K̂)};

SPn(ζ) = {(ξ, η, ζ) ∈ K̂| ∂ψ

∂ζ
(ξ, η, ζ) = 0 ∀ψ ∈ Ψn+1(K̂)}.

Here

Ψ2(K̂) = Span{φ2(ξ), φ2(η), φ2(ζ)};
Ψ3(K̂) = Span{φ3(ξ), φ3(η), φ3(ζ)};
Ψ4(K̂) = Span{φ4(ξ), φ4(η), φ4(ζ), p2(ξ)p2(η), p2(η)p2(ζ), p2(ζ)p2(ξ)};
Ψ5(K̂) = Span{φ5(ξ), φ5(η), φ5(ζ), φ3(ξ)p2(η), p2(ξ)φ3(η),

φ3(η)p2(ζ), p2(η)φ3(ζ), φ3(ζ)p2(ξ), p2(ζ)φ3(ξ)};
Ψ6(K̂) = Span{φ6(ξ), φ6(η), φ6(ζ),

(p4(ξ) − αp2(ξ))p2(η), φ3(ξ)φ3(η), p2(ξ)(p4(η) − αp2(η)),

(p4(η) − αp2(η))p2(ζ), φ3(η)φ3(ζ), p2(η)(p4(ζ) − αp2(ζ)),

(p4(ζ) − αp2(ζ))p2(ξ), φ3(ζ)φ3(ξ), p2(ζ)(p4(ξ)− αp2(ξ))}.
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Therefore,

SP1(ξ) = {p1(ξ) = 0} = {(0, η, ζ)};
SP2(ξ) = {p2(ξ) = 0} = {(± 1√

3
, η, ζ)};

SP3(ξ) = {p3(ξ) = 0} ∩ {ξ = 0, p2(η) = 0} ∩ {ξ = 0, p2(ζ) = 0}

= {(0, η, ζ), (±
√

3

5
,± 1√

3
,± 1√

3
)};

SP4(ξ) = {p4(ξ) = 0} ∩ {p2(ξ) = 0, p2(η) = 0} ∩ {ξ = 0, φ3(η) = 0}
∩ {p2(ξ) = 0, p2(ζ) = 0} ∩ {ξ = 0, φ3(ζ) = 0} = ∅;

SP5(ξ) = {p5(ξ) = 0} ∩ {(p′4(ξ) − αp′2(ξ)) = 0, p2(η) = 0}
∩ {p2(ξ) = 0, φ3(η) = 0} ∩ {ξ = 0, (p4(η)− αp2(η)) = 0}
∩ {(p′4(ξ)− αp′2(ξ)) = 0, p2(ζ) = 0} ∩ {p2(ξ) = 0, φ3(ζ) = 0}
∩ {ξ = 0, (p4(ζ)− αp2(ζ)) = 0}

= {(0, 0, 0), (0,±1, 0), (0, 0,±1), (0,±1,±1)}.
Superconvergent points for the other two partial derivatives can be obtained simi-
larly. In summary, we have shown:

1. For any finite element space contained in the tensor-product space that con-
tains the intermediate family, all superconvergent points for Poisson’s equation
under the brick mesh are on Gaussian planes.

2. For the serendipity family of order n = 3, the superconvergent points (in the
reference element) are on the central plane ξ = 0 and at eight points

(±
√

3

5
,±
√

1

3
,±
√

1

3
),

for
∂u

∂x
. Similar results hold for the other two partial derivatives.

For the serendipity family of order n = 4 (and likely any even order n ≥ 4),
there is no superconvergent point.

For the serendipity family of order n = 5 (and likely any odd order n ≥ 5), there
are nine superconvergent points: element center, mid-points of four parallel edges
and centers of four associated faces. Note that the element center is shared by all
three partial derivatives, and each face center is shared by two partial derivatives.

Any finite element space that contains Pn(K̂) will have at least all superconver-
gent points of the serendipity family.
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