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AN ALGORITHM FOR CONSTRUCTING A BASIS FOR
Cr-SPLINE MODULES OVER POLYNOMIAL RINGS

SATYA DEO AND LIPIKA MAZUMDAR

Abstract. Let 2 be a polyhedral complex embedded in the euclidean space
Ed and Sr(2), r ≥ 0, denote the set of all Cr-splines on 2. Then Sr(2) is
an R-module where R = E[x1, . . . , xd] is the ring of polynomials in several
variables. In this paper we state and prove the existence of an algorithm to
write down a free basis for the above R-module in terms of obvious linear
forms defining common faces of members of 2. This is done for the case
when 2 consists of a finite number of parallelopipeds properly joined amongst
themselves along the above linear forms.

1. Introduction

Let 2 be a polyhedral d-complex embedded in the euclidean space Ed, i.e., a
compact subset of Ed subdivided into a finite collection of d-dimensional convex
polyhedra which are properly joined (see [7] for details). Fix an integer r ≥ 0. Let
Cr(2) denote the set of real valued functions f defined on 2 such that f | σ is
in the polynomial ring R = E[x1, . . . , xd] for each d-face σ of 2 and f is r-times
continuously differentiable on the whole of 2.

The elements of Cr(2), known as multivariate splines of smoothness r, have
proved extremely useful in obtaining approximate solutions of partial differential
equations by finite element methods. The set Cr

k(2) of all those Cr-splines which
are of degree ≤ k, form a real vector space. These vector spaces which are easily
computable are usually taken as the approximant spaces for various suitable degrees
k. Evidently these are finite dimensional. Determining their dimension as well as a
basis having minimal support has been a very interesting and sometimes a difficult
proposition of practical importance (see [5], [6], and [7]). The difficulty is caused
by the fact that the vector space dimension of Cr

k(2) depends not only on the
combinatorics but also on the geometry of 2.

In order to tackle the above “dimension problem”, more algebraic approaches
using the method of commutative algebra have been recently initiated by Haas
[8], Billera and Rose ([3], [5], [6]). With pointwise operations of addition and
multiplication the set Cr(2) forms a ring and the polynomial ring R is just a
subring of Cr(2). Hence Cr(2) is an R-module in a natural way. It is easily seen
that this module is finitely generated, torsion free and of rank equal to the number
of d-faces of 2. The general question as to under what condition on d, r and 2,
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the R-module Cr(2) is free, has been dealt with in [4]. The case when Cr(2)
is free is of practical importance in applications because in that case knowing a
basis will easily determine general properties of a spline function on 2. This would
be especially useful when one can determine an algorithm for writing down basis
elements of the R-modules Cr(2) just by knowing the geometry of 2 alone. It is
proved by Billera and Rose [4] that, when d = 2, Cr(2) is free over R iff 2 is a
manifold with boundary. However, even in this case there does not seem to be an
algorithm for writing a basis even for especially simple rectangular grids.

The objective of this paper is to provide an algorithm for writing down a basis
for the free R-module Cr(2) where 2 consists of a grid in the plane obtained by
crossing a set of parallel lines (hyperplane in E2) by another set of parallel lines.
In particular, this includes the general polyhedral case of rectangular grids not
covered in the case of a simplicial complex. More generally, we prove the existence
of an algorithm for writing down an R-basis for Cr(2) when 2 consists of general
parallelopipeds obtained by mutually intersecting affinely independent d-sets of
parallel hyperplanes in Ed.

For the more familiar case when 2 = 4 is a simplicial complex, R. Haas [8]
has studied the question of determining a free basis and a reduced free basis of the
R-module Sr(4) for the case of planar cross-cut grids. As an application, using
these R-module bases, she has also given techniques for deducing the vector space
dimension of the spline space Sr

k(4) in certain cases.

2. Preliminaries

Let 2 be imbedded in Ed. The fact that f is a Cr-spline on 2 means (i) f is a
globally Cr-function on 2 and (ii) f | σ is in the polynomial ring R = E[x1, . . . , xd]
for each d-face σ in 2. The analytic condition that f is Cr on 2 can be nicely
translated into an algebraic condition (see [5]) as follows: Let I(σ) denote the ideal
of all polynomials in R which vanish on the face σ of 2, and let (I(σ))r denote the
r-fold product of I(σ) with itself. Then we have

Algebraic Criterion. Let f : 2 → R be a piecewise polynomial function on 2.
Then f ∈ Cr(2) iff for any two d-faces σ1, σ2 of 2

f | σ1 − f | σ2 ∈ (I(σ1 ∩ σ2))r+1.

Let the faces of 2 be linearly ordered in some manner, say σ1, . . . , σt where t is
the number of d-faces of 2. Then using the algebraic criterion, one can represent
a spline f ∈ Cr(2) as a t-tuple of polynomials f = (f1, . . . , ft) where fi = f | σi,
i = 1, . . . , t, satisfying the condition that for each pair σi, σj of faces of 2, fi−fj ∈
(I(σi∩σj))r+1. We will use this representation of splines in constructing a basis for
the R-module Cr(2) whenever it is free. We must emphasize that as pointed out
by Billera and Rose [4], the freeness of R-module Cr(2) depends not only on the
combinatorics of 2 but also on the geometry of 2. However, when d = 2, Cr(2)
is free iff 2 is a 2-dimensional manifold with boundary and therefore the freeness
of Cr(2) over R is independent of the geometry and is a combinatorial invariant.
Writing a basis, however, and that too in terms of obvious linear forms defining
(d− 1) faces of 2, is a completely different problem of computational nature.

Let 2 be a parallelogram in E2 subdivided into four subparallelograms by two
lines (hyperplanes in E2) l1 = 0, l2 = 0, each parallel to a side of the parallelogram
(see Fig. 1).



AN ALGORITHM FOR CONSTRUCTING A BASIS FOR Cr-SPLINE MODULES 1109

1 2

4 3

l1 = 0

l2 = 0

Figure 1

An R-basis for the R-module Cr(2) for this case was computed (Lemma 3.1 of
[7]) to be the set consisting of four splines,

(1, 1, 1, 1), (0, l̃1, l̃2, 0), (0, 0, l̃2, l̃2), (0, 0, l̃1l̃2).

Likewise, when a parallelopiped P in E3 is subdivided into eight subparallelopipeds
by planes l1 = 0, l2 = 0, l3 = 0, each drawn parallel to the faces of P , then again,
Cr(2) is free over R and a basis consisting of eight splines was constructed (ibid.,
Lemma 3.2). It was also indicated (ibid., Prop. 3.4) that this construction may be
formulated in an algorithm for any d-dimensional parallelopiped in Ed subdivided
into 2d subparallelopipeds similar to the above special cases, but no proof was given.
Here we extend the above constructions to the following general situations: Let L be
a d-dimensional parallelopiped P in Ed which is subdivided into subparallelopipeds
by drawing any finite number (not one) of hyperplanes in Ed, each one parallel to
a side of P and let 2 denote the resulting d-complex. Then, for any r ≥ 0, there is
an algorithm to write down a basis for the free R-module Cr(2) just by inspection
of the geometry of 2, i.e., each basis element can be expressed as a t-tuple (t is
the number of d-faces of 2) of polynomials in which each tuple is a power of the
linear form or their products which define these hyperplanes. As in the case of a
simplicial complex (see [8]) the number of elements in any R-basis of Cr(2) would
be 2d—the number of maximal faces of 2.

3. A particular ordering and the algorithm

In the statement of our algorithm for writing an R-basis for Cr(2), the lin-
ear ordering of the faces of 2 is crucial and we explain it first. We consider the
two-dimensional case in which a parallelogram P has been subdivided into m.n
subparallelograms by drawing (m − 1) lines ki = 0, i = 1, . . . , m − 1, parallel to
one side and (n − 1) lines lj = 0, j = 1, . . . , n − 1, parallel to the other side of P
(see Fig. 2).

Let 2 be the resulting 2-complex so obtained. Treating each face of 2 as an
entry in an m× n matrix, we linearly order the first row in ascending order as 1st,
2nd, . . . , nth. The last face of the second row is the (n + 1)-th element, the last
but one is the (n + 2)-th element etc.; thus the first entry of the second row is the
2n-th element. Next, the first element of the third row is the (2n + 1)-th element,
then the next one is the (2n+2)-nd, etc., the repeated last entry of the third row is
the 3n-th element, last element of the next following row is the (3n+1)-st element.
In this manner we continue linearly ordering each face until the (m.n)-th element
which would be either the first face of the last row or the last face of the last row
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Figure 2

depending on whether m is even or odd respectively. We will refer to this linear
ordering of the faces of 2 as the ”snakelike” ordering.

With the above snakelike linear ordering of the m.n faces of 2, we now explain
our algorithm of writing down the basic m.n Cr-splines as follows: Here k̃i and l̃j
stand for (ki)r+1 and (lj)r+1 respectively. Our basic splines are:

b1 =


1 1 . . . 1
1 1 . . . 1
. . . . . .
. . . . . .
1 1 . . . 1

 , b2 =


0 l̃1 l̃1 . . . l̃1
0 l̃1 l̃1 . . . l̃1
. . . . . . .
. . . . . . .

0 l̃1 l̃1 . . . l̃1

 ,

b3 =


0 0 l̃2 l̃2 . . . l̃2
0 0 l̃2 l̃2 . . . l̃2
. . . . . . . .
. . . . . . . .

0 0 l̃2 l̃2 . . . l̃2

 , . . . , bn =


0 0 . . . 0 l̃n−1

0 0 . . . 0 l̃n−1

. . . . . . .

. . . . . . .

0 0 . . . 0 l̃n−1

 ,

bn+1 =


0 0 . . . 0
k̃1 k̃1 . . . k̃1

k̃1 k̃1 . . . k̃1

. . . . . .

k̃1 k̃1 . . . k̃1

, bn+2 =


0 . . . 0 0

l̃n−1k̃1 . . . l̃n−1k̃1 0
l̃n−1k̃1 . . . l̃n−1k̃1 0

. . . . . .

l̃n−1k̃1 . . . l̃n−1k̃1 0

,

bn+3 =


0 . . . 0 0 0

l̃n−2k̃1 . . . l̃n−1k̃1 0 0
l̃n−2k̃1 . . . l̃n−1k̃1 0 0

. . . . . . .

l̃n−2k̃1 . . . l̃n−2k̃1 0 0

, . . . ,b2n =


0 0 0 . . . 0

l̃1k̃1 0 0 . . . 0
l̃1k̃1 0 0 . . . 0

. . . . . . .

l̃1k̃1 0 0 . . . 0

,

b3n =


0 0 . . . 0
0 0 . . . 0
k̃2 k̃2 . . . k̃2

. . . . . .

k̃2 k̃2 . . . k̃2

, b3n+1 =


0 0 0 . . . 0
0 0 0 . . . 0
0 l̃1k̃2 l̃1k̃2 . . . l̃1k̃2

. . . . . . .

0 l̃1k̃2 l̃1k̃2 . . . l̃1k̃2

, . . . ,
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bmn =


0 . . . 0 0
0 . . . 0 0
. . . . . .
. . . . . .

0 . . . 0 k̃m−1 l̃n−1

 , when m is odd,

=


0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .

k̃m−1 l̃1 0 . . . 0

 , when m is even.

3.1. The algorithm. We let b1 be the constant polynomial 1 on the whole of 2.
To write b2, we fill in zero at the first place, and in the first column also. Then we
put l̃1 at all the vacant places (we are crossing the line l1 = 0 alone). To write b3, we
fill in zeros at the first two columns and we put l̃2 at all the vacant places. Continue
like this upto bn. To write bn+1, write zeros at all the preceding (in the snakelike
ordering) n places and then put k̃1 at all the vacant places. To write bn+2, put
zeros at the preceding (n + 1) places as well as in that column which precedes the
(n + 2)-th place in the snakelike ordering. Then put the product l̃n−1k̃1 at all the
vacant places (we are crossing the lines ln−1 = 0 as well as k1 = 0). Continue like
this. In general, suppose we have written br as explained. Then to write br+1 put
zeros at the first r places (in the snakelike ordering). Also, put zeros in all those
columns which precede the (r + 1)-th entry of the matrix. While moving from
the r-th place to the (r + 1)-th place in the snakelike ordering if we are crossing
a vertical line lj = 0 alone, put l̃j at all the vacant places; if we are crossing a
horizontal line ki = 0 alone, we put k̃i at all the vacant places. However, if we
are crossing a vertical line lj = 0 and have already crossed a few horizontal lines,
then assuming ki = 0 was the last horizontal line that we have crossed, we put the
product l̃j k̃i at all the vacant places. This defines br+1. Thus we have defined br

for all r, 0 ≤ r ≤ mn.

Main results. First we settle the case of the 2-dimensional complex 2. We have,

3.2. Theorem. Suppose a parallelogram region in E2 is subdivided into mn par-
allelograms m, n ≥ 1 by lines ki = 0, i = 1, 2, . . . ., m− 1, parallel to one side and
lines lj = 0, j = 1, 2, . . . , n−1, parallel to the other side (Fig. 2). Let the resulting
2-complex 2 be given the snakelike linear ordering. Then, for any r ≥ 0 the set
B = b1, b2, . . . , bn, bn+1, . . . , bmn where bi’s are as written above, is an R-basis for
the spline module Cr(2) over the polynomial ring R = E[x1, x2].

Proof. The proof is by induction on the number m of columns of the matrix like rep-
resentation of the two-dimensional faces of 2. When m = 1, one easily checks that
(1, 1, ..., 1), (0, l̃1, l̃1, . . . , l̃1), . . . , (0, 0, . . . , 0, l̃n−1) is an R-basis of Cr(2). Suppose
m > 1 and the result is true for all 2-complexes having lesser number of rows than m.
Suppose 2 has m rows. Since the number of zero entries in B = {b1, b2, . . . , bmn}
increase as we move along in the linear ordering, it is straightforward to see that
the set B is linearly independent over R. We only use the fact that R is an integral
domain and that if an element of R vanishes on the interior of a face of 2, then it
vanishes on the whole of 2. Hence we have to show only the generating property of



1112 SATYA DEO AND LIPIKA MAZUMDAR

B, i.e., we must show that every spline in Cr(2) is a linear combination of elements
of B with coefficients in R.

For convenience, we arrange the mn elements of B in the form of an m×n matrix
so that the snakelike ordering of the resulting matrix yields the set B. Thus,

B =


e11 . . . e1n

e21 . . . e2n

. . . . .

. . . . .
em1 . . . emn

 ,

where b1 = e11, . . . , bn = e1n, bn+1 = e2n, . . . , b2n = e21, . . . , bmn = emn.
Let

f =


f11 . . . f1n

f21 . . . f2n

. . . . .

. . . . .
fm1 . . . fmn

 ,

be a Cr-spline on 2. We drop the last row of 2 and denote the resulting 2-complex
by 2′ whose number of rows is less than m. By inductive hypothesis,

B′ =


e′11 . . . e′1n

e′21 . . . e′2n

. . . . .

. . . . .
e′m−1,1 . . . e′m−1,n

 ,

is a basis of Cr(2′) where

e′11 =


1 1 . . . 1
1 1 . . . 1
. . . . . .
. . . . . .
1 1 . . . 1

 , e′12=


0 l̃1 l̃1 . . . l̃1
0 l̃1 l̃1 . . . l̃1
. . . . . . .
. . . . . . .

0 l̃1 l̃1 . . . l̃1

 ,

e′13 =


0 0 l̃2 l̃2 . . . l̃2
0 0 l̃2 l̃2 . . . l̃2
. . . . . . . .
. . . . . . . .

0 0 l̃2 l̃2 . . . l̃2

 , . . . , e′1n =


0 0 0 . . . 0 l̃n−1

0 0 0 . . . 0 l̃n−1

. . . . . . . .

. . . . . . . .

0 0 0 . . . 0 l̃n−1

 ,

e′21=


0 0 . . . 0

l̃1k̃1 0 . . . 0
l̃1k̃1 0 . . . 0

. . . . . .

l̃1k̃1 0 . . . 0

 , e′22 =


0 0 0 . . . 0

l̃2k̃1 l̃2k̃1 0 . . . 0
l̃2k̃1 l̃2k̃1 0 . . . 0

. . . . . . .

l̃2k̃1 l̃2k̃1 0 . . . 0

 ,

e′23 =


0 0 0 0 . . . 0

l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0
l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0

. . . . . . . .

l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0

 , . . . , e′2n =


0 0 . . . 0
k̃1 k̃1 . . . k̃1

k̃1 k̃1 . . . k̃1

. . . . . .

k̃1 k̃1 . . . k̃1

 ,
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etc. For the last row of e′ij ’s we have two cases:

Case 1. When m is odd

e′m−1,1 =


0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . 0

l̃1k̃m−2 0 . . . 0

 ,

e′m−1,2 =


0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . .

l̃2k̃m−2 l̃2k̃m−2 0 . . . 0

 , . . . ,

e′m−1,n =


0 0 . . . 0
0 0 . . . 0
. . . . . .
0 0 . . . 0

k̃m−2 k̃m−2 . . . k̃m−2

 .

Case 2. When m is even

e′m−1,1 =


0 0 . . . 0
0 0 . . . 0
. . . . . .
0 0 . . . 0

k̃m−2 k̃m−2 . . . k̃m−2

 ,

e′m−1,2 =


0 0 . . . 0
0 0 . . . 0
. . . . . .
0 0 . . . 0
0 l̃1k̃m−2 . . . l̃1k̃m−2

 , . . . ,

e′m−1,n =


0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
0 0 . . . 0 0
0 0 . . . 0 l̃n−1k̃m−2

 .

Here e′ij ’s are obtained from eij by dropping the last row. Note that
f11 . . . f1n

f21 . . . f2n

. . . . .

. . . . .
fm−1,1 . . . fm−1,n

 ∈ Cr(2′).
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Hence there exist polynomials αij (i = 1, . . . , m− 1; j = 1, . . . , n) such that
f11 . . . f1n

f21 . . . f2n

. . . . .

. . . . .
fm−1,1 . . . fm−1,n

 = α11e
′
11+α12e

′
12+· · ·+α2ne′2n+· · ·+αm−1,ne′m−1,n.

Now we extend each e′ij to eij by adding the m-th rows as follows:

e11 =


1 1 . . . 1
1 1 . . . 1
. . . . . .
1 1 . . . 1
. . . . . .
1 1 . . . 1

 , e12 =



0 l̃1 l̃1 . . . l̃1
0 l̃1 l̃1 . . . l̃1
0 l̃1 l̃1 . . . l̃1
0 l̃1 l̃1 . . . l̃1
. . . . . . .

0 l̃1 l̃1 . . . l̃1

 ,

e13 =



0 0 l̃2 l̃2 . . . l̃2
0 0 l̃2 l̃2 . . . l̃2
. . . . . . . .

0 0 l̃2 l̃2 . . . l̃2
. . . . . . . .

0 0 l̃2 l̃2 . . . l̃2

 , . . . , e1n =



0 0 0 . . . l̃n−1

0 0 0 . . . l̃n−1

. . . . . . .

0 0 0 . . . l̃n−1

. . . . . . .

0 0 0 . . . l̃n−1

 ,

e21 =



0 0 . . . 0
l̃1k̃1 0 . . . 0

. . . . . .

l̃1k̃1 0 . . . 0
. . . . . .

l̃1k̃1 0 . . . 0

 , e22 =



0 0 0 . . . 0
l̃2k̃1 l̃2k̃1 0 . . . 0

. . . . . . .

l̃2k̃1 l̃2k̃1 0 . . . 0
. . . . . . .

l̃2k̃1 l̃2k̃1 0 . . . 0

 ,

e23 =



0 0 0 0 . . . 0
l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0

. . . . . . . .

l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0
. . . . . . . .

l̃3k̃1 l̃3k̃1 l̃3k̃1 0 . . . 0

 , . . . , e2n =



0 0 . . . 0
k̃1 k̃1 . . . k̃1

. . . . . .

k̃1 k̃1 . . . k̃1

. . . . . .

k̃1 k̃1 . . . k̃1

 ,

etc. Corresponding to the last row of eij ’s we have two cases:

Case 1. m is odd

em−1,1 =



0 0 . . . 0
0 0 . . . 0
. . . . . .
0 0 . . . 0

l̃1k̃m−2 0 . . . 0
. . . . . .

l̃1k̃m−2 0 . . . 0


,



AN ALGORITHM FOR CONSTRUCTING A BASIS FOR Cr-SPLINE MODULES 1115

em−1,2 =



0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . .
0 0 0 . . . 0

l̃2k̃m−2 l̃2k̃m−2 0 . . . 0
. . . . . . .

l̃2k̃m−2 l̃2k̃m−2 0 . . . 0


, . . . ,

em−1,n =



0 0 . . . 0
. . . . . .
0 0 . . . 0

k̃m−2 k̃m−2 . . . k̃m−2

. . . . . .

k̃m−2 k̃m−2 . . . k̃m−2

 .

Case 2. m is even

em−1,1 =



0 0 . . . 0
. . . . . .
0 0 . . . 0

k̃m−2 k̃m−2 . . . k̃m−2

. . . . . .

k̃m−2 k̃m−2 . . . k̃m−2

 ,

em−1,2 =



0 0 . . . 0
. . . . . .
0 0 . . . 0
0 l̃1k̃m−2 . . . l̃1k̃m−2

. . . . . .

0 l̃1k̃m−2 . . . l̃1k̃m−2

 , . . . ,

em−1,n =



0 0 . . . 0
. . . . . .
0 0 . . . 0
0 0 . . . l̃n−1k̃m−2

. . . . . .

0 0 . . . l̃n−1k̃m−2

 .

Then a straightforward calculation shows that

m−1,n∑
i=1,j=1

αijeij =


f11 . . . f1n

f21 . . . f2n

. . . . .
fm−1,1 . . . fm−1,n

. . . . .
fm−1,1 . . . fm−1,n

 .
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Now we use the algebraic criterion separately for the two cases:

Case 1. When m is odd.
fm,1 = fm−1,1 + αm,1k̃m−1 for some αm,1 ∈ R,
fm,2 = fm,1 + β1 l̃1 = fm−1,2 + β′1k̃m−1, for some β1, β

′
1 ∈ R,

⇒ fm−1,1 + αm,1k̃m−1 + β1 l̃1 = fm−1,2 + β′1k̃m−1,
⇒ fm−1,2 + γ1 l̃1 + αm,1k̃m−1 + β1 l̃1 = fm−1,2 + β′1k̃m−1, for some γ1 ∈ R,
⇒ (β′1 − αm,1)k̃m−1 = (β1 + γ1)l̃1,
⇒ β′1 = αm,1 + αm,2 l̃1 for some αm,2 ∈ R.

Hence, fm,2 = fm−1,2 + αm,1k̃m−1 + αm,2 l̃1k̃m−1.
Continuing in this manner we get
fm,n = fm−1,n + αm,1k̃m−1 + αm,2 l̃1k̃m−1 + · · ·+ αm,n l̃n−1k̃m−1.
Hence if we define

em,1 =


0 0 . . . 0
. . . . . .
. . . . . .
0 0 . . . 0

k̃m−1 k̃m−1 . . . k̃m−1

 ,

em,2 =


0 0 . . . 0
. . . . . .
. . . . . .
0 0 . . . 0
0 l̃1k̃m−1 . . . l̃1k̃m−1

 , . . . ,

em,n =


0 . . . 0 0
. . . . . .
. . . . . .
0 0 . . 0 0
0 . . . 0 l̃n−1k̃m−1

 ,

we find that
f11 . . . f1n

. . . . .

. . . . .
fm,1 . . . fm,n

 =
m−1,n∑
i=1,j=1

αijeij + αm1em1 + αm2em2 + · · ·+ αmnemn

=
m,n∑

i=1,j=1

αijeij .

Case 2. When m is even.
fm,n = fm−1,n + αm,nk̃m−1 for some αmn ∈ R,
fm,n−1 = fm,n + β1 l̃n−1 = fm−1,n−1 + β′1k̃m−1 for some β1, β

′
1 ∈ R,

⇒ fm−1,n + αm,nk̃m−1 + β1 l̃n−1 = fm−1,n−1 + β′1k̃m−1,
⇒ fm−1,n−1 +γ1 l̃n−1 +αm,nk̃m−1 +β1 l̃n−1 = fm−1,n−1 +β′1k̃m−1, for some γ1 ∈ R,
⇒ (β′1 − αm,n)k̃m−1 = (β1 + γ1)l̃n−1,
⇒ β′1 = αm,n + αm,n−1 l̃n−1 for some αm,n−1 ∈ R.

Hence, fm,n−1 = fm−1,n−1 + αm,nk̃m−1 + αm,n−1 l̃n−1k̃m−1.
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Continuing in this manner we get
fm,1 = fm−1,1 + αm,nk̃m−1 + αm,n−1 l̃n−1k̃m−1 + · · ·+ αm,1 l̃1k̃m−1.
Hence if we define

em,1 =


0 0 . . . 0
. . . . . .
. . . . . .
0 0 . . . 0

l̃1k̃m−1 0 . . . 0

 ,

em,2 =


0 0 0 . . . 0
. . . . . . .
. . . . . . .
0 0 0 . . . 0

l̃2k̃m−1 l̃2k̃m−1 0 . . . 0

 , . . . ,

em,n =


0 0 . . . 0
. . . . . .
. . . . . .
0 0 . . . 0

k̃m−1 k̃m−1 . . . k̃m−1

 ,

then we find that


f11 . . . f1n

. . . . .

. . . . .
fm,1 . . . fm,n

 =
m−1,n∑
i=1,j=1

αijeij + αm1em1 + αm2em2 + · · ·+ αmnemn

=
m,n∑

i=1,j=1

αijeij .

3.3. Example. For the case of Fig. 3 the R-basis in accordance with the above
algorithm is given by:

b1 =

 1 1 1
1 1 1
1 1 1

 , b2 =

 0 l̃1 l̃1
0 l̃1 l̃1
0 l̃1 l̃1

, b3 =

 0 0 l̃2
0 0 l̃2
0 0 l̃2

,

b4 =

 0 0 0
k̃1 k̃1 k̃1

k̃1 k̃1 k̃1

, b5 =

 0 0 0
k̃1 l̃2 k̃1 l̃2 0
k̃1 l̃2 k̃1 l̃2 0

, b6 =

 0 0 0
k̃1 l̃1 0 0
k̃1 l̃1 0 0

,

b7 =

 0 0 0
0 0 0
k̃2 k̃2 k̃2

, b8 =

 0 0 0
0 0 0
0 l̃1k̃2 l̃1k̃2

 , b9 =

 0 0 0
0 0 0
0 0 l̃2k̃2

.
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1 2 3

6 5 4

7 8

l1=0 l2=0

k1=0

k2=0

Figure 3

1
18 17 16

13 14 15

2 3

6 5 4

7 8

12 11 10

k1=0

l1=0 l2=0

k2=0

m1=0

Figure 4

4. The higher-dimensional cases

Let us start with an example in the three-dimensional situation. Suppose a
parallelopiped is subdivided into eighteen subparallelopipeds and is obtained by
drawing hyperplanes k1 = 0, k2 = 0, l1 = 0, l2 = 0 and m1 = 0 in E3 (see Fig. 4).

Suppose 2 is the 3-dimensional subcomplex so obtained. To extend the snakelike
linear ordering on the eighteen faces we linearly order the nine faces above the plane
m1 = 0 as in the two-dimensional case. From ninth place we go down to the tenth
place just below the ninth one and then cover the second level according to the
snakelike linear ordering, i.e., first move along a row in the second level, then along
the next row but backward, then along the third row until we have enumerated
the second level completely. If there is yet another level along the z-axis, we go
down to the third level and extend the snakelike linear ordering in the obvious way.
Returning to our example (Fig. 4), we first explain the algorithm of writing a basis
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using a linear ordering just described. Start with the first element b1 by filling in
1 in all the eighteen places of the 3 × 3 × 2 matrix. To write b2 put zero in the
first place and then fill in zeros in the first column including all the levels below
the first column; then put l̃1 at all the vacant places (we are crossing the plane
l1 = 0 in the linear ordering). We fill all the entries of the first level according
to the 2-dimensional case putting zeros in the second level below the zeros of the
first level. This will give us the first nine elements of the basis. To write the tenth
basis element, we put zeros at all the preceding places (i.e., on the whole of the
first level), and then put m̃1 at all the vacant places. To write b11, we put zeros
in all the preceding ten places, also put zeros in the column of the second level
which has tenth entry in it, then we fill all vacant places by l̃2m̃1 (we are crossing
l2 = 0 and m1 = 0 both). We continue like this as in the first level remembering to
include factor m̃1 everywhere in the second level. Since it is unmanageable to write
the three-dimensional matrices, we write below all the eighteen basis elements of
the particular example of Fig. 4 according to the linear ordering described above.
These are :

b1 = (1, 1, ....................................., 1),
b2 = (0, l̃1, l̃1, l̃1, l̃1, 0, 0, l̃1, l̃1, l̃1, l̃1, 0, 0, l̃1, l̃1, l̃1, l̃1, 0),
b3 = (0, 0, l̃2, l̃2, 0, 0, 0, 0, l̃2, l̃2, 0, 0, 0, 0, l̃2, l̃2, 0, 0),
b4 = (0, 0, 0, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, k̃1, 0, 0, 0),
b5 = (0, 0, 0, 0, l̃2k̃1, l̃2k̃1, l̃2k̃1, l̃2k̃1, 0, 0, l̃2k̃1, l̃2k̃1, l̃2k̃1, l̃2k̃1, 0, 0, 0, 0),
b6 = (0, 0, 0, 0, 0, l̃1k̃1, l̃1k̃1, 0, 0, 0, 0, l̃1k̃1, l̃1k̃1, 0, 0, 0, 0, 0),
b7 = (0, 0, 0, 0, 0, 0, k̃2, k̃2, k̃2, k̃2, k̃2, k̃2, 0, 0, 0, 0, 0, 0),
b8 = (0, 0, 0, 0, 0, 0, 0, l̃1k̃2, l̃1k̃2, l̃1k̃2, l̃1k̃2, 0, 0, 0, 0, 0, 0, 0),
b9 = (0, 0, 0, 0, 0, 0, 0, 0, l̃2k̃2, l̃2k̃2, 0, 0, 0, 0, 0, 0, 0, 0),
b10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1, m̃1, m̃1, m̃1, m̃1, m̃1, m̃1, m̃1, m̃1),
b11 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l̃2m̃1, l̃2m̃1, l̃2m̃1, l̃2m̃1, 0, 0, l̃2m̃1, l̃2m̃1),
b12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l̃1m̃1, l̃1tildem1, 0, 0, 0, 0, l̃1m̃1),
b13 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1k̃2, m̃1k̃2, m̃1k̃2, m̃1k̃2, m̃1k̃2, m̃1k̃2),
b14 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1k̃2, l̃1, m̃1k̃2, l̃1, m̃1k̃2, l̃1, m̃1k̃2, l̃1, 0),
b15 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1l̃2k̃1, m̃1 l̃2k̃1, 0, 0),
b16 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1k̃1, m̃1k̃1, m̃1k̃1, ),
b17 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1k̃1 l̃2, m̃1k̃1 l̃2),
b18 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m̃1l̃1k̃1).
Now, with this example, it is clear what would be the basis in the case when

we have m.n.p number of parallelopipeds by intersecting m, n and p parallel hyper-
planes in E3. A simple but long calculation can be exhibited to prove (we have done
it to satisfy ourselves) the above statement for the particular example having 18
parallelopipeds in the three-dimensional case. The general case of three or higher
dimensions can be stated and proved using induction, as in the two-dimensional
case (Theorem 3.1). We omit the lengthy proof (we saw the two-dimensional case)
and give only the statement of the general result.

4.1. Theorem. Let P be a d-dimensional parallelopiped in Ed. We subdivide P
into n1.n2. · · · .nd number of subparallelopipeds by drawing hyperplanes in Ed par-
allel to the sides of P . Suppose 2 denotes the resulting d-complex in Ed. Then,
with the snakelike linear ordering on the faces of 2 and for any r ≥ 0, there is an
algorithm to write down a basis consisting of n1.n2. · · · .nd number of Cr-splines
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on 2 which will form a basis for the spline module Cr(2) over the polynomial ring
R = E[x1, . . . , xd].
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